/* SPDX-License-Identifier: BSD-3-Clause * * Copyright(c) 2019-2020 Xilinx, Inc. * Copyright(c) 2016-2019 Solarflare Communications Inc. * * This software was jointly developed between OKTET Labs (under contract * for Solarflare) and Solarflare Communications, Inc. */ #ifndef _SFC_DP_TX_H #define _SFC_DP_TX_H #include #include "sfc_dp.h" #include "sfc_debug.h" #include "sfc_tso.h" #ifdef __cplusplus extern "C" { #endif /** * Generic transmit queue information used on data path. * It must be kept as small as it is possible since it is built into * the structure used on datapath. */ struct sfc_dp_txq { struct sfc_dp_queue dpq; }; /** Datapath transmit queue descriptor number limitations */ struct sfc_dp_tx_hw_limits { unsigned int txq_max_entries; unsigned int txq_min_entries; }; /** * Datapath transmit queue creation information. * * The structure is used just to pass information from control path to * datapath. It could be just function arguments, but it would be hardly * readable. */ struct sfc_dp_tx_qcreate_info { /** Maximum number of pushed Tx descriptors */ unsigned int max_fill_level; /** Minimum number of unused Tx descriptors to do reap */ unsigned int free_thresh; /** Offloads enabled on the transmit queue */ uint64_t offloads; /** Tx queue size */ unsigned int txq_entries; /** Maximum size of data in the DMA descriptor */ uint16_t dma_desc_size_max; /** DMA-mapped Tx descriptors ring */ void *txq_hw_ring; /** Associated event queue size */ unsigned int evq_entries; /** Hardware event ring */ void *evq_hw_ring; /** The queue index in hardware (required to push right doorbell) */ unsigned int hw_index; /** Virtual address of the memory-mapped BAR to push Tx doorbell */ volatile void *mem_bar; /** VI window size shift */ unsigned int vi_window_shift; /** * Maximum number of bytes into the packet the TCP header can start for * the hardware to apply TSO packet edits. */ uint16_t tso_tcp_header_offset_limit; /** Maximum number of header DMA descriptors per TSOv3 transaction */ uint16_t tso_max_nb_header_descs; /** Maximum header length acceptable by TSOv3 transaction */ uint16_t tso_max_header_len; /** Maximum number of payload DMA descriptors per TSOv3 transaction */ uint16_t tso_max_nb_payload_descs; /** Maximum payload length per TSOv3 transaction */ uint32_t tso_max_payload_len; /** Maximum number of frames to be generated per TSOv3 transaction */ uint32_t tso_max_nb_outgoing_frames; }; /** * Get Tx datapath specific device info. * * @param dev_info Device info to be adjusted */ typedef void (sfc_dp_tx_get_dev_info_t)(struct rte_eth_dev_info *dev_info); /** * Get size of transmit and event queue rings by the number of Tx * descriptors. * * @param nb_tx_desc Number of Tx descriptors * @param txq_entries Location for number of Tx ring entries * @param evq_entries Location for number of event ring entries * @param txq_max_fill_level Location for maximum Tx ring fill level * * @return 0 or positive errno. */ typedef int (sfc_dp_tx_qsize_up_rings_t)(uint16_t nb_tx_desc, struct sfc_dp_tx_hw_limits *limits, unsigned int *txq_entries, unsigned int *evq_entries, unsigned int *txq_max_fill_level); /** * Allocate and initialize datapath transmit queue. * * @param port_id The port identifier * @param queue_id The queue identifier * @param pci_addr PCI function address * @param socket_id Socket identifier to allocate memory * @param info Tx queue details wrapped in structure * @param dp_txqp Location for generic datapath transmit queue pointer * * @return 0 or positive errno. */ typedef int (sfc_dp_tx_qcreate_t)(uint16_t port_id, uint16_t queue_id, const struct rte_pci_addr *pci_addr, int socket_id, const struct sfc_dp_tx_qcreate_info *info, struct sfc_dp_txq **dp_txqp); /** * Free resources allocated for datapath transmit queue. */ typedef void (sfc_dp_tx_qdestroy_t)(struct sfc_dp_txq *dp_txq); /** * Transmit queue start callback. * * It handovers EvQ to the datapath. */ typedef int (sfc_dp_tx_qstart_t)(struct sfc_dp_txq *dp_txq, unsigned int evq_read_ptr, unsigned int txq_desc_index); /** * Transmit queue stop function called before the queue flush. * * It returns EvQ to the control path. */ typedef void (sfc_dp_tx_qstop_t)(struct sfc_dp_txq *dp_txq, unsigned int *evq_read_ptr); /** * Transmit event handler used during queue flush only. */ typedef bool (sfc_dp_tx_qtx_ev_t)(struct sfc_dp_txq *dp_txq, unsigned int id); /** * Transmit queue function called after the queue flush. */ typedef void (sfc_dp_tx_qreap_t)(struct sfc_dp_txq *dp_txq); /** * Check Tx descriptor status */ typedef int (sfc_dp_tx_qdesc_status_t)(struct sfc_dp_txq *dp_txq, uint16_t offset); /** Transmit datapath definition */ struct sfc_dp_tx { struct sfc_dp dp; unsigned int features; #define SFC_DP_TX_FEAT_MULTI_PROCESS 0x1 /** * Tx offload capabilities supported by the datapath on device * level only if HW/FW supports it. */ uint64_t dev_offload_capa; /** * Tx offload capabilities supported by the datapath per-queue * if HW/FW supports it. */ uint64_t queue_offload_capa; sfc_dp_tx_get_dev_info_t *get_dev_info; sfc_dp_tx_qsize_up_rings_t *qsize_up_rings; sfc_dp_tx_qcreate_t *qcreate; sfc_dp_tx_qdestroy_t *qdestroy; sfc_dp_tx_qstart_t *qstart; sfc_dp_tx_qstop_t *qstop; sfc_dp_tx_qtx_ev_t *qtx_ev; sfc_dp_tx_qreap_t *qreap; sfc_dp_tx_qdesc_status_t *qdesc_status; eth_tx_prep_t pkt_prepare; eth_tx_burst_t pkt_burst; }; static inline struct sfc_dp_tx * sfc_dp_find_tx_by_name(struct sfc_dp_list *head, const char *name) { struct sfc_dp *p = sfc_dp_find_by_name(head, SFC_DP_TX, name); return (p == NULL) ? NULL : container_of(p, struct sfc_dp_tx, dp); } static inline struct sfc_dp_tx * sfc_dp_find_tx_by_caps(struct sfc_dp_list *head, unsigned int avail_caps) { struct sfc_dp *p = sfc_dp_find_by_caps(head, SFC_DP_TX, avail_caps); return (p == NULL) ? NULL : container_of(p, struct sfc_dp_tx, dp); } /** Get Tx datapath ops by the datapath TxQ handle */ const struct sfc_dp_tx *sfc_dp_tx_by_dp_txq(const struct sfc_dp_txq *dp_txq); static inline uint64_t sfc_dp_tx_offload_capa(const struct sfc_dp_tx *dp_tx) { return dp_tx->dev_offload_capa | dp_tx->queue_offload_capa; } static inline unsigned int sfc_dp_tx_pkt_extra_hdr_segs(struct rte_mbuf **m_seg, unsigned int *header_len_remaining) { unsigned int nb_extra_header_segs = 0; while (rte_pktmbuf_data_len(*m_seg) < *header_len_remaining) { *header_len_remaining -= rte_pktmbuf_data_len(*m_seg); *m_seg = (*m_seg)->next; ++nb_extra_header_segs; } return nb_extra_header_segs; } static inline int sfc_dp_tx_prepare_pkt(struct rte_mbuf *m, unsigned int max_nb_header_segs, unsigned int tso_bounce_buffer_len, uint32_t tso_tcp_header_offset_limit, unsigned int max_fill_level, unsigned int nb_tso_descs, unsigned int nb_vlan_descs) { unsigned int descs_required = m->nb_segs; unsigned int tcph_off = ((m->ol_flags & PKT_TX_TUNNEL_MASK) ? m->outer_l2_len + m->outer_l3_len : 0) + m->l2_len + m->l3_len; unsigned int header_len = tcph_off + m->l4_len; unsigned int header_len_remaining = header_len; unsigned int nb_header_segs = 1; struct rte_mbuf *m_seg = m; #ifdef RTE_LIBRTE_SFC_EFX_DEBUG int ret; ret = rte_validate_tx_offload(m); if (ret != 0) { /* * Negative error code is returned by rte_validate_tx_offload(), * but positive are used inside net/sfc PMD. */ SFC_ASSERT(ret < 0); return -ret; } #endif if (max_nb_header_segs != 0) { /* There is a limit on the number of header segments. */ nb_header_segs += sfc_dp_tx_pkt_extra_hdr_segs(&m_seg, &header_len_remaining); if (unlikely(nb_header_segs > max_nb_header_segs)) { /* * The number of header segments is too large. * * If TSO is requested and if the datapath supports * linearisation of TSO headers, allow the packet * to proceed with additional checks below. * Otherwise, throw an error. */ if ((m->ol_flags & PKT_TX_TCP_SEG) == 0 || tso_bounce_buffer_len == 0) return EINVAL; } } if (m->ol_flags & PKT_TX_TCP_SEG) { switch (m->ol_flags & PKT_TX_TUNNEL_MASK) { case 0: break; case PKT_TX_TUNNEL_VXLAN: /* FALLTHROUGH */ case PKT_TX_TUNNEL_GENEVE: if (!(m->ol_flags & (PKT_TX_OUTER_IPV4 | PKT_TX_OUTER_IPV6))) return EINVAL; } if (unlikely(tcph_off > tso_tcp_header_offset_limit)) return EINVAL; descs_required += nb_tso_descs; /* * If headers segments are already counted above, here * nothing is done since remaining length is smaller * then current segment size. */ nb_header_segs += sfc_dp_tx_pkt_extra_hdr_segs(&m_seg, &header_len_remaining); /* * Extra descriptor which is required when (a part of) payload * shares the same segment with (a part of) the header. */ if (rte_pktmbuf_data_len(m_seg) > header_len_remaining) descs_required++; if (tso_bounce_buffer_len != 0) { if (nb_header_segs > 1 && unlikely(header_len > tso_bounce_buffer_len)) { /* * Header linearization is required and * the header is too big to be linearized */ return EINVAL; } } } /* * The number of VLAN descriptors is added regardless of requested * VLAN offload since VLAN is sticky and sending packet without VLAN * insertion may require VLAN descriptor to reset the sticky to 0. */ descs_required += nb_vlan_descs; /* * Max fill level must be sufficient to hold all required descriptors * to send the packet entirely. */ if (descs_required > max_fill_level) return ENOBUFS; return 0; } extern struct sfc_dp_tx sfc_efx_tx; extern struct sfc_dp_tx sfc_ef10_tx; extern struct sfc_dp_tx sfc_ef10_simple_tx; extern struct sfc_dp_tx sfc_ef100_tx; #ifdef __cplusplus } #endif #endif /* _SFC_DP_TX_H */