/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2014 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "testpmd.h" /* use RFC863 Discard Protocol */ uint16_t tx_udp_src_port = 9; uint16_t tx_udp_dst_port = 9; /* use RFC5735 / RFC2544 reserved network test addresses */ uint32_t tx_ip_src_addr = (198U << 24) | (18 << 16) | (0 << 8) | 1; uint32_t tx_ip_dst_addr = (198U << 24) | (18 << 16) | (0 << 8) | 2; #define IP_DEFTTL 64 /* from RFC 1340. */ static struct rte_ipv4_hdr pkt_ip_hdr; /**< IP header of transmitted packets. */ RTE_DEFINE_PER_LCORE(uint8_t, _ip_var); /**< IP address variation */ static struct rte_udp_hdr pkt_udp_hdr; /**< UDP header of tx packets. */ RTE_DEFINE_PER_LCORE(uint64_t, timestamp_qskew); /**< Timestamp offset per queue */ RTE_DEFINE_PER_LCORE(uint32_t, timestamp_idone); /**< Timestamp init done. */ static uint64_t timestamp_mask; /**< Timestamp dynamic flag mask */ static int32_t timestamp_off; /**< Timestamp dynamic field offset */ static bool timestamp_enable; /**< Timestamp enable */ static uint32_t timestamp_init_req; /**< Timestamp initialization request. */ static uint64_t timestamp_initial[RTE_MAX_ETHPORTS]; static void copy_buf_to_pkt_segs(void* buf, unsigned len, struct rte_mbuf *pkt, unsigned offset) { struct rte_mbuf *seg; void *seg_buf; unsigned copy_len; seg = pkt; while (offset >= seg->data_len) { offset -= seg->data_len; seg = seg->next; } copy_len = seg->data_len - offset; seg_buf = rte_pktmbuf_mtod_offset(seg, char *, offset); while (len > copy_len) { rte_memcpy(seg_buf, buf, (size_t) copy_len); len -= copy_len; buf = ((char*) buf + copy_len); seg = seg->next; seg_buf = rte_pktmbuf_mtod(seg, char *); copy_len = seg->data_len; } rte_memcpy(seg_buf, buf, (size_t) len); } static inline void copy_buf_to_pkt(void* buf, unsigned len, struct rte_mbuf *pkt, unsigned offset) { if (offset + len <= pkt->data_len) { rte_memcpy(rte_pktmbuf_mtod_offset(pkt, char *, offset), buf, (size_t) len); return; } copy_buf_to_pkt_segs(buf, len, pkt, offset); } static void setup_pkt_udp_ip_headers(struct rte_ipv4_hdr *ip_hdr, struct rte_udp_hdr *udp_hdr, uint16_t pkt_data_len) { uint16_t *ptr16; uint32_t ip_cksum; uint16_t pkt_len; /* * Initialize UDP header. */ pkt_len = (uint16_t) (pkt_data_len + sizeof(struct rte_udp_hdr)); udp_hdr->src_port = rte_cpu_to_be_16(tx_udp_src_port); udp_hdr->dst_port = rte_cpu_to_be_16(tx_udp_dst_port); udp_hdr->dgram_len = RTE_CPU_TO_BE_16(pkt_len); udp_hdr->dgram_cksum = 0; /* No UDP checksum. */ /* * Initialize IP header. */ pkt_len = (uint16_t) (pkt_len + sizeof(struct rte_ipv4_hdr)); ip_hdr->version_ihl = RTE_IPV4_VHL_DEF; ip_hdr->type_of_service = 0; ip_hdr->fragment_offset = 0; ip_hdr->time_to_live = IP_DEFTTL; ip_hdr->next_proto_id = IPPROTO_UDP; ip_hdr->packet_id = 0; ip_hdr->total_length = RTE_CPU_TO_BE_16(pkt_len); ip_hdr->src_addr = rte_cpu_to_be_32(tx_ip_src_addr); ip_hdr->dst_addr = rte_cpu_to_be_32(tx_ip_dst_addr); /* * Compute IP header checksum. */ ptr16 = (unaligned_uint16_t*) ip_hdr; ip_cksum = 0; ip_cksum += ptr16[0]; ip_cksum += ptr16[1]; ip_cksum += ptr16[2]; ip_cksum += ptr16[3]; ip_cksum += ptr16[4]; ip_cksum += ptr16[6]; ip_cksum += ptr16[7]; ip_cksum += ptr16[8]; ip_cksum += ptr16[9]; /* * Reduce 32 bit checksum to 16 bits and complement it. */ ip_cksum = ((ip_cksum & 0xFFFF0000) >> 16) + (ip_cksum & 0x0000FFFF); if (ip_cksum > 65535) ip_cksum -= 65535; ip_cksum = (~ip_cksum) & 0x0000FFFF; if (ip_cksum == 0) ip_cksum = 0xFFFF; ip_hdr->hdr_checksum = (uint16_t) ip_cksum; } static inline void update_pkt_header(struct rte_mbuf *pkt, uint32_t total_pkt_len) { struct rte_ipv4_hdr *ip_hdr; struct rte_udp_hdr *udp_hdr; uint16_t pkt_data_len; uint16_t pkt_len; pkt_data_len = (uint16_t) (total_pkt_len - ( sizeof(struct rte_ether_hdr) + sizeof(struct rte_ipv4_hdr) + sizeof(struct rte_udp_hdr))); /* updata udp pkt length */ udp_hdr = rte_pktmbuf_mtod_offset(pkt, struct rte_udp_hdr *, sizeof(struct rte_ether_hdr) + sizeof(struct rte_ipv4_hdr)); pkt_len = (uint16_t) (pkt_data_len + sizeof(struct rte_udp_hdr)); udp_hdr->dgram_len = RTE_CPU_TO_BE_16(pkt_len); /* updata ip pkt length and csum */ ip_hdr = rte_pktmbuf_mtod_offset(pkt, struct rte_ipv4_hdr *, sizeof(struct rte_ether_hdr)); ip_hdr->hdr_checksum = 0; pkt_len = (uint16_t) (pkt_len + sizeof(struct rte_ipv4_hdr)); ip_hdr->total_length = RTE_CPU_TO_BE_16(pkt_len); ip_hdr->hdr_checksum = rte_ipv4_cksum(ip_hdr); } static inline bool pkt_burst_prepare(struct rte_mbuf *pkt, struct rte_mempool *mbp, struct rte_ether_hdr *eth_hdr, const uint16_t vlan_tci, const uint16_t vlan_tci_outer, const uint64_t ol_flags, const uint16_t idx, const struct fwd_stream *fs) { struct rte_mbuf *pkt_segs[RTE_MAX_SEGS_PER_PKT]; struct rte_mbuf *pkt_seg; uint32_t nb_segs, pkt_len; uint8_t i; if (unlikely(tx_pkt_split == TX_PKT_SPLIT_RND)) nb_segs = rte_rand() % tx_pkt_nb_segs + 1; else nb_segs = tx_pkt_nb_segs; if (nb_segs > 1) { if (rte_mempool_get_bulk(mbp, (void **)pkt_segs, nb_segs - 1)) return false; } rte_pktmbuf_reset_headroom(pkt); pkt->data_len = tx_pkt_seg_lengths[0]; pkt->ol_flags &= EXT_ATTACHED_MBUF; pkt->ol_flags |= ol_flags; pkt->vlan_tci = vlan_tci; pkt->vlan_tci_outer = vlan_tci_outer; pkt->l2_len = sizeof(struct rte_ether_hdr); pkt->l3_len = sizeof(struct rte_ipv4_hdr); pkt_len = pkt->data_len; pkt_seg = pkt; for (i = 1; i < nb_segs; i++) { pkt_seg->next = pkt_segs[i - 1]; pkt_seg = pkt_seg->next; pkt_seg->data_len = tx_pkt_seg_lengths[i]; pkt_len += pkt_seg->data_len; } pkt_seg->next = NULL; /* Last segment of packet. */ /* * Copy headers in first packet segment(s). */ copy_buf_to_pkt(eth_hdr, sizeof(*eth_hdr), pkt, 0); copy_buf_to_pkt(&pkt_ip_hdr, sizeof(pkt_ip_hdr), pkt, sizeof(struct rte_ether_hdr)); if (txonly_multi_flow) { uint8_t ip_var = RTE_PER_LCORE(_ip_var); struct rte_ipv4_hdr *ip_hdr; uint32_t addr; ip_hdr = rte_pktmbuf_mtod_offset(pkt, struct rte_ipv4_hdr *, sizeof(struct rte_ether_hdr)); /* * Generate multiple flows by varying IP src addr. This * enables packets are well distributed by RSS in * receiver side if any and txonly mode can be a decent * packet generator for developer's quick performance * regression test. */ addr = (tx_ip_dst_addr | (ip_var++ << 8)) + rte_lcore_id(); ip_hdr->src_addr = rte_cpu_to_be_32(addr); RTE_PER_LCORE(_ip_var) = ip_var; } copy_buf_to_pkt(&pkt_udp_hdr, sizeof(pkt_udp_hdr), pkt, sizeof(struct rte_ether_hdr) + sizeof(struct rte_ipv4_hdr)); if (unlikely(tx_pkt_split == TX_PKT_SPLIT_RND) || txonly_multi_flow) update_pkt_header(pkt, pkt_len); if (unlikely(timestamp_enable)) { uint64_t skew = RTE_PER_LCORE(timestamp_qskew); struct { rte_be32_t signature; rte_be16_t pkt_idx; rte_be16_t queue_idx; rte_be64_t ts; } timestamp_mark; if (unlikely(timestamp_init_req != RTE_PER_LCORE(timestamp_idone))) { struct rte_eth_dev *dev = &rte_eth_devices[fs->tx_port]; unsigned int txqs_n = dev->data->nb_tx_queues; uint64_t phase = tx_pkt_times_inter * fs->tx_queue / (txqs_n ? txqs_n : 1); /* * Initialize the scheduling time phase shift * depending on queue index. */ skew = timestamp_initial[fs->tx_port] + tx_pkt_times_inter + phase; RTE_PER_LCORE(timestamp_qskew) = skew; RTE_PER_LCORE(timestamp_idone) = timestamp_init_req; } timestamp_mark.pkt_idx = rte_cpu_to_be_16(idx); timestamp_mark.queue_idx = rte_cpu_to_be_16(fs->tx_queue); timestamp_mark.signature = rte_cpu_to_be_32(0xBEEFC0DE); if (unlikely(!idx)) { skew += tx_pkt_times_inter; pkt->ol_flags |= timestamp_mask; *RTE_MBUF_DYNFIELD (pkt, timestamp_off, uint64_t *) = skew; RTE_PER_LCORE(timestamp_qskew) = skew; timestamp_mark.ts = rte_cpu_to_be_64(skew); } else if (tx_pkt_times_intra) { skew += tx_pkt_times_intra; pkt->ol_flags |= timestamp_mask; *RTE_MBUF_DYNFIELD (pkt, timestamp_off, uint64_t *) = skew; RTE_PER_LCORE(timestamp_qskew) = skew; timestamp_mark.ts = rte_cpu_to_be_64(skew); } else { timestamp_mark.ts = RTE_BE64(0); } copy_buf_to_pkt(×tamp_mark, sizeof(timestamp_mark), pkt, sizeof(struct rte_ether_hdr) + sizeof(struct rte_ipv4_hdr) + sizeof(pkt_udp_hdr)); } /* * Complete first mbuf of packet and append it to the * burst of packets to be transmitted. */ pkt->nb_segs = nb_segs; pkt->pkt_len = pkt_len; return true; } /* * Transmit a burst of multi-segments packets. */ static void pkt_burst_transmit(struct fwd_stream *fs) { struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; struct rte_port *txp; struct rte_mbuf *pkt; struct rte_mempool *mbp; struct rte_ether_hdr eth_hdr; uint16_t nb_tx; uint16_t nb_pkt; uint16_t vlan_tci, vlan_tci_outer; uint32_t retry; uint64_t ol_flags = 0; uint64_t tx_offloads; uint64_t start_tsc = 0; get_start_cycles(&start_tsc); mbp = current_fwd_lcore()->mbp; txp = &ports[fs->tx_port]; tx_offloads = txp->dev_conf.txmode.offloads; vlan_tci = txp->tx_vlan_id; vlan_tci_outer = txp->tx_vlan_id_outer; if (tx_offloads & DEV_TX_OFFLOAD_VLAN_INSERT) ol_flags = PKT_TX_VLAN_PKT; if (tx_offloads & DEV_TX_OFFLOAD_QINQ_INSERT) ol_flags |= PKT_TX_QINQ_PKT; if (tx_offloads & DEV_TX_OFFLOAD_MACSEC_INSERT) ol_flags |= PKT_TX_MACSEC; /* * Initialize Ethernet header. */ rte_ether_addr_copy(&peer_eth_addrs[fs->peer_addr], ð_hdr.d_addr); rte_ether_addr_copy(&ports[fs->tx_port].eth_addr, ð_hdr.s_addr); eth_hdr.ether_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4); if (rte_mempool_get_bulk(mbp, (void **)pkts_burst, nb_pkt_per_burst) == 0) { for (nb_pkt = 0; nb_pkt < nb_pkt_per_burst; nb_pkt++) { if (unlikely(!pkt_burst_prepare(pkts_burst[nb_pkt], mbp, ð_hdr, vlan_tci, vlan_tci_outer, ol_flags, nb_pkt, fs))) { rte_mempool_put_bulk(mbp, (void **)&pkts_burst[nb_pkt], nb_pkt_per_burst - nb_pkt); break; } } } else { for (nb_pkt = 0; nb_pkt < nb_pkt_per_burst; nb_pkt++) { pkt = rte_mbuf_raw_alloc(mbp); if (pkt == NULL) break; if (unlikely(!pkt_burst_prepare(pkt, mbp, ð_hdr, vlan_tci, vlan_tci_outer, ol_flags, nb_pkt, fs))) { rte_pktmbuf_free(pkt); break; } pkts_burst[nb_pkt] = pkt; } } if (nb_pkt == 0) return; nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue, pkts_burst, nb_pkt); /* * Retry if necessary */ if (unlikely(nb_tx < nb_pkt) && fs->retry_enabled) { retry = 0; while (nb_tx < nb_pkt && retry++ < burst_tx_retry_num) { rte_delay_us(burst_tx_delay_time); nb_tx += rte_eth_tx_burst(fs->tx_port, fs->tx_queue, &pkts_burst[nb_tx], nb_pkt - nb_tx); } } fs->tx_packets += nb_tx; if (txonly_multi_flow) RTE_PER_LCORE(_ip_var) -= nb_pkt - nb_tx; inc_tx_burst_stats(fs, nb_tx); if (unlikely(nb_tx < nb_pkt)) { if (verbose_level > 0 && fs->fwd_dropped == 0) printf("port %d tx_queue %d - drop " "(nb_pkt:%u - nb_tx:%u)=%u packets\n", fs->tx_port, fs->tx_queue, (unsigned) nb_pkt, (unsigned) nb_tx, (unsigned) (nb_pkt - nb_tx)); fs->fwd_dropped += (nb_pkt - nb_tx); do { rte_pktmbuf_free(pkts_burst[nb_tx]); } while (++nb_tx < nb_pkt); } get_end_cycles(fs, start_tsc); } static void tx_only_begin(portid_t pi) { uint16_t pkt_data_len; int dynf; pkt_data_len = (uint16_t) (tx_pkt_length - ( sizeof(struct rte_ether_hdr) + sizeof(struct rte_ipv4_hdr) + sizeof(struct rte_udp_hdr))); setup_pkt_udp_ip_headers(&pkt_ip_hdr, &pkt_udp_hdr, pkt_data_len); timestamp_enable = false; timestamp_mask = 0; timestamp_off = -1; RTE_PER_LCORE(timestamp_qskew) = 0; dynf = rte_mbuf_dynflag_lookup (RTE_MBUF_DYNFLAG_TX_TIMESTAMP_NAME, NULL); if (dynf >= 0) timestamp_mask = 1ULL << dynf; dynf = rte_mbuf_dynfield_lookup (RTE_MBUF_DYNFIELD_TIMESTAMP_NAME, NULL); if (dynf >= 0) timestamp_off = dynf; timestamp_enable = tx_pkt_times_inter && timestamp_mask && timestamp_off >= 0 && !rte_eth_read_clock(pi, ×tamp_initial[pi]); if (timestamp_enable) timestamp_init_req++; /* Make sure all settings are visible on forwarding cores.*/ rte_wmb(); } struct fwd_engine tx_only_engine = { .fwd_mode_name = "txonly", .port_fwd_begin = tx_only_begin, .port_fwd_end = NULL, .packet_fwd = pkt_burst_transmit, };