/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2018 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "rte_latencystats.h" /** Nano seconds per second */ #define NS_PER_SEC 1E9 /** Clock cycles per nano second */ static uint64_t latencystat_cycles_per_ns(void) { return rte_get_timer_hz() / NS_PER_SEC; } /* Macros for printing using RTE_LOG */ #define RTE_LOGTYPE_LATENCY_STATS RTE_LOGTYPE_USER1 static uint64_t timestamp_dynflag; static int timestamp_dynfield_offset = -1; static inline rte_mbuf_timestamp_t * timestamp_dynfield(struct rte_mbuf *mbuf) { return RTE_MBUF_DYNFIELD(mbuf, timestamp_dynfield_offset, rte_mbuf_timestamp_t *); } static const char *MZ_RTE_LATENCY_STATS = "rte_latencystats"; static int latency_stats_index; static uint64_t samp_intvl; static uint64_t timer_tsc; static uint64_t prev_tsc; struct rte_latency_stats { float min_latency; /**< Minimum latency in nano seconds */ float avg_latency; /**< Average latency in nano seconds */ float max_latency; /**< Maximum latency in nano seconds */ float jitter; /** Latency variation */ rte_spinlock_t lock; /** Latency calculation lock */ }; static struct rte_latency_stats *glob_stats; struct rxtx_cbs { const struct rte_eth_rxtx_callback *cb; }; static struct rxtx_cbs rx_cbs[RTE_MAX_ETHPORTS][RTE_MAX_QUEUES_PER_PORT]; static struct rxtx_cbs tx_cbs[RTE_MAX_ETHPORTS][RTE_MAX_QUEUES_PER_PORT]; struct latency_stats_nameoff { char name[RTE_ETH_XSTATS_NAME_SIZE]; unsigned int offset; }; static const struct latency_stats_nameoff lat_stats_strings[] = { {"min_latency_ns", offsetof(struct rte_latency_stats, min_latency)}, {"avg_latency_ns", offsetof(struct rte_latency_stats, avg_latency)}, {"max_latency_ns", offsetof(struct rte_latency_stats, max_latency)}, {"jitter_ns", offsetof(struct rte_latency_stats, jitter)}, }; #define NUM_LATENCY_STATS (sizeof(lat_stats_strings) / \ sizeof(lat_stats_strings[0])) int32_t rte_latencystats_update(void) { unsigned int i; float *stats_ptr = NULL; uint64_t values[NUM_LATENCY_STATS] = {0}; int ret; for (i = 0; i < NUM_LATENCY_STATS; i++) { stats_ptr = RTE_PTR_ADD(glob_stats, lat_stats_strings[i].offset); values[i] = (uint64_t)floor((*stats_ptr)/ latencystat_cycles_per_ns()); } ret = rte_metrics_update_values(RTE_METRICS_GLOBAL, latency_stats_index, values, NUM_LATENCY_STATS); if (ret < 0) RTE_LOG(INFO, LATENCY_STATS, "Failed to push the stats\n"); return ret; } static void rte_latencystats_fill_values(struct rte_metric_value *values) { unsigned int i; float *stats_ptr = NULL; for (i = 0; i < NUM_LATENCY_STATS; i++) { stats_ptr = RTE_PTR_ADD(glob_stats, lat_stats_strings[i].offset); values[i].key = i; values[i].value = (uint64_t)floor((*stats_ptr)/ latencystat_cycles_per_ns()); } } static uint16_t add_time_stamps(uint16_t pid __rte_unused, uint16_t qid __rte_unused, struct rte_mbuf **pkts, uint16_t nb_pkts, uint16_t max_pkts __rte_unused, void *user_cb __rte_unused) { unsigned int i; uint64_t diff_tsc, now; /* * For every sample interval, * time stamp is marked on one received packet. */ now = rte_rdtsc(); for (i = 0; i < nb_pkts; i++) { diff_tsc = now - prev_tsc; timer_tsc += diff_tsc; if ((pkts[i]->ol_flags & timestamp_dynflag) == 0 && (timer_tsc >= samp_intvl)) { *timestamp_dynfield(pkts[i]) = now; pkts[i]->ol_flags |= timestamp_dynflag; timer_tsc = 0; } prev_tsc = now; now = rte_rdtsc(); } return nb_pkts; } static uint16_t calc_latency(uint16_t pid __rte_unused, uint16_t qid __rte_unused, struct rte_mbuf **pkts, uint16_t nb_pkts, void *_ __rte_unused) { unsigned int i, cnt = 0; uint64_t now; float latency[nb_pkts]; static float prev_latency; /* * Alpha represents degree of weighting decrease in EWMA, * a constant smoothing factor between 0 and 1. The value * is used below for measuring average latency. */ const float alpha = 0.2; now = rte_rdtsc(); for (i = 0; i < nb_pkts; i++) { if (pkts[i]->ol_flags & timestamp_dynflag) latency[cnt++] = now - *timestamp_dynfield(pkts[i]); } rte_spinlock_lock(&glob_stats->lock); for (i = 0; i < cnt; i++) { /* * The jitter is calculated as statistical mean of interpacket * delay variation. The "jitter estimate" is computed by taking * the absolute values of the ipdv sequence and applying an * exponential filter with parameter 1/16 to generate the * estimate. i.e J=J+(|D(i-1,i)|-J)/16. Where J is jitter, * D(i-1,i) is difference in latency of two consecutive packets * i-1 and i. * Reference: Calculated as per RFC 5481, sec 4.1, * RFC 3393 sec 4.5, RFC 1889 sec. */ glob_stats->jitter += (fabsf(prev_latency - latency[i]) - glob_stats->jitter)/16; if (glob_stats->min_latency == 0) glob_stats->min_latency = latency[i]; else if (latency[i] < glob_stats->min_latency) glob_stats->min_latency = latency[i]; else if (latency[i] > glob_stats->max_latency) glob_stats->max_latency = latency[i]; /* * The average latency is measured using exponential moving * average, i.e. using EWMA * https://en.wikipedia.org/wiki/Moving_average */ glob_stats->avg_latency += alpha * (latency[i] - glob_stats->avg_latency); prev_latency = latency[i]; } rte_spinlock_unlock(&glob_stats->lock); return nb_pkts; } int rte_latencystats_init(uint64_t app_samp_intvl, rte_latency_stats_flow_type_fn user_cb) { unsigned int i; uint16_t pid; uint16_t qid; struct rxtx_cbs *cbs = NULL; const char *ptr_strings[NUM_LATENCY_STATS] = {0}; const struct rte_memzone *mz = NULL; const unsigned int flags = 0; int ret; if (rte_memzone_lookup(MZ_RTE_LATENCY_STATS)) return -EEXIST; /** Allocate stats in shared memory fo multi process support */ mz = rte_memzone_reserve(MZ_RTE_LATENCY_STATS, sizeof(*glob_stats), rte_socket_id(), flags); if (mz == NULL) { RTE_LOG(ERR, LATENCY_STATS, "Cannot reserve memory: %s:%d\n", __func__, __LINE__); return -ENOMEM; } glob_stats = mz->addr; rte_spinlock_init(&glob_stats->lock); samp_intvl = app_samp_intvl * latencystat_cycles_per_ns(); /** Register latency stats with stats library */ for (i = 0; i < NUM_LATENCY_STATS; i++) ptr_strings[i] = lat_stats_strings[i].name; latency_stats_index = rte_metrics_reg_names(ptr_strings, NUM_LATENCY_STATS); if (latency_stats_index < 0) { RTE_LOG(DEBUG, LATENCY_STATS, "Failed to register latency stats names\n"); return -1; } /* Register mbuf field and flag for Rx timestamp */ ret = rte_mbuf_dyn_rx_timestamp_register(×tamp_dynfield_offset, ×tamp_dynflag); if (ret != 0) { RTE_LOG(ERR, LATENCY_STATS, "Cannot register mbuf field/flag for timestamp\n"); return -rte_errno; } /** Register Rx/Tx callbacks */ RTE_ETH_FOREACH_DEV(pid) { struct rte_eth_dev_info dev_info; ret = rte_eth_dev_info_get(pid, &dev_info); if (ret != 0) { RTE_LOG(INFO, LATENCY_STATS, "Error during getting device (port %u) info: %s\n", pid, strerror(-ret)); continue; } for (qid = 0; qid < dev_info.nb_rx_queues; qid++) { cbs = &rx_cbs[pid][qid]; cbs->cb = rte_eth_add_first_rx_callback(pid, qid, add_time_stamps, user_cb); if (!cbs->cb) RTE_LOG(INFO, LATENCY_STATS, "Failed to " "register Rx callback for pid=%d, " "qid=%d\n", pid, qid); } for (qid = 0; qid < dev_info.nb_tx_queues; qid++) { cbs = &tx_cbs[pid][qid]; cbs->cb = rte_eth_add_tx_callback(pid, qid, calc_latency, user_cb); if (!cbs->cb) RTE_LOG(INFO, LATENCY_STATS, "Failed to " "register Tx callback for pid=%d, " "qid=%d\n", pid, qid); } } return 0; } int rte_latencystats_uninit(void) { uint16_t pid; uint16_t qid; int ret = 0; struct rxtx_cbs *cbs = NULL; const struct rte_memzone *mz = NULL; /** De register Rx/Tx callbacks */ RTE_ETH_FOREACH_DEV(pid) { struct rte_eth_dev_info dev_info; ret = rte_eth_dev_info_get(pid, &dev_info); if (ret != 0) { RTE_LOG(INFO, LATENCY_STATS, "Error during getting device (port %u) info: %s\n", pid, strerror(-ret)); continue; } for (qid = 0; qid < dev_info.nb_rx_queues; qid++) { cbs = &rx_cbs[pid][qid]; ret = rte_eth_remove_rx_callback(pid, qid, cbs->cb); if (ret) RTE_LOG(INFO, LATENCY_STATS, "failed to " "remove Rx callback for pid=%d, " "qid=%d\n", pid, qid); } for (qid = 0; qid < dev_info.nb_tx_queues; qid++) { cbs = &tx_cbs[pid][qid]; ret = rte_eth_remove_tx_callback(pid, qid, cbs->cb); if (ret) RTE_LOG(INFO, LATENCY_STATS, "failed to " "remove Tx callback for pid=%d, " "qid=%d\n", pid, qid); } } /* free up the memzone */ mz = rte_memzone_lookup(MZ_RTE_LATENCY_STATS); if (mz) rte_memzone_free(mz); return 0; } int rte_latencystats_get_names(struct rte_metric_name *names, uint16_t size) { unsigned int i; if (names == NULL || size < NUM_LATENCY_STATS) return NUM_LATENCY_STATS; for (i = 0; i < NUM_LATENCY_STATS; i++) strlcpy(names[i].name, lat_stats_strings[i].name, sizeof(names[i].name)); return NUM_LATENCY_STATS; } int rte_latencystats_get(struct rte_metric_value *values, uint16_t size) { if (size < NUM_LATENCY_STATS || values == NULL) return NUM_LATENCY_STATS; if (rte_eal_process_type() == RTE_PROC_SECONDARY) { const struct rte_memzone *mz; mz = rte_memzone_lookup(MZ_RTE_LATENCY_STATS); if (mz == NULL) { RTE_LOG(ERR, LATENCY_STATS, "Latency stats memzone not found\n"); return -ENOMEM; } glob_stats = mz->addr; } /* Retrieve latency stats */ rte_latencystats_fill_values(values); return NUM_LATENCY_STATS; }