/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2016-2020 Intel Corporation */ #include #include #include #include #include #include #include #include #include "aesni_gcm_pmd_private.h" static uint8_t cryptodev_driver_id; /* setup session handlers */ static void set_func_ops(struct aesni_gcm_session *s, const struct aesni_gcm_ops *gcm_ops) { s->ops.pre = gcm_ops->pre; s->ops.init = gcm_ops->init; switch (s->op) { case AESNI_GCM_OP_AUTHENTICATED_ENCRYPTION: s->ops.cipher = gcm_ops->enc; s->ops.update = gcm_ops->update_enc; s->ops.finalize = gcm_ops->finalize_enc; break; case AESNI_GCM_OP_AUTHENTICATED_DECRYPTION: s->ops.cipher = gcm_ops->dec; s->ops.update = gcm_ops->update_dec; s->ops.finalize = gcm_ops->finalize_dec; break; case AESNI_GMAC_OP_GENERATE: case AESNI_GMAC_OP_VERIFY: s->ops.finalize = gcm_ops->finalize_enc; break; } } /** Parse crypto xform chain and set private session parameters */ int aesni_gcm_set_session_parameters(const struct aesni_gcm_ops *gcm_ops, struct aesni_gcm_session *sess, const struct rte_crypto_sym_xform *xform) { const struct rte_crypto_sym_xform *auth_xform; const struct rte_crypto_sym_xform *aead_xform; uint8_t key_length; const uint8_t *key; /* AES-GMAC */ if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH) { auth_xform = xform; if (auth_xform->auth.algo != RTE_CRYPTO_AUTH_AES_GMAC) { AESNI_GCM_LOG(ERR, "Only AES GMAC is supported as an " "authentication only algorithm"); return -ENOTSUP; } /* Set IV parameters */ sess->iv.offset = auth_xform->auth.iv.offset; sess->iv.length = auth_xform->auth.iv.length; /* Select Crypto operation */ if (auth_xform->auth.op == RTE_CRYPTO_AUTH_OP_GENERATE) sess->op = AESNI_GMAC_OP_GENERATE; else sess->op = AESNI_GMAC_OP_VERIFY; key_length = auth_xform->auth.key.length; key = auth_xform->auth.key.data; sess->req_digest_length = auth_xform->auth.digest_length; /* AES-GCM */ } else if (xform->type == RTE_CRYPTO_SYM_XFORM_AEAD) { aead_xform = xform; if (aead_xform->aead.algo != RTE_CRYPTO_AEAD_AES_GCM) { AESNI_GCM_LOG(ERR, "The only combined operation " "supported is AES GCM"); return -ENOTSUP; } /* Set IV parameters */ sess->iv.offset = aead_xform->aead.iv.offset; sess->iv.length = aead_xform->aead.iv.length; /* Select Crypto operation */ if (aead_xform->aead.op == RTE_CRYPTO_AEAD_OP_ENCRYPT) sess->op = AESNI_GCM_OP_AUTHENTICATED_ENCRYPTION; /* op == RTE_CRYPTO_AEAD_OP_DECRYPT */ else sess->op = AESNI_GCM_OP_AUTHENTICATED_DECRYPTION; key_length = aead_xform->aead.key.length; key = aead_xform->aead.key.data; sess->aad_length = aead_xform->aead.aad_length; sess->req_digest_length = aead_xform->aead.digest_length; } else { AESNI_GCM_LOG(ERR, "Wrong xform type, has to be AEAD or authentication"); return -ENOTSUP; } /* IV check */ if (sess->iv.length != 16 && sess->iv.length != 12 && sess->iv.length != 0) { AESNI_GCM_LOG(ERR, "Wrong IV length"); return -EINVAL; } /* Check key length and calculate GCM pre-compute. */ switch (key_length) { case 16: sess->key = GCM_KEY_128; break; case 24: sess->key = GCM_KEY_192; break; case 32: sess->key = GCM_KEY_256; break; default: AESNI_GCM_LOG(ERR, "Invalid key length"); return -EINVAL; } /* setup session handlers */ set_func_ops(sess, &gcm_ops[sess->key]); /* pre-generate key */ gcm_ops[sess->key].pre(key, &sess->gdata_key); /* Digest check */ if (sess->req_digest_length > 16) { AESNI_GCM_LOG(ERR, "Invalid digest length"); return -EINVAL; } /* * Multi-buffer lib supports digest sizes from 4 to 16 bytes * in version 0.50 and sizes of 8, 12 and 16 bytes, * in version 0.49. * If size requested is different, generate the full digest * (16 bytes) in a temporary location and then memcpy * the requested number of bytes. */ #if IMB_VERSION_NUM >= IMB_VERSION(0, 50, 0) if (sess->req_digest_length < 4) #else if (sess->req_digest_length != 16 && sess->req_digest_length != 12 && sess->req_digest_length != 8) #endif sess->gen_digest_length = 16; else sess->gen_digest_length = sess->req_digest_length; return 0; } /** Get gcm session */ static struct aesni_gcm_session * aesni_gcm_get_session(struct aesni_gcm_qp *qp, struct rte_crypto_op *op) { struct aesni_gcm_session *sess = NULL; struct rte_crypto_sym_op *sym_op = op->sym; if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION) { if (likely(sym_op->session != NULL)) sess = (struct aesni_gcm_session *) get_sym_session_private_data( sym_op->session, cryptodev_driver_id); } else { void *_sess; void *_sess_private_data = NULL; if (rte_mempool_get(qp->sess_mp, (void **)&_sess)) return NULL; if (rte_mempool_get(qp->sess_mp_priv, (void **)&_sess_private_data)) return NULL; sess = (struct aesni_gcm_session *)_sess_private_data; if (unlikely(aesni_gcm_set_session_parameters(qp->ops, sess, sym_op->xform) != 0)) { rte_mempool_put(qp->sess_mp, _sess); rte_mempool_put(qp->sess_mp_priv, _sess_private_data); sess = NULL; } sym_op->session = (struct rte_cryptodev_sym_session *)_sess; set_sym_session_private_data(sym_op->session, cryptodev_driver_id, _sess_private_data); } if (unlikely(sess == NULL)) op->status = RTE_CRYPTO_OP_STATUS_INVALID_SESSION; return sess; } /** * Process a crypto operation, calling * the GCM API from the multi buffer library. * * @param qp queue pair * @param op symmetric crypto operation * @param session GCM session * * @return * */ static int process_gcm_crypto_op(struct aesni_gcm_qp *qp, struct rte_crypto_op *op, struct aesni_gcm_session *session) { uint8_t *src, *dst; uint8_t *iv_ptr; struct rte_crypto_sym_op *sym_op = op->sym; struct rte_mbuf *m_src = sym_op->m_src; uint32_t offset, data_offset, data_length; uint32_t part_len, total_len, data_len; uint8_t *tag; unsigned int oop = 0; if (session->op == AESNI_GCM_OP_AUTHENTICATED_ENCRYPTION || session->op == AESNI_GCM_OP_AUTHENTICATED_DECRYPTION) { offset = sym_op->aead.data.offset; data_offset = offset; data_length = sym_op->aead.data.length; } else { offset = sym_op->auth.data.offset; data_offset = offset; data_length = sym_op->auth.data.length; } RTE_ASSERT(m_src != NULL); while (offset >= m_src->data_len && data_length != 0) { offset -= m_src->data_len; m_src = m_src->next; RTE_ASSERT(m_src != NULL); } src = rte_pktmbuf_mtod_offset(m_src, uint8_t *, offset); data_len = m_src->data_len - offset; part_len = (data_len < data_length) ? data_len : data_length; RTE_ASSERT((sym_op->m_dst == NULL) || ((sym_op->m_dst != NULL) && rte_pktmbuf_is_contiguous(sym_op->m_dst))); /* In-place */ if (sym_op->m_dst == NULL || (sym_op->m_dst == sym_op->m_src)) dst = src; /* Out-of-place */ else { oop = 1; /* Segmented destination buffer is not supported if operation is * Out-of-place */ RTE_ASSERT(rte_pktmbuf_is_contiguous(sym_op->m_dst)); dst = rte_pktmbuf_mtod_offset(sym_op->m_dst, uint8_t *, data_offset); } iv_ptr = rte_crypto_op_ctod_offset(op, uint8_t *, session->iv.offset); if (session->op == AESNI_GCM_OP_AUTHENTICATED_ENCRYPTION) { qp->ops[session->key].init(&session->gdata_key, &qp->gdata_ctx, iv_ptr, sym_op->aead.aad.data, (uint64_t)session->aad_length); qp->ops[session->key].update_enc(&session->gdata_key, &qp->gdata_ctx, dst, src, (uint64_t)part_len); total_len = data_length - part_len; while (total_len) { m_src = m_src->next; RTE_ASSERT(m_src != NULL); src = rte_pktmbuf_mtod(m_src, uint8_t *); if (oop) dst += part_len; else dst = src; part_len = (m_src->data_len < total_len) ? m_src->data_len : total_len; qp->ops[session->key].update_enc(&session->gdata_key, &qp->gdata_ctx, dst, src, (uint64_t)part_len); total_len -= part_len; } if (session->req_digest_length != session->gen_digest_length) tag = qp->temp_digest; else tag = sym_op->aead.digest.data; qp->ops[session->key].finalize_enc(&session->gdata_key, &qp->gdata_ctx, tag, session->gen_digest_length); } else if (session->op == AESNI_GCM_OP_AUTHENTICATED_DECRYPTION) { qp->ops[session->key].init(&session->gdata_key, &qp->gdata_ctx, iv_ptr, sym_op->aead.aad.data, (uint64_t)session->aad_length); qp->ops[session->key].update_dec(&session->gdata_key, &qp->gdata_ctx, dst, src, (uint64_t)part_len); total_len = data_length - part_len; while (total_len) { m_src = m_src->next; RTE_ASSERT(m_src != NULL); src = rte_pktmbuf_mtod(m_src, uint8_t *); if (oop) dst += part_len; else dst = src; part_len = (m_src->data_len < total_len) ? m_src->data_len : total_len; qp->ops[session->key].update_dec(&session->gdata_key, &qp->gdata_ctx, dst, src, (uint64_t)part_len); total_len -= part_len; } tag = qp->temp_digest; qp->ops[session->key].finalize_dec(&session->gdata_key, &qp->gdata_ctx, tag, session->gen_digest_length); #if IMB_VERSION(0, 54, 0) < IMB_VERSION_NUM } else if (session->op == AESNI_GMAC_OP_GENERATE) { qp->ops[session->key].gmac_init(&session->gdata_key, &qp->gdata_ctx, iv_ptr, session->iv.length); qp->ops[session->key].gmac_update(&session->gdata_key, &qp->gdata_ctx, src, (uint64_t)part_len); total_len = data_length - part_len; while (total_len) { m_src = m_src->next; RTE_ASSERT(m_src != NULL); src = rte_pktmbuf_mtod(m_src, uint8_t *); part_len = (m_src->data_len < total_len) ? m_src->data_len : total_len; qp->ops[session->key].gmac_update(&session->gdata_key, &qp->gdata_ctx, src, (uint64_t)part_len); total_len -= part_len; } if (session->req_digest_length != session->gen_digest_length) tag = qp->temp_digest; else tag = sym_op->auth.digest.data; qp->ops[session->key].gmac_finalize(&session->gdata_key, &qp->gdata_ctx, tag, session->gen_digest_length); } else { /* AESNI_GMAC_OP_VERIFY */ qp->ops[session->key].gmac_init(&session->gdata_key, &qp->gdata_ctx, iv_ptr, session->iv.length); qp->ops[session->key].gmac_update(&session->gdata_key, &qp->gdata_ctx, src, (uint64_t)part_len); total_len = data_length - part_len; while (total_len) { m_src = m_src->next; RTE_ASSERT(m_src != NULL); src = rte_pktmbuf_mtod(m_src, uint8_t *); part_len = (m_src->data_len < total_len) ? m_src->data_len : total_len; qp->ops[session->key].gmac_update(&session->gdata_key, &qp->gdata_ctx, src, (uint64_t)part_len); total_len -= part_len; } tag = qp->temp_digest; qp->ops[session->key].gmac_finalize(&session->gdata_key, &qp->gdata_ctx, tag, session->gen_digest_length); } #else } else if (session->op == AESNI_GMAC_OP_GENERATE) { qp->ops[session->key].init(&session->gdata_key, &qp->gdata_ctx, iv_ptr, src, (uint64_t)data_length); if (session->req_digest_length != session->gen_digest_length) tag = qp->temp_digest; else tag = sym_op->auth.digest.data; qp->ops[session->key].finalize_enc(&session->gdata_key, &qp->gdata_ctx, tag, session->gen_digest_length); } else { /* AESNI_GMAC_OP_VERIFY */ qp->ops[session->key].init(&session->gdata_key, &qp->gdata_ctx, iv_ptr, src, (uint64_t)data_length); /* * Generate always 16 bytes and later compare only * the bytes passed. */ tag = qp->temp_digest; qp->ops[session->key].finalize_enc(&session->gdata_key, &qp->gdata_ctx, tag, session->gen_digest_length); } #endif return 0; } static inline void aesni_gcm_fill_error_code(struct rte_crypto_sym_vec *vec, int32_t errnum) { uint32_t i; for (i = 0; i < vec->num; i++) vec->status[i] = errnum; } static inline int32_t aesni_gcm_sgl_op_finalize_encryption(const struct aesni_gcm_session *s, struct gcm_context_data *gdata_ctx, uint8_t *digest) { if (s->req_digest_length != s->gen_digest_length) { uint8_t tmpdigest[s->gen_digest_length]; s->ops.finalize(&s->gdata_key, gdata_ctx, tmpdigest, s->gen_digest_length); memcpy(digest, tmpdigest, s->req_digest_length); } else { s->ops.finalize(&s->gdata_key, gdata_ctx, digest, s->gen_digest_length); } return 0; } static inline int32_t aesni_gcm_sgl_op_finalize_decryption(const struct aesni_gcm_session *s, struct gcm_context_data *gdata_ctx, uint8_t *digest) { uint8_t tmpdigest[s->gen_digest_length]; s->ops.finalize(&s->gdata_key, gdata_ctx, tmpdigest, s->gen_digest_length); return memcmp(digest, tmpdigest, s->req_digest_length) == 0 ? 0 : EBADMSG; } static inline void aesni_gcm_process_gcm_sgl_op(const struct aesni_gcm_session *s, struct gcm_context_data *gdata_ctx, struct rte_crypto_sgl *sgl, void *iv, void *aad) { uint32_t i; /* init crypto operation */ s->ops.init(&s->gdata_key, gdata_ctx, iv, aad, (uint64_t)s->aad_length); /* update with sgl data */ for (i = 0; i < sgl->num; i++) { struct rte_crypto_vec *vec = &sgl->vec[i]; s->ops.update(&s->gdata_key, gdata_ctx, vec->base, vec->base, vec->len); } } static inline void aesni_gcm_process_gmac_sgl_op(const struct aesni_gcm_session *s, struct gcm_context_data *gdata_ctx, struct rte_crypto_sgl *sgl, void *iv) { s->ops.init(&s->gdata_key, gdata_ctx, iv, sgl->vec[0].base, sgl->vec[0].len); } static inline uint32_t aesni_gcm_sgl_encrypt(struct aesni_gcm_session *s, struct gcm_context_data *gdata_ctx, struct rte_crypto_sym_vec *vec) { uint32_t i, processed; processed = 0; for (i = 0; i < vec->num; ++i) { aesni_gcm_process_gcm_sgl_op(s, gdata_ctx, &vec->sgl[i], vec->iv[i].va, vec->aad[i].va); vec->status[i] = aesni_gcm_sgl_op_finalize_encryption(s, gdata_ctx, vec->digest[i].va); processed += (vec->status[i] == 0); } return processed; } static inline uint32_t aesni_gcm_sgl_decrypt(struct aesni_gcm_session *s, struct gcm_context_data *gdata_ctx, struct rte_crypto_sym_vec *vec) { uint32_t i, processed; processed = 0; for (i = 0; i < vec->num; ++i) { aesni_gcm_process_gcm_sgl_op(s, gdata_ctx, &vec->sgl[i], vec->iv[i].va, vec->aad[i].va); vec->status[i] = aesni_gcm_sgl_op_finalize_decryption(s, gdata_ctx, vec->digest[i].va); processed += (vec->status[i] == 0); } return processed; } static inline uint32_t aesni_gmac_sgl_generate(struct aesni_gcm_session *s, struct gcm_context_data *gdata_ctx, struct rte_crypto_sym_vec *vec) { uint32_t i, processed; processed = 0; for (i = 0; i < vec->num; ++i) { if (vec->sgl[i].num != 1) { vec->status[i] = ENOTSUP; continue; } aesni_gcm_process_gmac_sgl_op(s, gdata_ctx, &vec->sgl[i], vec->iv[i].va); vec->status[i] = aesni_gcm_sgl_op_finalize_encryption(s, gdata_ctx, vec->digest[i].va); processed += (vec->status[i] == 0); } return processed; } static inline uint32_t aesni_gmac_sgl_verify(struct aesni_gcm_session *s, struct gcm_context_data *gdata_ctx, struct rte_crypto_sym_vec *vec) { uint32_t i, processed; processed = 0; for (i = 0; i < vec->num; ++i) { if (vec->sgl[i].num != 1) { vec->status[i] = ENOTSUP; continue; } aesni_gcm_process_gmac_sgl_op(s, gdata_ctx, &vec->sgl[i], vec->iv[i].va); vec->status[i] = aesni_gcm_sgl_op_finalize_decryption(s, gdata_ctx, vec->digest[i].va); processed += (vec->status[i] == 0); } return processed; } /** Process CPU crypto bulk operations */ uint32_t aesni_gcm_pmd_cpu_crypto_process(struct rte_cryptodev *dev, struct rte_cryptodev_sym_session *sess, __rte_unused union rte_crypto_sym_ofs ofs, struct rte_crypto_sym_vec *vec) { void *sess_priv; struct aesni_gcm_session *s; struct gcm_context_data gdata_ctx; sess_priv = get_sym_session_private_data(sess, dev->driver_id); if (unlikely(sess_priv == NULL)) { aesni_gcm_fill_error_code(vec, EINVAL); return 0; } s = sess_priv; switch (s->op) { case AESNI_GCM_OP_AUTHENTICATED_ENCRYPTION: return aesni_gcm_sgl_encrypt(s, &gdata_ctx, vec); case AESNI_GCM_OP_AUTHENTICATED_DECRYPTION: return aesni_gcm_sgl_decrypt(s, &gdata_ctx, vec); case AESNI_GMAC_OP_GENERATE: return aesni_gmac_sgl_generate(s, &gdata_ctx, vec); case AESNI_GMAC_OP_VERIFY: return aesni_gmac_sgl_verify(s, &gdata_ctx, vec); default: aesni_gcm_fill_error_code(vec, EINVAL); return 0; } } /** * Process a completed job and return rte_mbuf which job processed * * @param job JOB_AES_HMAC job to process * * @return * - Returns processed mbuf which is trimmed of output digest used in * verification of supplied digest in the case of a HASH_CIPHER operation * - Returns NULL on invalid job */ static void post_process_gcm_crypto_op(struct aesni_gcm_qp *qp, struct rte_crypto_op *op, struct aesni_gcm_session *session) { op->status = RTE_CRYPTO_OP_STATUS_SUCCESS; /* Verify digest if required */ if (session->op == AESNI_GCM_OP_AUTHENTICATED_DECRYPTION || session->op == AESNI_GMAC_OP_VERIFY) { uint8_t *digest; uint8_t *tag = qp->temp_digest; if (session->op == AESNI_GMAC_OP_VERIFY) digest = op->sym->auth.digest.data; else digest = op->sym->aead.digest.data; #ifdef RTE_LIBRTE_PMD_AESNI_GCM_DEBUG rte_hexdump(stdout, "auth tag (orig):", digest, session->req_digest_length); rte_hexdump(stdout, "auth tag (calc):", tag, session->req_digest_length); #endif if (memcmp(tag, digest, session->req_digest_length) != 0) op->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED; } else { if (session->req_digest_length != session->gen_digest_length) { if (session->op == AESNI_GCM_OP_AUTHENTICATED_ENCRYPTION) memcpy(op->sym->aead.digest.data, qp->temp_digest, session->req_digest_length); else memcpy(op->sym->auth.digest.data, qp->temp_digest, session->req_digest_length); } } } /** * Process a completed GCM request * * @param qp Queue Pair to process * @param op Crypto operation * @param job JOB_AES_HMAC job * * @return * - Number of processed jobs */ static void handle_completed_gcm_crypto_op(struct aesni_gcm_qp *qp, struct rte_crypto_op *op, struct aesni_gcm_session *sess) { post_process_gcm_crypto_op(qp, op, sess); /* Free session if a session-less crypto op */ if (op->sess_type == RTE_CRYPTO_OP_SESSIONLESS) { memset(sess, 0, sizeof(struct aesni_gcm_session)); memset(op->sym->session, 0, rte_cryptodev_sym_get_existing_header_session_size( op->sym->session)); rte_mempool_put(qp->sess_mp_priv, sess); rte_mempool_put(qp->sess_mp, op->sym->session); op->sym->session = NULL; } } static uint16_t aesni_gcm_pmd_dequeue_burst(void *queue_pair, struct rte_crypto_op **ops, uint16_t nb_ops) { struct aesni_gcm_session *sess; struct aesni_gcm_qp *qp = queue_pair; int retval = 0; unsigned int i, nb_dequeued; nb_dequeued = rte_ring_dequeue_burst(qp->processed_pkts, (void **)ops, nb_ops, NULL); for (i = 0; i < nb_dequeued; i++) { sess = aesni_gcm_get_session(qp, ops[i]); if (unlikely(sess == NULL)) { ops[i]->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS; qp->qp_stats.dequeue_err_count++; break; } retval = process_gcm_crypto_op(qp, ops[i], sess); if (retval < 0) { ops[i]->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS; qp->qp_stats.dequeue_err_count++; break; } handle_completed_gcm_crypto_op(qp, ops[i], sess); } qp->qp_stats.dequeued_count += i; return i; } static uint16_t aesni_gcm_pmd_enqueue_burst(void *queue_pair, struct rte_crypto_op **ops, uint16_t nb_ops) { struct aesni_gcm_qp *qp = queue_pair; unsigned int nb_enqueued; nb_enqueued = rte_ring_enqueue_burst(qp->processed_pkts, (void **)ops, nb_ops, NULL); qp->qp_stats.enqueued_count += nb_enqueued; return nb_enqueued; } static int aesni_gcm_remove(struct rte_vdev_device *vdev); static int aesni_gcm_create(const char *name, struct rte_vdev_device *vdev, struct rte_cryptodev_pmd_init_params *init_params) { struct rte_cryptodev *dev; struct aesni_gcm_private *internals; enum aesni_gcm_vector_mode vector_mode; MB_MGR *mb_mgr; dev = rte_cryptodev_pmd_create(name, &vdev->device, init_params); if (dev == NULL) { AESNI_GCM_LOG(ERR, "driver %s: create failed", init_params->name); return -ENODEV; } /* Check CPU for supported vector instruction set */ if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F)) vector_mode = RTE_AESNI_GCM_AVX512; else if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2)) vector_mode = RTE_AESNI_GCM_AVX2; else if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX)) vector_mode = RTE_AESNI_GCM_AVX; else vector_mode = RTE_AESNI_GCM_SSE; dev->driver_id = cryptodev_driver_id; dev->dev_ops = rte_aesni_gcm_pmd_ops; /* register rx/tx burst functions for data path */ dev->dequeue_burst = aesni_gcm_pmd_dequeue_burst; dev->enqueue_burst = aesni_gcm_pmd_enqueue_burst; dev->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO | RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING | RTE_CRYPTODEV_FF_IN_PLACE_SGL | RTE_CRYPTODEV_FF_OOP_SGL_IN_LB_OUT | RTE_CRYPTODEV_FF_OOP_LB_IN_LB_OUT | RTE_CRYPTODEV_FF_SYM_CPU_CRYPTO | RTE_CRYPTODEV_FF_SYM_SESSIONLESS; /* Check CPU for support for AES instruction set */ if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AES)) dev->feature_flags |= RTE_CRYPTODEV_FF_CPU_AESNI; else AESNI_GCM_LOG(WARNING, "AES instructions not supported by CPU"); mb_mgr = alloc_mb_mgr(0); if (mb_mgr == NULL) return -ENOMEM; switch (vector_mode) { case RTE_AESNI_GCM_SSE: dev->feature_flags |= RTE_CRYPTODEV_FF_CPU_SSE; init_mb_mgr_sse(mb_mgr); break; case RTE_AESNI_GCM_AVX: dev->feature_flags |= RTE_CRYPTODEV_FF_CPU_AVX; init_mb_mgr_avx(mb_mgr); break; case RTE_AESNI_GCM_AVX2: dev->feature_flags |= RTE_CRYPTODEV_FF_CPU_AVX2; init_mb_mgr_avx2(mb_mgr); break; case RTE_AESNI_GCM_AVX512: dev->feature_flags |= RTE_CRYPTODEV_FF_CPU_AVX512; init_mb_mgr_avx512(mb_mgr); break; default: AESNI_GCM_LOG(ERR, "Unsupported vector mode %u\n", vector_mode); goto error_exit; } internals = dev->data->dev_private; internals->vector_mode = vector_mode; internals->mb_mgr = mb_mgr; /* Set arch independent function pointers, based on key size */ internals->ops[GCM_KEY_128].enc = mb_mgr->gcm128_enc; internals->ops[GCM_KEY_128].dec = mb_mgr->gcm128_dec; internals->ops[GCM_KEY_128].pre = mb_mgr->gcm128_pre; internals->ops[GCM_KEY_128].init = mb_mgr->gcm128_init; internals->ops[GCM_KEY_128].update_enc = mb_mgr->gcm128_enc_update; internals->ops[GCM_KEY_128].update_dec = mb_mgr->gcm128_dec_update; internals->ops[GCM_KEY_128].finalize_enc = mb_mgr->gcm128_enc_finalize; internals->ops[GCM_KEY_128].finalize_dec = mb_mgr->gcm128_dec_finalize; #if IMB_VERSION(0, 54, 0) < IMB_VERSION_NUM internals->ops[GCM_KEY_128].gmac_init = mb_mgr->gmac128_init; internals->ops[GCM_KEY_128].gmac_update = mb_mgr->gmac128_update; internals->ops[GCM_KEY_128].gmac_finalize = mb_mgr->gmac128_finalize; #endif internals->ops[GCM_KEY_192].enc = mb_mgr->gcm192_enc; internals->ops[GCM_KEY_192].dec = mb_mgr->gcm192_dec; internals->ops[GCM_KEY_192].pre = mb_mgr->gcm192_pre; internals->ops[GCM_KEY_192].init = mb_mgr->gcm192_init; internals->ops[GCM_KEY_192].update_enc = mb_mgr->gcm192_enc_update; internals->ops[GCM_KEY_192].update_dec = mb_mgr->gcm192_dec_update; internals->ops[GCM_KEY_192].finalize_enc = mb_mgr->gcm192_enc_finalize; internals->ops[GCM_KEY_192].finalize_dec = mb_mgr->gcm192_dec_finalize; #if IMB_VERSION(0, 54, 0) < IMB_VERSION_NUM internals->ops[GCM_KEY_192].gmac_init = mb_mgr->gmac192_init; internals->ops[GCM_KEY_192].gmac_update = mb_mgr->gmac192_update; internals->ops[GCM_KEY_192].gmac_finalize = mb_mgr->gmac192_finalize; #endif internals->ops[GCM_KEY_256].enc = mb_mgr->gcm256_enc; internals->ops[GCM_KEY_256].dec = mb_mgr->gcm256_dec; internals->ops[GCM_KEY_256].pre = mb_mgr->gcm256_pre; internals->ops[GCM_KEY_256].init = mb_mgr->gcm256_init; internals->ops[GCM_KEY_256].update_enc = mb_mgr->gcm256_enc_update; internals->ops[GCM_KEY_256].update_dec = mb_mgr->gcm256_dec_update; internals->ops[GCM_KEY_256].finalize_enc = mb_mgr->gcm256_enc_finalize; internals->ops[GCM_KEY_256].finalize_dec = mb_mgr->gcm256_dec_finalize; #if IMB_VERSION(0, 54, 0) < IMB_VERSION_NUM internals->ops[GCM_KEY_256].gmac_init = mb_mgr->gmac256_init; internals->ops[GCM_KEY_256].gmac_update = mb_mgr->gmac256_update; internals->ops[GCM_KEY_256].gmac_finalize = mb_mgr->gmac256_finalize; #endif internals->max_nb_queue_pairs = init_params->max_nb_queue_pairs; #if IMB_VERSION_NUM >= IMB_VERSION(0, 50, 0) AESNI_GCM_LOG(INFO, "IPSec Multi-buffer library version used: %s\n", imb_get_version_str()); #else AESNI_GCM_LOG(INFO, "IPSec Multi-buffer library version used: 0.49.0\n"); #endif return 0; error_exit: if (mb_mgr) free_mb_mgr(mb_mgr); rte_cryptodev_pmd_destroy(dev); return -1; } static int aesni_gcm_probe(struct rte_vdev_device *vdev) { struct rte_cryptodev_pmd_init_params init_params = { "", sizeof(struct aesni_gcm_private), rte_socket_id(), RTE_CRYPTODEV_PMD_DEFAULT_MAX_NB_QUEUE_PAIRS }; const char *name; const char *input_args; name = rte_vdev_device_name(vdev); if (name == NULL) return -EINVAL; input_args = rte_vdev_device_args(vdev); rte_cryptodev_pmd_parse_input_args(&init_params, input_args); return aesni_gcm_create(name, vdev, &init_params); } static int aesni_gcm_remove(struct rte_vdev_device *vdev) { struct rte_cryptodev *cryptodev; struct aesni_gcm_private *internals; const char *name; name = rte_vdev_device_name(vdev); if (name == NULL) return -EINVAL; cryptodev = rte_cryptodev_pmd_get_named_dev(name); if (cryptodev == NULL) return -ENODEV; internals = cryptodev->data->dev_private; free_mb_mgr(internals->mb_mgr); return rte_cryptodev_pmd_destroy(cryptodev); } static struct rte_vdev_driver aesni_gcm_pmd_drv = { .probe = aesni_gcm_probe, .remove = aesni_gcm_remove }; static struct cryptodev_driver aesni_gcm_crypto_drv; RTE_PMD_REGISTER_VDEV(CRYPTODEV_NAME_AESNI_GCM_PMD, aesni_gcm_pmd_drv); RTE_PMD_REGISTER_ALIAS(CRYPTODEV_NAME_AESNI_GCM_PMD, cryptodev_aesni_gcm_pmd); RTE_PMD_REGISTER_PARAM_STRING(CRYPTODEV_NAME_AESNI_GCM_PMD, "max_nb_queue_pairs= " "socket_id="); RTE_PMD_REGISTER_CRYPTO_DRIVER(aesni_gcm_crypto_drv, aesni_gcm_pmd_drv.driver, cryptodev_driver_id); RTE_LOG_REGISTER(aesni_gcm_logtype_driver, pmd.crypto.aesni_gcm, NOTICE);