/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2015 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "virtio_rxtx_simple.h" #define RTE_VIRTIO_DESC_PER_LOOP 8 /* virtio vPMD receive routine, only accept(nb_pkts >= RTE_VIRTIO_DESC_PER_LOOP) * * This routine is for non-mergeable RX, one desc for each guest buffer. * This routine is based on the RX ring layout optimization. Each entry in the * avail ring points to the desc with the same index in the desc ring and this * will never be changed in the driver. * * - nb_pkts < RTE_VIRTIO_DESC_PER_LOOP, just return no packet */ uint16_t virtio_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { struct virtnet_rx *rxvq = rx_queue; struct virtqueue *vq = rxvq->vq; struct virtio_hw *hw = vq->hw; uint16_t nb_used, nb_total; uint16_t desc_idx; struct vring_used_elem *rused; struct rte_mbuf **sw_ring; struct rte_mbuf **sw_ring_end; struct rte_mbuf **ref_rx_pkts; uint16_t nb_pkts_received = 0; __m128i shuf_msk1, shuf_msk2, len_adjust; shuf_msk1 = _mm_set_epi8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* vlan tci */ 5, 4, /* dat len */ 0xFF, 0xFF, 5, 4, /* pkt len */ 0xFF, 0xFF, 0xFF, 0xFF /* packet type */ ); shuf_msk2 = _mm_set_epi8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* vlan tci */ 13, 12, /* dat len */ 0xFF, 0xFF, 13, 12, /* pkt len */ 0xFF, 0xFF, 0xFF, 0xFF /* packet type */ ); /* Subtract the header length. * In which case do we need the header length in used->len ? */ len_adjust = _mm_set_epi16( 0, 0, 0, (uint16_t)-vq->hw->vtnet_hdr_size, 0, (uint16_t)-vq->hw->vtnet_hdr_size, 0, 0); if (unlikely(hw->started == 0)) return nb_pkts_received; if (unlikely(nb_pkts < RTE_VIRTIO_DESC_PER_LOOP)) return 0; nb_used = virtqueue_nused(vq); if (unlikely(nb_used == 0)) return 0; nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_VIRTIO_DESC_PER_LOOP); nb_used = RTE_MIN(nb_used, nb_pkts); desc_idx = (uint16_t)(vq->vq_used_cons_idx & (vq->vq_nentries - 1)); rused = &vq->vq_split.ring.used->ring[desc_idx]; sw_ring = &vq->sw_ring[desc_idx]; sw_ring_end = &vq->sw_ring[vq->vq_nentries]; rte_prefetch0(rused); if (vq->vq_free_cnt >= RTE_VIRTIO_VPMD_RX_REARM_THRESH) { virtio_rxq_rearm_vec(rxvq); if (unlikely(virtqueue_kick_prepare(vq))) virtqueue_notify(vq); } nb_total = nb_used; ref_rx_pkts = rx_pkts; for (nb_pkts_received = 0; nb_pkts_received < nb_total;) { __m128i desc[RTE_VIRTIO_DESC_PER_LOOP / 2]; __m128i mbp[RTE_VIRTIO_DESC_PER_LOOP / 2]; __m128i pkt_mb[RTE_VIRTIO_DESC_PER_LOOP]; mbp[0] = _mm_loadu_si128((__m128i *)(sw_ring + 0)); desc[0] = _mm_loadu_si128((__m128i *)(rused + 0)); _mm_storeu_si128((__m128i *)&rx_pkts[0], mbp[0]); mbp[1] = _mm_loadu_si128((__m128i *)(sw_ring + 2)); desc[1] = _mm_loadu_si128((__m128i *)(rused + 2)); _mm_storeu_si128((__m128i *)&rx_pkts[2], mbp[1]); mbp[2] = _mm_loadu_si128((__m128i *)(sw_ring + 4)); desc[2] = _mm_loadu_si128((__m128i *)(rused + 4)); _mm_storeu_si128((__m128i *)&rx_pkts[4], mbp[2]); mbp[3] = _mm_loadu_si128((__m128i *)(sw_ring + 6)); desc[3] = _mm_loadu_si128((__m128i *)(rused + 6)); _mm_storeu_si128((__m128i *)&rx_pkts[6], mbp[3]); pkt_mb[1] = _mm_shuffle_epi8(desc[0], shuf_msk2); pkt_mb[0] = _mm_shuffle_epi8(desc[0], shuf_msk1); pkt_mb[1] = _mm_add_epi16(pkt_mb[1], len_adjust); pkt_mb[0] = _mm_add_epi16(pkt_mb[0], len_adjust); _mm_storeu_si128((void *)&rx_pkts[1]->rx_descriptor_fields1, pkt_mb[1]); _mm_storeu_si128((void *)&rx_pkts[0]->rx_descriptor_fields1, pkt_mb[0]); pkt_mb[3] = _mm_shuffle_epi8(desc[1], shuf_msk2); pkt_mb[2] = _mm_shuffle_epi8(desc[1], shuf_msk1); pkt_mb[3] = _mm_add_epi16(pkt_mb[3], len_adjust); pkt_mb[2] = _mm_add_epi16(pkt_mb[2], len_adjust); _mm_storeu_si128((void *)&rx_pkts[3]->rx_descriptor_fields1, pkt_mb[3]); _mm_storeu_si128((void *)&rx_pkts[2]->rx_descriptor_fields1, pkt_mb[2]); pkt_mb[5] = _mm_shuffle_epi8(desc[2], shuf_msk2); pkt_mb[4] = _mm_shuffle_epi8(desc[2], shuf_msk1); pkt_mb[5] = _mm_add_epi16(pkt_mb[5], len_adjust); pkt_mb[4] = _mm_add_epi16(pkt_mb[4], len_adjust); _mm_storeu_si128((void *)&rx_pkts[5]->rx_descriptor_fields1, pkt_mb[5]); _mm_storeu_si128((void *)&rx_pkts[4]->rx_descriptor_fields1, pkt_mb[4]); pkt_mb[7] = _mm_shuffle_epi8(desc[3], shuf_msk2); pkt_mb[6] = _mm_shuffle_epi8(desc[3], shuf_msk1); pkt_mb[7] = _mm_add_epi16(pkt_mb[7], len_adjust); pkt_mb[6] = _mm_add_epi16(pkt_mb[6], len_adjust); _mm_storeu_si128((void *)&rx_pkts[7]->rx_descriptor_fields1, pkt_mb[7]); _mm_storeu_si128((void *)&rx_pkts[6]->rx_descriptor_fields1, pkt_mb[6]); if (unlikely(nb_used <= RTE_VIRTIO_DESC_PER_LOOP)) { if (sw_ring + nb_used <= sw_ring_end) nb_pkts_received += nb_used; else nb_pkts_received += sw_ring_end - sw_ring; break; } else { if (unlikely(sw_ring + RTE_VIRTIO_DESC_PER_LOOP >= sw_ring_end)) { nb_pkts_received += sw_ring_end - sw_ring; break; } else { nb_pkts_received += RTE_VIRTIO_DESC_PER_LOOP; rx_pkts += RTE_VIRTIO_DESC_PER_LOOP; sw_ring += RTE_VIRTIO_DESC_PER_LOOP; rused += RTE_VIRTIO_DESC_PER_LOOP; nb_used -= RTE_VIRTIO_DESC_PER_LOOP; } } } vq->vq_used_cons_idx += nb_pkts_received; vq->vq_free_cnt += nb_pkts_received; rxvq->stats.packets += nb_pkts_received; for (nb_used = 0; nb_used < nb_pkts_received; nb_used++) virtio_update_packet_stats(&rxvq->stats, ref_rx_pkts[nb_used]); return nb_pkts_received; }