/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2016-2017 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Linux based path to the TUN device */ #define TUN_TAP_DEV_PATH "/dev/net/tun" #define DEFAULT_TAP_NAME "dtap" #define DEFAULT_TUN_NAME "dtun" #define ETH_TAP_IFACE_ARG "iface" #define ETH_TAP_REMOTE_ARG "remote" #define ETH_TAP_MAC_ARG "mac" #define ETH_TAP_MAC_FIXED "fixed" #define ETH_TAP_USR_MAC_FMT "xx:xx:xx:xx:xx:xx" #define ETH_TAP_CMP_MAC_FMT "0123456789ABCDEFabcdef" #define ETH_TAP_MAC_ARG_FMT ETH_TAP_MAC_FIXED "|" ETH_TAP_USR_MAC_FMT #define TAP_GSO_MBUFS_PER_CORE 128 #define TAP_GSO_MBUF_SEG_SIZE 128 #define TAP_GSO_MBUF_CACHE_SIZE 4 #define TAP_GSO_MBUFS_NUM \ (TAP_GSO_MBUFS_PER_CORE * TAP_GSO_MBUF_CACHE_SIZE) /* IPC key for queue fds sync */ #define TAP_MP_KEY "tap_mp_sync_queues" #define TAP_IOV_DEFAULT_MAX 1024 static int tap_devices_count; static const char *valid_arguments[] = { ETH_TAP_IFACE_ARG, ETH_TAP_REMOTE_ARG, ETH_TAP_MAC_ARG, NULL }; static char tuntap_name[8]; static volatile uint32_t tap_trigger; /* Rx trigger */ static struct rte_eth_link pmd_link = { .link_speed = ETH_SPEED_NUM_10G, .link_duplex = ETH_LINK_FULL_DUPLEX, .link_status = ETH_LINK_DOWN, .link_autoneg = ETH_LINK_FIXED, }; static void tap_trigger_cb(int sig __rte_unused) { /* Valid trigger values are nonzero */ tap_trigger = (tap_trigger + 1) | 0x80000000; } /* Specifies on what netdevices the ioctl should be applied */ enum ioctl_mode { LOCAL_AND_REMOTE, LOCAL_ONLY, REMOTE_ONLY, }; /* Message header to synchronize queues via IPC */ struct ipc_queues { char port_name[RTE_DEV_NAME_MAX_LEN]; int rxq_count; int txq_count; /* * The file descriptors are in the dedicated part * of the Unix message to be translated by the kernel. */ }; static int tap_intr_handle_set(struct rte_eth_dev *dev, int set); /** * Tun/Tap allocation routine * * @param[in] pmd * Pointer to private structure. * * @param[in] is_keepalive * Keepalive flag * * @return * -1 on failure, fd on success */ static int tun_alloc(struct pmd_internals *pmd, int is_keepalive) { struct ifreq ifr; #ifdef IFF_MULTI_QUEUE unsigned int features; #endif int fd; memset(&ifr, 0, sizeof(struct ifreq)); /* * Do not set IFF_NO_PI as packet information header will be needed * to check if a received packet has been truncated. */ ifr.ifr_flags = (pmd->type == ETH_TUNTAP_TYPE_TAP) ? IFF_TAP : IFF_TUN | IFF_POINTOPOINT; snprintf(ifr.ifr_name, IFNAMSIZ, "%s", pmd->name); fd = open(TUN_TAP_DEV_PATH, O_RDWR); if (fd < 0) { TAP_LOG(ERR, "Unable to create %s interface", tuntap_name); goto error; } #ifdef IFF_MULTI_QUEUE /* Grab the TUN features to verify we can work multi-queue */ if (ioctl(fd, TUNGETFEATURES, &features) < 0) { TAP_LOG(ERR, "%s unable to get TUN/TAP features", tuntap_name); goto error; } TAP_LOG(DEBUG, "%s Features %08x", tuntap_name, features); if (features & IFF_MULTI_QUEUE) { TAP_LOG(DEBUG, " Multi-queue support for %d queues", RTE_PMD_TAP_MAX_QUEUES); ifr.ifr_flags |= IFF_MULTI_QUEUE; } else #endif { ifr.ifr_flags |= IFF_ONE_QUEUE; TAP_LOG(DEBUG, " Single queue only support"); } /* Set the TUN/TAP configuration and set the name if needed */ if (ioctl(fd, TUNSETIFF, (void *)&ifr) < 0) { TAP_LOG(WARNING, "Unable to set TUNSETIFF for %s: %s", ifr.ifr_name, strerror(errno)); goto error; } /* * Name passed to kernel might be wildcard like dtun%d * and need to find the resulting device. */ TAP_LOG(DEBUG, "Device name is '%s'", ifr.ifr_name); strlcpy(pmd->name, ifr.ifr_name, RTE_ETH_NAME_MAX_LEN); if (is_keepalive) { /* * Detach the TUN/TAP keep-alive queue * to avoid traffic through it */ ifr.ifr_flags = IFF_DETACH_QUEUE; if (ioctl(fd, TUNSETQUEUE, (void *)&ifr) < 0) { TAP_LOG(WARNING, "Unable to detach keep-alive queue for %s: %s", ifr.ifr_name, strerror(errno)); goto error; } } /* Always set the file descriptor to non-blocking */ if (fcntl(fd, F_SETFL, O_NONBLOCK) < 0) { TAP_LOG(WARNING, "Unable to set %s to nonblocking: %s", ifr.ifr_name, strerror(errno)); goto error; } /* Set up trigger to optimize empty Rx bursts */ errno = 0; do { struct sigaction sa; int flags = fcntl(fd, F_GETFL); if (flags == -1 || sigaction(SIGIO, NULL, &sa) == -1) break; if (sa.sa_handler != tap_trigger_cb) { /* * Make sure SIGIO is not already taken. This is done * as late as possible to leave the application a * chance to set up its own signal handler first. */ if (sa.sa_handler != SIG_IGN && sa.sa_handler != SIG_DFL) { errno = EBUSY; break; } sa = (struct sigaction){ .sa_flags = SA_RESTART, .sa_handler = tap_trigger_cb, }; if (sigaction(SIGIO, &sa, NULL) == -1) break; } /* Enable SIGIO on file descriptor */ fcntl(fd, F_SETFL, flags | O_ASYNC); fcntl(fd, F_SETOWN, getpid()); } while (0); if (errno) { /* Disable trigger globally in case of error */ tap_trigger = 0; TAP_LOG(WARNING, "Rx trigger disabled: %s", strerror(errno)); } return fd; error: if (fd >= 0) close(fd); return -1; } static void tap_verify_csum(struct rte_mbuf *mbuf) { uint32_t l2 = mbuf->packet_type & RTE_PTYPE_L2_MASK; uint32_t l3 = mbuf->packet_type & RTE_PTYPE_L3_MASK; uint32_t l4 = mbuf->packet_type & RTE_PTYPE_L4_MASK; unsigned int l2_len = sizeof(struct ether_hdr); unsigned int l3_len; uint16_t cksum = 0; void *l3_hdr; void *l4_hdr; if (l2 == RTE_PTYPE_L2_ETHER_VLAN) l2_len += 4; else if (l2 == RTE_PTYPE_L2_ETHER_QINQ) l2_len += 8; /* Don't verify checksum for packets with discontinuous L2 header */ if (unlikely(l2_len + sizeof(struct ipv4_hdr) > rte_pktmbuf_data_len(mbuf))) return; l3_hdr = rte_pktmbuf_mtod_offset(mbuf, void *, l2_len); if (l3 == RTE_PTYPE_L3_IPV4 || l3 == RTE_PTYPE_L3_IPV4_EXT) { struct ipv4_hdr *iph = l3_hdr; /* ihl contains the number of 4-byte words in the header */ l3_len = 4 * (iph->version_ihl & 0xf); if (unlikely(l2_len + l3_len > rte_pktmbuf_data_len(mbuf))) return; /* check that the total length reported by header is not * greater than the total received size */ if (l2_len + rte_be_to_cpu_16(iph->total_length) > rte_pktmbuf_data_len(mbuf)) return; cksum = ~rte_raw_cksum(iph, l3_len); mbuf->ol_flags |= cksum ? PKT_RX_IP_CKSUM_BAD : PKT_RX_IP_CKSUM_GOOD; } else if (l3 == RTE_PTYPE_L3_IPV6) { struct ipv6_hdr *iph = l3_hdr; l3_len = sizeof(struct ipv6_hdr); /* check that the total length reported by header is not * greater than the total received size */ if (l2_len + l3_len + rte_be_to_cpu_16(iph->payload_len) > rte_pktmbuf_data_len(mbuf)) return; } else { /* IPv6 extensions are not supported */ return; } if (l4 == RTE_PTYPE_L4_UDP || l4 == RTE_PTYPE_L4_TCP) { l4_hdr = rte_pktmbuf_mtod_offset(mbuf, void *, l2_len + l3_len); /* Don't verify checksum for multi-segment packets. */ if (mbuf->nb_segs > 1) return; if (l3 == RTE_PTYPE_L3_IPV4) cksum = ~rte_ipv4_udptcp_cksum(l3_hdr, l4_hdr); else if (l3 == RTE_PTYPE_L3_IPV6) cksum = ~rte_ipv6_udptcp_cksum(l3_hdr, l4_hdr); mbuf->ol_flags |= cksum ? PKT_RX_L4_CKSUM_BAD : PKT_RX_L4_CKSUM_GOOD; } } static uint64_t tap_rx_offload_get_port_capa(void) { /* * No specific port Rx offload capabilities. */ return 0; } static uint64_t tap_rx_offload_get_queue_capa(void) { return DEV_RX_OFFLOAD_SCATTER | DEV_RX_OFFLOAD_IPV4_CKSUM | DEV_RX_OFFLOAD_UDP_CKSUM | DEV_RX_OFFLOAD_TCP_CKSUM; } /* Callback to handle the rx burst of packets to the correct interface and * file descriptor(s) in a multi-queue setup. */ static uint16_t pmd_rx_burst(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts) { struct rx_queue *rxq = queue; struct pmd_process_private *process_private; uint16_t num_rx; unsigned long num_rx_bytes = 0; uint32_t trigger = tap_trigger; if (trigger == rxq->trigger_seen) return 0; if (trigger) rxq->trigger_seen = trigger; process_private = rte_eth_devices[rxq->in_port].process_private; rte_compiler_barrier(); for (num_rx = 0; num_rx < nb_pkts; ) { struct rte_mbuf *mbuf = rxq->pool; struct rte_mbuf *seg = NULL; struct rte_mbuf *new_tail = NULL; uint16_t data_off = rte_pktmbuf_headroom(mbuf); int len; len = readv(process_private->rxq_fds[rxq->queue_id], *rxq->iovecs, 1 + (rxq->rxmode->offloads & DEV_RX_OFFLOAD_SCATTER ? rxq->nb_rx_desc : 1)); if (len < (int)sizeof(struct tun_pi)) break; /* Packet couldn't fit in the provided mbuf */ if (unlikely(rxq->pi.flags & TUN_PKT_STRIP)) { rxq->stats.ierrors++; continue; } len -= sizeof(struct tun_pi); mbuf->pkt_len = len; mbuf->port = rxq->in_port; while (1) { struct rte_mbuf *buf = rte_pktmbuf_alloc(rxq->mp); if (unlikely(!buf)) { rxq->stats.rx_nombuf++; /* No new buf has been allocated: do nothing */ if (!new_tail || !seg) goto end; seg->next = NULL; rte_pktmbuf_free(mbuf); goto end; } seg = seg ? seg->next : mbuf; if (rxq->pool == mbuf) rxq->pool = buf; if (new_tail) new_tail->next = buf; new_tail = buf; new_tail->next = seg->next; /* iovecs[0] is reserved for packet info (pi) */ (*rxq->iovecs)[mbuf->nb_segs].iov_len = buf->buf_len - data_off; (*rxq->iovecs)[mbuf->nb_segs].iov_base = (char *)buf->buf_addr + data_off; seg->data_len = RTE_MIN(seg->buf_len - data_off, len); seg->data_off = data_off; len -= seg->data_len; if (len <= 0) break; mbuf->nb_segs++; /* First segment has headroom, not the others */ data_off = 0; } seg->next = NULL; mbuf->packet_type = rte_net_get_ptype(mbuf, NULL, RTE_PTYPE_ALL_MASK); if (rxq->rxmode->offloads & DEV_RX_OFFLOAD_CHECKSUM) tap_verify_csum(mbuf); /* account for the receive frame */ bufs[num_rx++] = mbuf; num_rx_bytes += mbuf->pkt_len; } end: rxq->stats.ipackets += num_rx; rxq->stats.ibytes += num_rx_bytes; return num_rx; } static uint64_t tap_tx_offload_get_port_capa(void) { /* * No specific port Tx offload capabilities. */ return 0; } static uint64_t tap_tx_offload_get_queue_capa(void) { return DEV_TX_OFFLOAD_MULTI_SEGS | DEV_TX_OFFLOAD_IPV4_CKSUM | DEV_TX_OFFLOAD_UDP_CKSUM | DEV_TX_OFFLOAD_TCP_CKSUM | DEV_TX_OFFLOAD_TCP_TSO; } /* Finalize l4 checksum calculation */ static void tap_tx_l4_cksum(uint16_t *l4_cksum, uint16_t l4_phdr_cksum, uint32_t l4_raw_cksum) { if (l4_cksum) { uint32_t cksum; cksum = __rte_raw_cksum_reduce(l4_raw_cksum); cksum += l4_phdr_cksum; cksum = ((cksum & 0xffff0000) >> 16) + (cksum & 0xffff); cksum = (~cksum) & 0xffff; if (cksum == 0) cksum = 0xffff; *l4_cksum = cksum; } } /* Accumaulate L4 raw checksums */ static void tap_tx_l4_add_rcksum(char *l4_data, unsigned int l4_len, uint16_t *l4_cksum, uint32_t *l4_raw_cksum) { if (l4_cksum == NULL) return; *l4_raw_cksum = __rte_raw_cksum(l4_data, l4_len, *l4_raw_cksum); } /* L3 and L4 pseudo headers checksum offloads */ static void tap_tx_l3_cksum(char *packet, uint64_t ol_flags, unsigned int l2_len, unsigned int l3_len, unsigned int l4_len, uint16_t **l4_cksum, uint16_t *l4_phdr_cksum, uint32_t *l4_raw_cksum) { void *l3_hdr = packet + l2_len; if (ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_IPV4)) { struct ipv4_hdr *iph = l3_hdr; uint16_t cksum; iph->hdr_checksum = 0; cksum = rte_raw_cksum(iph, l3_len); iph->hdr_checksum = (cksum == 0xffff) ? cksum : ~cksum; } if (ol_flags & PKT_TX_L4_MASK) { void *l4_hdr; l4_hdr = packet + l2_len + l3_len; if ((ol_flags & PKT_TX_L4_MASK) == PKT_TX_UDP_CKSUM) *l4_cksum = &((struct udp_hdr *)l4_hdr)->dgram_cksum; else if ((ol_flags & PKT_TX_L4_MASK) == PKT_TX_TCP_CKSUM) *l4_cksum = &((struct tcp_hdr *)l4_hdr)->cksum; else return; **l4_cksum = 0; if (ol_flags & PKT_TX_IPV4) *l4_phdr_cksum = rte_ipv4_phdr_cksum(l3_hdr, 0); else *l4_phdr_cksum = rte_ipv6_phdr_cksum(l3_hdr, 0); *l4_raw_cksum = __rte_raw_cksum(l4_hdr, l4_len, 0); } } static inline void tap_write_mbufs(struct tx_queue *txq, uint16_t num_mbufs, struct rte_mbuf **pmbufs, uint16_t *num_packets, unsigned long *num_tx_bytes) { int i; uint16_t l234_hlen; struct pmd_process_private *process_private; process_private = rte_eth_devices[txq->out_port].process_private; for (i = 0; i < num_mbufs; i++) { struct rte_mbuf *mbuf = pmbufs[i]; struct iovec iovecs[mbuf->nb_segs + 2]; struct tun_pi pi = { .flags = 0, .proto = 0x00 }; struct rte_mbuf *seg = mbuf; char m_copy[mbuf->data_len]; int proto; int n; int j; int k; /* current index in iovecs for copying segments */ uint16_t seg_len; /* length of first segment */ uint16_t nb_segs; uint16_t *l4_cksum; /* l4 checksum (pseudo header + payload) */ uint32_t l4_raw_cksum = 0; /* TCP/UDP payload raw checksum */ uint16_t l4_phdr_cksum = 0; /* TCP/UDP pseudo header checksum */ uint16_t is_cksum = 0; /* in case cksum should be offloaded */ l4_cksum = NULL; if (txq->type == ETH_TUNTAP_TYPE_TUN) { /* * TUN and TAP are created with IFF_NO_PI disabled. * For TUN PMD this mandatory as fields are used by * Kernel tun.c to determine whether its IP or non IP * packets. * * The logic fetches the first byte of data from mbuf * then compares whether its v4 or v6. If first byte * is 4 or 6, then protocol field is updated. */ char *buff_data = rte_pktmbuf_mtod(seg, void *); proto = (*buff_data & 0xf0); pi.proto = (proto == 0x40) ? rte_cpu_to_be_16(ETHER_TYPE_IPv4) : ((proto == 0x60) ? rte_cpu_to_be_16(ETHER_TYPE_IPv6) : 0x00); } k = 0; iovecs[k].iov_base = π iovecs[k].iov_len = sizeof(pi); k++; nb_segs = mbuf->nb_segs; if (txq->csum && ((mbuf->ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_IPV4) || (mbuf->ol_flags & PKT_TX_L4_MASK) == PKT_TX_UDP_CKSUM || (mbuf->ol_flags & PKT_TX_L4_MASK) == PKT_TX_TCP_CKSUM))) { is_cksum = 1; /* Support only packets with at least layer 4 * header included in the first segment */ seg_len = rte_pktmbuf_data_len(mbuf); l234_hlen = mbuf->l2_len + mbuf->l3_len + mbuf->l4_len; if (seg_len < l234_hlen) break; /* To change checksums, work on a * copy of l2, l3 * headers + l4 pseudo header */ rte_memcpy(m_copy, rte_pktmbuf_mtod(mbuf, void *), l234_hlen); tap_tx_l3_cksum(m_copy, mbuf->ol_flags, mbuf->l2_len, mbuf->l3_len, mbuf->l4_len, &l4_cksum, &l4_phdr_cksum, &l4_raw_cksum); iovecs[k].iov_base = m_copy; iovecs[k].iov_len = l234_hlen; k++; /* Update next iovecs[] beyond l2, l3, l4 headers */ if (seg_len > l234_hlen) { iovecs[k].iov_len = seg_len - l234_hlen; iovecs[k].iov_base = rte_pktmbuf_mtod(seg, char *) + l234_hlen; tap_tx_l4_add_rcksum(iovecs[k].iov_base, iovecs[k].iov_len, l4_cksum, &l4_raw_cksum); k++; nb_segs++; } seg = seg->next; } for (j = k; j <= nb_segs; j++) { iovecs[j].iov_len = rte_pktmbuf_data_len(seg); iovecs[j].iov_base = rte_pktmbuf_mtod(seg, void *); if (is_cksum) tap_tx_l4_add_rcksum(iovecs[j].iov_base, iovecs[j].iov_len, l4_cksum, &l4_raw_cksum); seg = seg->next; } if (is_cksum) tap_tx_l4_cksum(l4_cksum, l4_phdr_cksum, l4_raw_cksum); /* copy the tx frame data */ n = writev(process_private->txq_fds[txq->queue_id], iovecs, j); if (n <= 0) break; (*num_packets)++; (*num_tx_bytes) += rte_pktmbuf_pkt_len(mbuf); } } /* Callback to handle sending packets from the tap interface */ static uint16_t pmd_tx_burst(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts) { struct tx_queue *txq = queue; uint16_t num_tx = 0; uint16_t num_packets = 0; unsigned long num_tx_bytes = 0; uint32_t max_size; int i; if (unlikely(nb_pkts == 0)) return 0; struct rte_mbuf *gso_mbufs[MAX_GSO_MBUFS]; max_size = *txq->mtu + (ETHER_HDR_LEN + ETHER_CRC_LEN + 4); for (i = 0; i < nb_pkts; i++) { struct rte_mbuf *mbuf_in = bufs[num_tx]; struct rte_mbuf **mbuf; uint16_t num_mbufs = 0; uint16_t tso_segsz = 0; int ret; uint16_t hdrs_len; int j; uint64_t tso; tso = mbuf_in->ol_flags & PKT_TX_TCP_SEG; if (tso) { struct rte_gso_ctx *gso_ctx = &txq->gso_ctx; assert(gso_ctx != NULL); /* TCP segmentation implies TCP checksum offload */ mbuf_in->ol_flags |= PKT_TX_TCP_CKSUM; /* gso size is calculated without ETHER_CRC_LEN */ hdrs_len = mbuf_in->l2_len + mbuf_in->l3_len + mbuf_in->l4_len; tso_segsz = mbuf_in->tso_segsz + hdrs_len; if (unlikely(tso_segsz == hdrs_len) || tso_segsz > *txq->mtu) { txq->stats.errs++; break; } gso_ctx->gso_size = tso_segsz; ret = rte_gso_segment(mbuf_in, /* packet to segment */ gso_ctx, /* gso control block */ (struct rte_mbuf **)&gso_mbufs, /* out mbufs */ RTE_DIM(gso_mbufs)); /* max tso mbufs */ /* ret contains the number of new created mbufs */ if (ret < 0) break; mbuf = gso_mbufs; num_mbufs = ret; } else { /* stats.errs will be incremented */ if (rte_pktmbuf_pkt_len(mbuf_in) > max_size) break; /* ret 0 indicates no new mbufs were created */ ret = 0; mbuf = &mbuf_in; num_mbufs = 1; } tap_write_mbufs(txq, num_mbufs, mbuf, &num_packets, &num_tx_bytes); num_tx++; /* free original mbuf */ rte_pktmbuf_free(mbuf_in); /* free tso mbufs */ for (j = 0; j < ret; j++) rte_pktmbuf_free(mbuf[j]); } txq->stats.opackets += num_packets; txq->stats.errs += nb_pkts - num_tx; txq->stats.obytes += num_tx_bytes; return num_packets; } static const char * tap_ioctl_req2str(unsigned long request) { switch (request) { case SIOCSIFFLAGS: return "SIOCSIFFLAGS"; case SIOCGIFFLAGS: return "SIOCGIFFLAGS"; case SIOCGIFHWADDR: return "SIOCGIFHWADDR"; case SIOCSIFHWADDR: return "SIOCSIFHWADDR"; case SIOCSIFMTU: return "SIOCSIFMTU"; } return "UNKNOWN"; } static int tap_ioctl(struct pmd_internals *pmd, unsigned long request, struct ifreq *ifr, int set, enum ioctl_mode mode) { short req_flags = ifr->ifr_flags; int remote = pmd->remote_if_index && (mode == REMOTE_ONLY || mode == LOCAL_AND_REMOTE); if (!pmd->remote_if_index && mode == REMOTE_ONLY) return 0; /* * If there is a remote netdevice, apply ioctl on it, then apply it on * the tap netdevice. */ apply: if (remote) snprintf(ifr->ifr_name, IFNAMSIZ, "%s", pmd->remote_iface); else if (mode == LOCAL_ONLY || mode == LOCAL_AND_REMOTE) snprintf(ifr->ifr_name, IFNAMSIZ, "%s", pmd->name); switch (request) { case SIOCSIFFLAGS: /* fetch current flags to leave other flags untouched */ if (ioctl(pmd->ioctl_sock, SIOCGIFFLAGS, ifr) < 0) goto error; if (set) ifr->ifr_flags |= req_flags; else ifr->ifr_flags &= ~req_flags; break; case SIOCGIFFLAGS: case SIOCGIFHWADDR: case SIOCSIFHWADDR: case SIOCSIFMTU: break; default: RTE_LOG(WARNING, PMD, "%s: ioctl() called with wrong arg\n", pmd->name); return -EINVAL; } if (ioctl(pmd->ioctl_sock, request, ifr) < 0) goto error; if (remote-- && mode == LOCAL_AND_REMOTE) goto apply; return 0; error: TAP_LOG(DEBUG, "%s(%s) failed: %s(%d)", ifr->ifr_name, tap_ioctl_req2str(request), strerror(errno), errno); return -errno; } static int tap_link_set_down(struct rte_eth_dev *dev) { struct pmd_internals *pmd = dev->data->dev_private; struct ifreq ifr = { .ifr_flags = IFF_UP }; dev->data->dev_link.link_status = ETH_LINK_DOWN; return tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_ONLY); } static int tap_link_set_up(struct rte_eth_dev *dev) { struct pmd_internals *pmd = dev->data->dev_private; struct ifreq ifr = { .ifr_flags = IFF_UP }; dev->data->dev_link.link_status = ETH_LINK_UP; return tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE); } static int tap_dev_start(struct rte_eth_dev *dev) { int err, i; err = tap_intr_handle_set(dev, 1); if (err) return err; err = tap_link_set_up(dev); if (err) return err; for (i = 0; i < dev->data->nb_tx_queues; i++) dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED; for (i = 0; i < dev->data->nb_rx_queues; i++) dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED; return err; } /* This function gets called when the current port gets stopped. */ static void tap_dev_stop(struct rte_eth_dev *dev) { int i; for (i = 0; i < dev->data->nb_tx_queues; i++) dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED; for (i = 0; i < dev->data->nb_rx_queues; i++) dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED; tap_intr_handle_set(dev, 0); tap_link_set_down(dev); } static int tap_dev_configure(struct rte_eth_dev *dev) { if (dev->data->nb_rx_queues > RTE_PMD_TAP_MAX_QUEUES) { TAP_LOG(ERR, "%s: number of rx queues %d exceeds max num of queues %d", dev->device->name, dev->data->nb_rx_queues, RTE_PMD_TAP_MAX_QUEUES); return -1; } if (dev->data->nb_tx_queues > RTE_PMD_TAP_MAX_QUEUES) { TAP_LOG(ERR, "%s: number of tx queues %d exceeds max num of queues %d", dev->device->name, dev->data->nb_tx_queues, RTE_PMD_TAP_MAX_QUEUES); return -1; } TAP_LOG(INFO, "%s: %p: TX configured queues number: %u", dev->device->name, (void *)dev, dev->data->nb_tx_queues); TAP_LOG(INFO, "%s: %p: RX configured queues number: %u", dev->device->name, (void *)dev, dev->data->nb_rx_queues); return 0; } static uint32_t tap_dev_speed_capa(void) { uint32_t speed = pmd_link.link_speed; uint32_t capa = 0; if (speed >= ETH_SPEED_NUM_10M) capa |= ETH_LINK_SPEED_10M; if (speed >= ETH_SPEED_NUM_100M) capa |= ETH_LINK_SPEED_100M; if (speed >= ETH_SPEED_NUM_1G) capa |= ETH_LINK_SPEED_1G; if (speed >= ETH_SPEED_NUM_5G) capa |= ETH_LINK_SPEED_2_5G; if (speed >= ETH_SPEED_NUM_5G) capa |= ETH_LINK_SPEED_5G; if (speed >= ETH_SPEED_NUM_10G) capa |= ETH_LINK_SPEED_10G; if (speed >= ETH_SPEED_NUM_20G) capa |= ETH_LINK_SPEED_20G; if (speed >= ETH_SPEED_NUM_25G) capa |= ETH_LINK_SPEED_25G; if (speed >= ETH_SPEED_NUM_40G) capa |= ETH_LINK_SPEED_40G; if (speed >= ETH_SPEED_NUM_50G) capa |= ETH_LINK_SPEED_50G; if (speed >= ETH_SPEED_NUM_56G) capa |= ETH_LINK_SPEED_56G; if (speed >= ETH_SPEED_NUM_100G) capa |= ETH_LINK_SPEED_100G; return capa; } static void tap_dev_info(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) { struct pmd_internals *internals = dev->data->dev_private; dev_info->if_index = internals->if_index; dev_info->max_mac_addrs = 1; dev_info->max_rx_pktlen = (uint32_t)ETHER_MAX_VLAN_FRAME_LEN; dev_info->max_rx_queues = RTE_PMD_TAP_MAX_QUEUES; dev_info->max_tx_queues = RTE_PMD_TAP_MAX_QUEUES; dev_info->min_rx_bufsize = 0; dev_info->speed_capa = tap_dev_speed_capa(); dev_info->rx_queue_offload_capa = tap_rx_offload_get_queue_capa(); dev_info->rx_offload_capa = tap_rx_offload_get_port_capa() | dev_info->rx_queue_offload_capa; dev_info->tx_queue_offload_capa = tap_tx_offload_get_queue_capa(); dev_info->tx_offload_capa = tap_tx_offload_get_port_capa() | dev_info->tx_queue_offload_capa; dev_info->hash_key_size = TAP_RSS_HASH_KEY_SIZE; /* * limitation: TAP supports all of IP, UDP and TCP hash * functions together and not in partial combinations */ dev_info->flow_type_rss_offloads = ~TAP_RSS_HF_MASK; } static int tap_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *tap_stats) { unsigned int i, imax; unsigned long rx_total = 0, tx_total = 0, tx_err_total = 0; unsigned long rx_bytes_total = 0, tx_bytes_total = 0; unsigned long rx_nombuf = 0, ierrors = 0; const struct pmd_internals *pmd = dev->data->dev_private; /* rx queue statistics */ imax = (dev->data->nb_rx_queues < RTE_ETHDEV_QUEUE_STAT_CNTRS) ? dev->data->nb_rx_queues : RTE_ETHDEV_QUEUE_STAT_CNTRS; for (i = 0; i < imax; i++) { tap_stats->q_ipackets[i] = pmd->rxq[i].stats.ipackets; tap_stats->q_ibytes[i] = pmd->rxq[i].stats.ibytes; rx_total += tap_stats->q_ipackets[i]; rx_bytes_total += tap_stats->q_ibytes[i]; rx_nombuf += pmd->rxq[i].stats.rx_nombuf; ierrors += pmd->rxq[i].stats.ierrors; } /* tx queue statistics */ imax = (dev->data->nb_tx_queues < RTE_ETHDEV_QUEUE_STAT_CNTRS) ? dev->data->nb_tx_queues : RTE_ETHDEV_QUEUE_STAT_CNTRS; for (i = 0; i < imax; i++) { tap_stats->q_opackets[i] = pmd->txq[i].stats.opackets; tap_stats->q_errors[i] = pmd->txq[i].stats.errs; tap_stats->q_obytes[i] = pmd->txq[i].stats.obytes; tx_total += tap_stats->q_opackets[i]; tx_err_total += tap_stats->q_errors[i]; tx_bytes_total += tap_stats->q_obytes[i]; } tap_stats->ipackets = rx_total; tap_stats->ibytes = rx_bytes_total; tap_stats->ierrors = ierrors; tap_stats->rx_nombuf = rx_nombuf; tap_stats->opackets = tx_total; tap_stats->oerrors = tx_err_total; tap_stats->obytes = tx_bytes_total; return 0; } static void tap_stats_reset(struct rte_eth_dev *dev) { int i; struct pmd_internals *pmd = dev->data->dev_private; for (i = 0; i < RTE_PMD_TAP_MAX_QUEUES; i++) { pmd->rxq[i].stats.ipackets = 0; pmd->rxq[i].stats.ibytes = 0; pmd->rxq[i].stats.ierrors = 0; pmd->rxq[i].stats.rx_nombuf = 0; pmd->txq[i].stats.opackets = 0; pmd->txq[i].stats.errs = 0; pmd->txq[i].stats.obytes = 0; } } static void tap_dev_close(struct rte_eth_dev *dev) { int i; struct pmd_internals *internals = dev->data->dev_private; struct pmd_process_private *process_private = dev->process_private; tap_link_set_down(dev); tap_flow_flush(dev, NULL); tap_flow_implicit_flush(internals, NULL); for (i = 0; i < RTE_PMD_TAP_MAX_QUEUES; i++) { if (process_private->rxq_fds[i] != -1) { close(process_private->rxq_fds[i]); process_private->rxq_fds[i] = -1; } if (process_private->txq_fds[i] != -1) { close(process_private->txq_fds[i]); process_private->txq_fds[i] = -1; } } if (internals->remote_if_index) { /* Restore initial remote state */ ioctl(internals->ioctl_sock, SIOCSIFFLAGS, &internals->remote_initial_flags); } if (internals->ka_fd != -1) { close(internals->ka_fd); internals->ka_fd = -1; } /* * Since TUN device has no more opened file descriptors * it will be removed from kernel */ } static void tap_rx_queue_release(void *queue) { struct rx_queue *rxq = queue; struct pmd_process_private *process_private; if (!rxq) return; process_private = rte_eth_devices[rxq->in_port].process_private; if (process_private->rxq_fds[rxq->queue_id] > 0) { close(process_private->rxq_fds[rxq->queue_id]); process_private->rxq_fds[rxq->queue_id] = -1; rte_pktmbuf_free(rxq->pool); rte_free(rxq->iovecs); rxq->pool = NULL; rxq->iovecs = NULL; } } static void tap_tx_queue_release(void *queue) { struct tx_queue *txq = queue; struct pmd_process_private *process_private; if (!txq) return; process_private = rte_eth_devices[txq->out_port].process_private; if (process_private->txq_fds[txq->queue_id] > 0) { close(process_private->txq_fds[txq->queue_id]); process_private->txq_fds[txq->queue_id] = -1; } } static int tap_link_update(struct rte_eth_dev *dev, int wait_to_complete __rte_unused) { struct rte_eth_link *dev_link = &dev->data->dev_link; struct pmd_internals *pmd = dev->data->dev_private; struct ifreq ifr = { .ifr_flags = 0 }; if (pmd->remote_if_index) { tap_ioctl(pmd, SIOCGIFFLAGS, &ifr, 0, REMOTE_ONLY); if (!(ifr.ifr_flags & IFF_UP) || !(ifr.ifr_flags & IFF_RUNNING)) { dev_link->link_status = ETH_LINK_DOWN; return 0; } } tap_ioctl(pmd, SIOCGIFFLAGS, &ifr, 0, LOCAL_ONLY); dev_link->link_status = ((ifr.ifr_flags & IFF_UP) && (ifr.ifr_flags & IFF_RUNNING) ? ETH_LINK_UP : ETH_LINK_DOWN); return 0; } static void tap_promisc_enable(struct rte_eth_dev *dev) { struct pmd_internals *pmd = dev->data->dev_private; struct ifreq ifr = { .ifr_flags = IFF_PROMISC }; dev->data->promiscuous = 1; tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE); if (pmd->remote_if_index && !pmd->flow_isolate) tap_flow_implicit_create(pmd, TAP_REMOTE_PROMISC); } static void tap_promisc_disable(struct rte_eth_dev *dev) { struct pmd_internals *pmd = dev->data->dev_private; struct ifreq ifr = { .ifr_flags = IFF_PROMISC }; dev->data->promiscuous = 0; tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_AND_REMOTE); if (pmd->remote_if_index && !pmd->flow_isolate) tap_flow_implicit_destroy(pmd, TAP_REMOTE_PROMISC); } static void tap_allmulti_enable(struct rte_eth_dev *dev) { struct pmd_internals *pmd = dev->data->dev_private; struct ifreq ifr = { .ifr_flags = IFF_ALLMULTI }; dev->data->all_multicast = 1; tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE); if (pmd->remote_if_index && !pmd->flow_isolate) tap_flow_implicit_create(pmd, TAP_REMOTE_ALLMULTI); } static void tap_allmulti_disable(struct rte_eth_dev *dev) { struct pmd_internals *pmd = dev->data->dev_private; struct ifreq ifr = { .ifr_flags = IFF_ALLMULTI }; dev->data->all_multicast = 0; tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_AND_REMOTE); if (pmd->remote_if_index && !pmd->flow_isolate) tap_flow_implicit_destroy(pmd, TAP_REMOTE_ALLMULTI); } static int tap_mac_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr) { struct pmd_internals *pmd = dev->data->dev_private; enum ioctl_mode mode = LOCAL_ONLY; struct ifreq ifr; int ret; if (pmd->type == ETH_TUNTAP_TYPE_TUN) { TAP_LOG(ERR, "%s: can't MAC address for TUN", dev->device->name); return -ENOTSUP; } if (is_zero_ether_addr(mac_addr)) { TAP_LOG(ERR, "%s: can't set an empty MAC address", dev->device->name); return -EINVAL; } /* Check the actual current MAC address on the tap netdevice */ ret = tap_ioctl(pmd, SIOCGIFHWADDR, &ifr, 0, LOCAL_ONLY); if (ret < 0) return ret; if (is_same_ether_addr((struct ether_addr *)&ifr.ifr_hwaddr.sa_data, mac_addr)) return 0; /* Check the current MAC address on the remote */ ret = tap_ioctl(pmd, SIOCGIFHWADDR, &ifr, 0, REMOTE_ONLY); if (ret < 0) return ret; if (!is_same_ether_addr((struct ether_addr *)&ifr.ifr_hwaddr.sa_data, mac_addr)) mode = LOCAL_AND_REMOTE; ifr.ifr_hwaddr.sa_family = AF_LOCAL; rte_memcpy(ifr.ifr_hwaddr.sa_data, mac_addr, ETHER_ADDR_LEN); ret = tap_ioctl(pmd, SIOCSIFHWADDR, &ifr, 1, mode); if (ret < 0) return ret; rte_memcpy(&pmd->eth_addr, mac_addr, ETHER_ADDR_LEN); if (pmd->remote_if_index && !pmd->flow_isolate) { /* Replace MAC redirection rule after a MAC change */ ret = tap_flow_implicit_destroy(pmd, TAP_REMOTE_LOCAL_MAC); if (ret < 0) { TAP_LOG(ERR, "%s: Couldn't delete MAC redirection rule", dev->device->name); return ret; } ret = tap_flow_implicit_create(pmd, TAP_REMOTE_LOCAL_MAC); if (ret < 0) { TAP_LOG(ERR, "%s: Couldn't add MAC redirection rule", dev->device->name); return ret; } } return 0; } static int tap_gso_ctx_setup(struct rte_gso_ctx *gso_ctx, struct rte_eth_dev *dev) { uint32_t gso_types; char pool_name[64]; /* * Create private mbuf pool with TAP_GSO_MBUF_SEG_SIZE bytes * size per mbuf use this pool for both direct and indirect mbufs */ struct rte_mempool *mp; /* Mempool for GSO packets */ /* initialize GSO context */ gso_types = DEV_TX_OFFLOAD_TCP_TSO; snprintf(pool_name, sizeof(pool_name), "mp_%s", dev->device->name); mp = rte_mempool_lookup((const char *)pool_name); if (!mp) { mp = rte_pktmbuf_pool_create(pool_name, TAP_GSO_MBUFS_NUM, TAP_GSO_MBUF_CACHE_SIZE, 0, RTE_PKTMBUF_HEADROOM + TAP_GSO_MBUF_SEG_SIZE, SOCKET_ID_ANY); if (!mp) { struct pmd_internals *pmd = dev->data->dev_private; RTE_LOG(DEBUG, PMD, "%s: failed to create mbuf pool for device %s\n", pmd->name, dev->device->name); return -1; } } gso_ctx->direct_pool = mp; gso_ctx->indirect_pool = mp; gso_ctx->gso_types = gso_types; gso_ctx->gso_size = 0; /* gso_size is set in tx_burst() per packet */ gso_ctx->flag = 0; return 0; } static int tap_setup_queue(struct rte_eth_dev *dev, struct pmd_internals *internals, uint16_t qid, int is_rx) { int ret; int *fd; int *other_fd; const char *dir; struct pmd_internals *pmd = dev->data->dev_private; struct pmd_process_private *process_private = dev->process_private; struct rx_queue *rx = &internals->rxq[qid]; struct tx_queue *tx = &internals->txq[qid]; struct rte_gso_ctx *gso_ctx; if (is_rx) { fd = &process_private->rxq_fds[qid]; other_fd = &process_private->txq_fds[qid]; dir = "rx"; gso_ctx = NULL; } else { fd = &process_private->txq_fds[qid]; other_fd = &process_private->rxq_fds[qid]; dir = "tx"; gso_ctx = &tx->gso_ctx; } if (*fd != -1) { /* fd for this queue already exists */ TAP_LOG(DEBUG, "%s: fd %d for %s queue qid %d exists", pmd->name, *fd, dir, qid); gso_ctx = NULL; } else if (*other_fd != -1) { /* Only other_fd exists. dup it */ *fd = dup(*other_fd); if (*fd < 0) { *fd = -1; TAP_LOG(ERR, "%s: dup() failed.", pmd->name); return -1; } TAP_LOG(DEBUG, "%s: dup fd %d for %s queue qid %d (%d)", pmd->name, *other_fd, dir, qid, *fd); } else { /* Both RX and TX fds do not exist (equal -1). Create fd */ *fd = tun_alloc(pmd, 0); if (*fd < 0) { *fd = -1; /* restore original value */ TAP_LOG(ERR, "%s: tun_alloc() failed.", pmd->name); return -1; } TAP_LOG(DEBUG, "%s: add %s queue for qid %d fd %d", pmd->name, dir, qid, *fd); } tx->mtu = &dev->data->mtu; rx->rxmode = &dev->data->dev_conf.rxmode; if (gso_ctx) { ret = tap_gso_ctx_setup(gso_ctx, dev); if (ret) return -1; } tx->type = pmd->type; return *fd; } static int tap_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id, uint16_t nb_rx_desc, unsigned int socket_id, const struct rte_eth_rxconf *rx_conf __rte_unused, struct rte_mempool *mp) { struct pmd_internals *internals = dev->data->dev_private; struct pmd_process_private *process_private = dev->process_private; struct rx_queue *rxq = &internals->rxq[rx_queue_id]; struct rte_mbuf **tmp = &rxq->pool; long iov_max = sysconf(_SC_IOV_MAX); if (iov_max <= 0) { TAP_LOG(WARNING, "_SC_IOV_MAX is not defined. Using %d as default", TAP_IOV_DEFAULT_MAX); iov_max = TAP_IOV_DEFAULT_MAX; } uint16_t nb_desc = RTE_MIN(nb_rx_desc, iov_max - 1); struct iovec (*iovecs)[nb_desc + 1]; int data_off = RTE_PKTMBUF_HEADROOM; int ret = 0; int fd; int i; if (rx_queue_id >= dev->data->nb_rx_queues || !mp) { TAP_LOG(WARNING, "nb_rx_queues %d too small or mempool NULL", dev->data->nb_rx_queues); return -1; } rxq->mp = mp; rxq->trigger_seen = 1; /* force initial burst */ rxq->in_port = dev->data->port_id; rxq->queue_id = rx_queue_id; rxq->nb_rx_desc = nb_desc; iovecs = rte_zmalloc_socket(dev->device->name, sizeof(*iovecs), 0, socket_id); if (!iovecs) { TAP_LOG(WARNING, "%s: Couldn't allocate %d RX descriptors", dev->device->name, nb_desc); return -ENOMEM; } rxq->iovecs = iovecs; dev->data->rx_queues[rx_queue_id] = rxq; fd = tap_setup_queue(dev, internals, rx_queue_id, 1); if (fd == -1) { ret = fd; goto error; } (*rxq->iovecs)[0].iov_len = sizeof(struct tun_pi); (*rxq->iovecs)[0].iov_base = &rxq->pi; for (i = 1; i <= nb_desc; i++) { *tmp = rte_pktmbuf_alloc(rxq->mp); if (!*tmp) { TAP_LOG(WARNING, "%s: couldn't allocate memory for queue %d", dev->device->name, rx_queue_id); ret = -ENOMEM; goto error; } (*rxq->iovecs)[i].iov_len = (*tmp)->buf_len - data_off; (*rxq->iovecs)[i].iov_base = (char *)(*tmp)->buf_addr + data_off; data_off = 0; tmp = &(*tmp)->next; } TAP_LOG(DEBUG, " RX TUNTAP device name %s, qid %d on fd %d", internals->name, rx_queue_id, process_private->rxq_fds[rx_queue_id]); return 0; error: rte_pktmbuf_free(rxq->pool); rxq->pool = NULL; rte_free(rxq->iovecs); rxq->iovecs = NULL; return ret; } static int tap_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id, uint16_t nb_tx_desc __rte_unused, unsigned int socket_id __rte_unused, const struct rte_eth_txconf *tx_conf) { struct pmd_internals *internals = dev->data->dev_private; struct pmd_process_private *process_private = dev->process_private; struct tx_queue *txq; int ret; uint64_t offloads; if (tx_queue_id >= dev->data->nb_tx_queues) return -1; dev->data->tx_queues[tx_queue_id] = &internals->txq[tx_queue_id]; txq = dev->data->tx_queues[tx_queue_id]; txq->out_port = dev->data->port_id; txq->queue_id = tx_queue_id; offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads; txq->csum = !!(offloads & (DEV_TX_OFFLOAD_IPV4_CKSUM | DEV_TX_OFFLOAD_UDP_CKSUM | DEV_TX_OFFLOAD_TCP_CKSUM)); ret = tap_setup_queue(dev, internals, tx_queue_id, 0); if (ret == -1) return -1; TAP_LOG(DEBUG, " TX TUNTAP device name %s, qid %d on fd %d csum %s", internals->name, tx_queue_id, process_private->txq_fds[tx_queue_id], txq->csum ? "on" : "off"); return 0; } static int tap_mtu_set(struct rte_eth_dev *dev, uint16_t mtu) { struct pmd_internals *pmd = dev->data->dev_private; struct ifreq ifr = { .ifr_mtu = mtu }; int err = 0; err = tap_ioctl(pmd, SIOCSIFMTU, &ifr, 1, LOCAL_AND_REMOTE); if (!err) dev->data->mtu = mtu; return err; } static int tap_set_mc_addr_list(struct rte_eth_dev *dev __rte_unused, struct ether_addr *mc_addr_set __rte_unused, uint32_t nb_mc_addr __rte_unused) { /* * Nothing to do actually: the tap has no filtering whatsoever, every * packet is received. */ return 0; } static int tap_nl_msg_handler(struct nlmsghdr *nh, void *arg) { struct rte_eth_dev *dev = arg; struct pmd_internals *pmd = dev->data->dev_private; struct ifinfomsg *info = NLMSG_DATA(nh); if (nh->nlmsg_type != RTM_NEWLINK || (info->ifi_index != pmd->if_index && info->ifi_index != pmd->remote_if_index)) return 0; return tap_link_update(dev, 0); } static void tap_dev_intr_handler(void *cb_arg) { struct rte_eth_dev *dev = cb_arg; struct pmd_internals *pmd = dev->data->dev_private; tap_nl_recv(pmd->intr_handle.fd, tap_nl_msg_handler, dev); } static int tap_lsc_intr_handle_set(struct rte_eth_dev *dev, int set) { struct pmd_internals *pmd = dev->data->dev_private; /* In any case, disable interrupt if the conf is no longer there. */ if (!dev->data->dev_conf.intr_conf.lsc) { if (pmd->intr_handle.fd != -1) { tap_nl_final(pmd->intr_handle.fd); rte_intr_callback_unregister(&pmd->intr_handle, tap_dev_intr_handler, dev); } return 0; } if (set) { pmd->intr_handle.fd = tap_nl_init(RTMGRP_LINK); if (unlikely(pmd->intr_handle.fd == -1)) return -EBADF; return rte_intr_callback_register( &pmd->intr_handle, tap_dev_intr_handler, dev); } tap_nl_final(pmd->intr_handle.fd); return rte_intr_callback_unregister(&pmd->intr_handle, tap_dev_intr_handler, dev); } static int tap_intr_handle_set(struct rte_eth_dev *dev, int set) { int err; err = tap_lsc_intr_handle_set(dev, set); if (err) return err; err = tap_rx_intr_vec_set(dev, set); if (err && set) tap_lsc_intr_handle_set(dev, 0); return err; } static const uint32_t* tap_dev_supported_ptypes_get(struct rte_eth_dev *dev __rte_unused) { static const uint32_t ptypes[] = { RTE_PTYPE_INNER_L2_ETHER, RTE_PTYPE_INNER_L2_ETHER_VLAN, RTE_PTYPE_INNER_L2_ETHER_QINQ, RTE_PTYPE_INNER_L3_IPV4, RTE_PTYPE_INNER_L3_IPV4_EXT, RTE_PTYPE_INNER_L3_IPV6, RTE_PTYPE_INNER_L3_IPV6_EXT, RTE_PTYPE_INNER_L4_FRAG, RTE_PTYPE_INNER_L4_UDP, RTE_PTYPE_INNER_L4_TCP, RTE_PTYPE_INNER_L4_SCTP, RTE_PTYPE_L2_ETHER, RTE_PTYPE_L2_ETHER_VLAN, RTE_PTYPE_L2_ETHER_QINQ, RTE_PTYPE_L3_IPV4, RTE_PTYPE_L3_IPV4_EXT, RTE_PTYPE_L3_IPV6_EXT, RTE_PTYPE_L3_IPV6, RTE_PTYPE_L4_FRAG, RTE_PTYPE_L4_UDP, RTE_PTYPE_L4_TCP, RTE_PTYPE_L4_SCTP, }; return ptypes; } static int tap_flow_ctrl_get(struct rte_eth_dev *dev __rte_unused, struct rte_eth_fc_conf *fc_conf) { fc_conf->mode = RTE_FC_NONE; return 0; } static int tap_flow_ctrl_set(struct rte_eth_dev *dev __rte_unused, struct rte_eth_fc_conf *fc_conf) { if (fc_conf->mode != RTE_FC_NONE) return -ENOTSUP; return 0; } /** * DPDK callback to update the RSS hash configuration. * * @param dev * Pointer to Ethernet device structure. * @param[in] rss_conf * RSS configuration data. * * @return * 0 on success, a negative errno value otherwise and rte_errno is set. */ static int tap_rss_hash_update(struct rte_eth_dev *dev, struct rte_eth_rss_conf *rss_conf) { if (rss_conf->rss_hf & TAP_RSS_HF_MASK) { rte_errno = EINVAL; return -rte_errno; } if (rss_conf->rss_key && rss_conf->rss_key_len) { /* * Currently TAP RSS key is hard coded * and cannot be updated */ TAP_LOG(ERR, "port %u RSS key cannot be updated", dev->data->port_id); rte_errno = EINVAL; return -rte_errno; } return 0; } static int tap_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id) { dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED; return 0; } static int tap_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id) { dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED; return 0; } static int tap_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id) { dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED; return 0; } static int tap_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id) { dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED; return 0; } static const struct eth_dev_ops ops = { .dev_start = tap_dev_start, .dev_stop = tap_dev_stop, .dev_close = tap_dev_close, .dev_configure = tap_dev_configure, .dev_infos_get = tap_dev_info, .rx_queue_setup = tap_rx_queue_setup, .tx_queue_setup = tap_tx_queue_setup, .rx_queue_start = tap_rx_queue_start, .tx_queue_start = tap_tx_queue_start, .rx_queue_stop = tap_rx_queue_stop, .tx_queue_stop = tap_tx_queue_stop, .rx_queue_release = tap_rx_queue_release, .tx_queue_release = tap_tx_queue_release, .flow_ctrl_get = tap_flow_ctrl_get, .flow_ctrl_set = tap_flow_ctrl_set, .link_update = tap_link_update, .dev_set_link_up = tap_link_set_up, .dev_set_link_down = tap_link_set_down, .promiscuous_enable = tap_promisc_enable, .promiscuous_disable = tap_promisc_disable, .allmulticast_enable = tap_allmulti_enable, .allmulticast_disable = tap_allmulti_disable, .mac_addr_set = tap_mac_set, .mtu_set = tap_mtu_set, .set_mc_addr_list = tap_set_mc_addr_list, .stats_get = tap_stats_get, .stats_reset = tap_stats_reset, .dev_supported_ptypes_get = tap_dev_supported_ptypes_get, .rss_hash_update = tap_rss_hash_update, .filter_ctrl = tap_dev_filter_ctrl, }; static int eth_dev_tap_create(struct rte_vdev_device *vdev, char *tap_name, char *remote_iface, struct ether_addr *mac_addr, enum rte_tuntap_type type) { int numa_node = rte_socket_id(); struct rte_eth_dev *dev; struct pmd_internals *pmd; struct pmd_process_private *process_private; struct rte_eth_dev_data *data; struct ifreq ifr; int i; TAP_LOG(DEBUG, "%s device on numa %u", tuntap_name, rte_socket_id()); dev = rte_eth_vdev_allocate(vdev, sizeof(*pmd)); if (!dev) { TAP_LOG(ERR, "%s Unable to allocate device struct", tuntap_name); goto error_exit_nodev; } process_private = (struct pmd_process_private *) rte_zmalloc_socket(tap_name, sizeof(struct pmd_process_private), RTE_CACHE_LINE_SIZE, dev->device->numa_node); if (process_private == NULL) { TAP_LOG(ERR, "Failed to alloc memory for process private"); return -1; } pmd = dev->data->dev_private; dev->process_private = process_private; pmd->dev = dev; snprintf(pmd->name, sizeof(pmd->name), "%s", tap_name); pmd->type = type; pmd->ioctl_sock = socket(AF_INET, SOCK_DGRAM, 0); if (pmd->ioctl_sock == -1) { TAP_LOG(ERR, "%s Unable to get a socket for management: %s", tuntap_name, strerror(errno)); goto error_exit; } /* Setup some default values */ data = dev->data; data->dev_private = pmd; data->dev_flags = RTE_ETH_DEV_INTR_LSC; data->numa_node = numa_node; data->dev_link = pmd_link; data->mac_addrs = &pmd->eth_addr; /* Set the number of RX and TX queues */ data->nb_rx_queues = 0; data->nb_tx_queues = 0; dev->dev_ops = &ops; dev->rx_pkt_burst = pmd_rx_burst; dev->tx_pkt_burst = pmd_tx_burst; pmd->intr_handle.type = RTE_INTR_HANDLE_EXT; pmd->intr_handle.fd = -1; dev->intr_handle = &pmd->intr_handle; /* Presetup the fds to -1 as being not valid */ pmd->ka_fd = -1; for (i = 0; i < RTE_PMD_TAP_MAX_QUEUES; i++) { process_private->rxq_fds[i] = -1; process_private->txq_fds[i] = -1; } if (pmd->type == ETH_TUNTAP_TYPE_TAP) { if (is_zero_ether_addr(mac_addr)) eth_random_addr((uint8_t *)&pmd->eth_addr); else rte_memcpy(&pmd->eth_addr, mac_addr, sizeof(*mac_addr)); } /* * Allocate a TUN device keep-alive file descriptor that will only be * closed when the TUN device itself is closed or removed. * This keep-alive file descriptor will guarantee that the TUN device * exists even when all of its queues are closed */ pmd->ka_fd = tun_alloc(pmd, 1); if (pmd->ka_fd == -1) { TAP_LOG(ERR, "Unable to create %s interface", tuntap_name); goto error_exit; } TAP_LOG(DEBUG, "allocated %s", pmd->name); ifr.ifr_mtu = dev->data->mtu; if (tap_ioctl(pmd, SIOCSIFMTU, &ifr, 1, LOCAL_AND_REMOTE) < 0) goto error_exit; if (pmd->type == ETH_TUNTAP_TYPE_TAP) { memset(&ifr, 0, sizeof(struct ifreq)); ifr.ifr_hwaddr.sa_family = AF_LOCAL; rte_memcpy(ifr.ifr_hwaddr.sa_data, &pmd->eth_addr, ETHER_ADDR_LEN); if (tap_ioctl(pmd, SIOCSIFHWADDR, &ifr, 0, LOCAL_ONLY) < 0) goto error_exit; } /* * Set up everything related to rte_flow: * - netlink socket * - tap / remote if_index * - mandatory QDISCs * - rte_flow actual/implicit lists * - implicit rules */ pmd->nlsk_fd = tap_nl_init(0); if (pmd->nlsk_fd == -1) { TAP_LOG(WARNING, "%s: failed to create netlink socket.", pmd->name); goto disable_rte_flow; } pmd->if_index = if_nametoindex(pmd->name); if (!pmd->if_index) { TAP_LOG(ERR, "%s: failed to get if_index.", pmd->name); goto disable_rte_flow; } if (qdisc_create_multiq(pmd->nlsk_fd, pmd->if_index) < 0) { TAP_LOG(ERR, "%s: failed to create multiq qdisc.", pmd->name); goto disable_rte_flow; } if (qdisc_create_ingress(pmd->nlsk_fd, pmd->if_index) < 0) { TAP_LOG(ERR, "%s: failed to create ingress qdisc.", pmd->name); goto disable_rte_flow; } LIST_INIT(&pmd->flows); if (strlen(remote_iface)) { pmd->remote_if_index = if_nametoindex(remote_iface); if (!pmd->remote_if_index) { TAP_LOG(ERR, "%s: failed to get %s if_index.", pmd->name, remote_iface); goto error_remote; } snprintf(pmd->remote_iface, RTE_ETH_NAME_MAX_LEN, "%s", remote_iface); /* Save state of remote device */ tap_ioctl(pmd, SIOCGIFFLAGS, &pmd->remote_initial_flags, 0, REMOTE_ONLY); /* Replicate remote MAC address */ if (tap_ioctl(pmd, SIOCGIFHWADDR, &ifr, 0, REMOTE_ONLY) < 0) { TAP_LOG(ERR, "%s: failed to get %s MAC address.", pmd->name, pmd->remote_iface); goto error_remote; } rte_memcpy(&pmd->eth_addr, ifr.ifr_hwaddr.sa_data, ETHER_ADDR_LEN); /* The desired MAC is already in ifreq after SIOCGIFHWADDR. */ if (tap_ioctl(pmd, SIOCSIFHWADDR, &ifr, 0, LOCAL_ONLY) < 0) { TAP_LOG(ERR, "%s: failed to get %s MAC address.", pmd->name, remote_iface); goto error_remote; } /* * Flush usually returns negative value because it tries to * delete every QDISC (and on a running device, one QDISC at * least is needed). Ignore negative return value. */ qdisc_flush(pmd->nlsk_fd, pmd->remote_if_index); if (qdisc_create_ingress(pmd->nlsk_fd, pmd->remote_if_index) < 0) { TAP_LOG(ERR, "%s: failed to create ingress qdisc.", pmd->remote_iface); goto error_remote; } LIST_INIT(&pmd->implicit_flows); if (tap_flow_implicit_create(pmd, TAP_REMOTE_TX) < 0 || tap_flow_implicit_create(pmd, TAP_REMOTE_LOCAL_MAC) < 0 || tap_flow_implicit_create(pmd, TAP_REMOTE_BROADCAST) < 0 || tap_flow_implicit_create(pmd, TAP_REMOTE_BROADCASTV6) < 0) { TAP_LOG(ERR, "%s: failed to create implicit rules.", pmd->name); goto error_remote; } } rte_eth_dev_probing_finish(dev); return 0; disable_rte_flow: TAP_LOG(ERR, " Disabling rte flow support: %s(%d)", strerror(errno), errno); if (strlen(remote_iface)) { TAP_LOG(ERR, "Remote feature requires flow support."); goto error_exit; } rte_eth_dev_probing_finish(dev); return 0; error_remote: TAP_LOG(ERR, " Can't set up remote feature: %s(%d)", strerror(errno), errno); tap_flow_implicit_flush(pmd, NULL); error_exit: if (pmd->ioctl_sock > 0) close(pmd->ioctl_sock); /* mac_addrs must not be freed alone because part of dev_private */ dev->data->mac_addrs = NULL; rte_eth_dev_release_port(dev); error_exit_nodev: TAP_LOG(ERR, "%s Unable to initialize %s", tuntap_name, rte_vdev_device_name(vdev)); return -EINVAL; } static int set_interface_name(const char *key __rte_unused, const char *value, void *extra_args) { char *name = (char *)extra_args; if (value) strlcpy(name, value, RTE_ETH_NAME_MAX_LEN); else /* use tap%d which causes kernel to choose next available */ strlcpy(name, DEFAULT_TAP_NAME "%d", RTE_ETH_NAME_MAX_LEN); return 0; } static int set_remote_iface(const char *key __rte_unused, const char *value, void *extra_args) { char *name = (char *)extra_args; if (value) strlcpy(name, value, RTE_ETH_NAME_MAX_LEN); return 0; } static int parse_user_mac(struct ether_addr *user_mac, const char *value) { unsigned int index = 0; char mac_temp[strlen(ETH_TAP_USR_MAC_FMT) + 1], *mac_byte = NULL; if (user_mac == NULL || value == NULL) return 0; strlcpy(mac_temp, value, sizeof(mac_temp)); mac_byte = strtok(mac_temp, ":"); while ((mac_byte != NULL) && (strlen(mac_byte) <= 2) && (strlen(mac_byte) == strspn(mac_byte, ETH_TAP_CMP_MAC_FMT))) { user_mac->addr_bytes[index++] = strtoul(mac_byte, NULL, 16); mac_byte = strtok(NULL, ":"); } return index; } static int set_mac_type(const char *key __rte_unused, const char *value, void *extra_args) { struct ether_addr *user_mac = extra_args; if (!value) return 0; if (!strncasecmp(ETH_TAP_MAC_FIXED, value, strlen(ETH_TAP_MAC_FIXED))) { static int iface_idx; /* fixed mac = 00:64:74:61:70: */ memcpy((char *)user_mac->addr_bytes, "\0dtap", ETHER_ADDR_LEN); user_mac->addr_bytes[ETHER_ADDR_LEN - 1] = iface_idx++ + '0'; goto success; } if (parse_user_mac(user_mac, value) != 6) goto error; success: TAP_LOG(DEBUG, "TAP user MAC param (%s)", value); return 0; error: TAP_LOG(ERR, "TAP user MAC (%s) is not in format (%s|%s)", value, ETH_TAP_MAC_FIXED, ETH_TAP_USR_MAC_FMT); return -1; } /* * Open a TUN interface device. TUN PMD * 1) sets tap_type as false * 2) intakes iface as argument. * 3) as interface is virtual set speed to 10G */ static int rte_pmd_tun_probe(struct rte_vdev_device *dev) { const char *name, *params; int ret; struct rte_kvargs *kvlist = NULL; char tun_name[RTE_ETH_NAME_MAX_LEN]; char remote_iface[RTE_ETH_NAME_MAX_LEN]; struct rte_eth_dev *eth_dev; strcpy(tuntap_name, "TUN"); name = rte_vdev_device_name(dev); params = rte_vdev_device_args(dev); memset(remote_iface, 0, RTE_ETH_NAME_MAX_LEN); if (rte_eal_process_type() == RTE_PROC_SECONDARY && strlen(params) == 0) { eth_dev = rte_eth_dev_attach_secondary(name); if (!eth_dev) { TAP_LOG(ERR, "Failed to probe %s", name); return -1; } eth_dev->dev_ops = &ops; eth_dev->device = &dev->device; rte_eth_dev_probing_finish(eth_dev); return 0; } /* use tun%d which causes kernel to choose next available */ strlcpy(tun_name, DEFAULT_TUN_NAME "%d", RTE_ETH_NAME_MAX_LEN); if (params && (params[0] != '\0')) { TAP_LOG(DEBUG, "parameters (%s)", params); kvlist = rte_kvargs_parse(params, valid_arguments); if (kvlist) { if (rte_kvargs_count(kvlist, ETH_TAP_IFACE_ARG) == 1) { ret = rte_kvargs_process(kvlist, ETH_TAP_IFACE_ARG, &set_interface_name, tun_name); if (ret == -1) goto leave; } } } pmd_link.link_speed = ETH_SPEED_NUM_10G; TAP_LOG(NOTICE, "Initializing pmd_tun for %s", name); ret = eth_dev_tap_create(dev, tun_name, remote_iface, 0, ETH_TUNTAP_TYPE_TUN); leave: if (ret == -1) { TAP_LOG(ERR, "Failed to create pmd for %s as %s", name, tun_name); } rte_kvargs_free(kvlist); return ret; } /* Request queue file descriptors from secondary to primary. */ static int tap_mp_attach_queues(const char *port_name, struct rte_eth_dev *dev) { int ret; struct timespec timeout = {.tv_sec = 1, .tv_nsec = 0}; struct rte_mp_msg request, *reply; struct rte_mp_reply replies; struct ipc_queues *request_param = (struct ipc_queues *)request.param; struct ipc_queues *reply_param; struct pmd_process_private *process_private = dev->process_private; int queue, fd_iterator; /* Prepare the request */ memset(&request, 0, sizeof(request)); strlcpy(request.name, TAP_MP_KEY, sizeof(request.name)); strlcpy(request_param->port_name, port_name, sizeof(request_param->port_name)); request.len_param = sizeof(*request_param); /* Send request and receive reply */ ret = rte_mp_request_sync(&request, &replies, &timeout); if (ret < 0 || replies.nb_received != 1) { TAP_LOG(ERR, "Failed to request queues from primary: %d", rte_errno); return -1; } reply = &replies.msgs[0]; reply_param = (struct ipc_queues *)reply->param; TAP_LOG(DEBUG, "Received IPC reply for %s", reply_param->port_name); /* Attach the queues from received file descriptors */ if (reply_param->rxq_count + reply_param->txq_count != reply->num_fds) { TAP_LOG(ERR, "Unexpected number of fds received"); return -1; } dev->data->nb_rx_queues = reply_param->rxq_count; dev->data->nb_tx_queues = reply_param->txq_count; fd_iterator = 0; for (queue = 0; queue < reply_param->rxq_count; queue++) process_private->rxq_fds[queue] = reply->fds[fd_iterator++]; for (queue = 0; queue < reply_param->txq_count; queue++) process_private->txq_fds[queue] = reply->fds[fd_iterator++]; free(reply); return 0; } /* Send the queue file descriptors from the primary process to secondary. */ static int tap_mp_sync_queues(const struct rte_mp_msg *request, const void *peer) { struct rte_eth_dev *dev; struct pmd_process_private *process_private; struct rte_mp_msg reply; const struct ipc_queues *request_param = (const struct ipc_queues *)request->param; struct ipc_queues *reply_param = (struct ipc_queues *)reply.param; uint16_t port_id; int queue; int ret; /* Get requested port */ TAP_LOG(DEBUG, "Received IPC request for %s", request_param->port_name); ret = rte_eth_dev_get_port_by_name(request_param->port_name, &port_id); if (ret) { TAP_LOG(ERR, "Failed to get port id for %s", request_param->port_name); return -1; } dev = &rte_eth_devices[port_id]; process_private = dev->process_private; /* Fill file descriptors for all queues */ reply.num_fds = 0; reply_param->rxq_count = 0; if (dev->data->nb_rx_queues + dev->data->nb_tx_queues > RTE_MP_MAX_FD_NUM){ TAP_LOG(ERR, "Number of rx/tx queues exceeds max number of fds"); return -1; } for (queue = 0; queue < dev->data->nb_rx_queues; queue++) { reply.fds[reply.num_fds++] = process_private->rxq_fds[queue]; reply_param->rxq_count++; } RTE_ASSERT(reply_param->rxq_count == dev->data->nb_rx_queues); reply_param->txq_count = 0; for (queue = 0; queue < dev->data->nb_tx_queues; queue++) { reply.fds[reply.num_fds++] = process_private->txq_fds[queue]; reply_param->txq_count++; } RTE_ASSERT(reply_param->txq_count == dev->data->nb_tx_queues); /* Send reply */ strlcpy(reply.name, request->name, sizeof(reply.name)); strlcpy(reply_param->port_name, request_param->port_name, sizeof(reply_param->port_name)); reply.len_param = sizeof(*reply_param); if (rte_mp_reply(&reply, peer) < 0) { TAP_LOG(ERR, "Failed to reply an IPC request to sync queues"); return -1; } return 0; } /* Open a TAP interface device. */ static int rte_pmd_tap_probe(struct rte_vdev_device *dev) { const char *name, *params; int ret; struct rte_kvargs *kvlist = NULL; int speed; char tap_name[RTE_ETH_NAME_MAX_LEN]; char remote_iface[RTE_ETH_NAME_MAX_LEN]; struct ether_addr user_mac = { .addr_bytes = {0} }; struct rte_eth_dev *eth_dev; int tap_devices_count_increased = 0; strcpy(tuntap_name, "TAP"); name = rte_vdev_device_name(dev); params = rte_vdev_device_args(dev); if (rte_eal_process_type() == RTE_PROC_SECONDARY) { eth_dev = rte_eth_dev_attach_secondary(name); if (!eth_dev) { TAP_LOG(ERR, "Failed to probe %s", name); return -1; } eth_dev->dev_ops = &ops; eth_dev->device = &dev->device; eth_dev->rx_pkt_burst = pmd_rx_burst; eth_dev->tx_pkt_burst = pmd_tx_burst; if (!rte_eal_primary_proc_alive(NULL)) { TAP_LOG(ERR, "Primary process is missing"); return -1; } eth_dev->process_private = (struct pmd_process_private *) rte_zmalloc_socket(name, sizeof(struct pmd_process_private), RTE_CACHE_LINE_SIZE, eth_dev->device->numa_node); if (eth_dev->process_private == NULL) { TAP_LOG(ERR, "Failed to alloc memory for process private"); return -1; } ret = tap_mp_attach_queues(name, eth_dev); if (ret != 0) return -1; rte_eth_dev_probing_finish(eth_dev); return 0; } speed = ETH_SPEED_NUM_10G; /* use tap%d which causes kernel to choose next available */ strlcpy(tap_name, DEFAULT_TAP_NAME "%d", RTE_ETH_NAME_MAX_LEN); memset(remote_iface, 0, RTE_ETH_NAME_MAX_LEN); if (params && (params[0] != '\0')) { TAP_LOG(DEBUG, "parameters (%s)", params); kvlist = rte_kvargs_parse(params, valid_arguments); if (kvlist) { if (rte_kvargs_count(kvlist, ETH_TAP_IFACE_ARG) == 1) { ret = rte_kvargs_process(kvlist, ETH_TAP_IFACE_ARG, &set_interface_name, tap_name); if (ret == -1) goto leave; } if (rte_kvargs_count(kvlist, ETH_TAP_REMOTE_ARG) == 1) { ret = rte_kvargs_process(kvlist, ETH_TAP_REMOTE_ARG, &set_remote_iface, remote_iface); if (ret == -1) goto leave; } if (rte_kvargs_count(kvlist, ETH_TAP_MAC_ARG) == 1) { ret = rte_kvargs_process(kvlist, ETH_TAP_MAC_ARG, &set_mac_type, &user_mac); if (ret == -1) goto leave; } } } pmd_link.link_speed = speed; TAP_LOG(NOTICE, "Initializing pmd_tap for %s as %s", name, tap_name); /* Register IPC feed callback */ if (!tap_devices_count) { ret = rte_mp_action_register(TAP_MP_KEY, tap_mp_sync_queues); if (ret < 0) { TAP_LOG(ERR, "%s: Failed to register IPC callback: %s", tuntap_name, strerror(rte_errno)); goto leave; } } tap_devices_count++; tap_devices_count_increased = 1; ret = eth_dev_tap_create(dev, tap_name, remote_iface, &user_mac, ETH_TUNTAP_TYPE_TAP); leave: if (ret == -1) { TAP_LOG(ERR, "Failed to create pmd for %s as %s", name, tap_name); if (tap_devices_count_increased == 1) { if (tap_devices_count == 1) rte_mp_action_unregister(TAP_MP_KEY); tap_devices_count--; } } rte_kvargs_free(kvlist); return ret; } /* detach a TUNTAP device. */ static int rte_pmd_tap_remove(struct rte_vdev_device *dev) { struct rte_eth_dev *eth_dev = NULL; struct pmd_internals *internals; struct pmd_process_private *process_private; int i; /* find the ethdev entry */ eth_dev = rte_eth_dev_allocated(rte_vdev_device_name(dev)); if (!eth_dev) return -ENODEV; /* mac_addrs must not be freed alone because part of dev_private */ eth_dev->data->mac_addrs = NULL; if (rte_eal_process_type() != RTE_PROC_PRIMARY) return rte_eth_dev_release_port(eth_dev); internals = eth_dev->data->dev_private; process_private = eth_dev->process_private; TAP_LOG(DEBUG, "Closing %s Ethernet device on numa %u", (internals->type == ETH_TUNTAP_TYPE_TAP) ? "TAP" : "TUN", rte_socket_id()); if (internals->nlsk_fd) { tap_flow_flush(eth_dev, NULL); tap_flow_implicit_flush(internals, NULL); tap_nl_final(internals->nlsk_fd); } for (i = 0; i < RTE_PMD_TAP_MAX_QUEUES; i++) { if (process_private->rxq_fds[i] != -1) { close(process_private->rxq_fds[i]); process_private->rxq_fds[i] = -1; } if (process_private->txq_fds[i] != -1) { close(process_private->txq_fds[i]); process_private->txq_fds[i] = -1; } } close(internals->ioctl_sock); rte_free(eth_dev->process_private); if (tap_devices_count == 1) rte_mp_action_unregister(TAP_MP_KEY); tap_devices_count--; rte_eth_dev_release_port(eth_dev); if (internals->ka_fd != -1) { close(internals->ka_fd); internals->ka_fd = -1; } return 0; } static struct rte_vdev_driver pmd_tun_drv = { .probe = rte_pmd_tun_probe, .remove = rte_pmd_tap_remove, }; static struct rte_vdev_driver pmd_tap_drv = { .probe = rte_pmd_tap_probe, .remove = rte_pmd_tap_remove, }; RTE_PMD_REGISTER_VDEV(net_tap, pmd_tap_drv); RTE_PMD_REGISTER_VDEV(net_tun, pmd_tun_drv); RTE_PMD_REGISTER_ALIAS(net_tap, eth_tap); RTE_PMD_REGISTER_PARAM_STRING(net_tun, ETH_TAP_IFACE_ARG "= "); RTE_PMD_REGISTER_PARAM_STRING(net_tap, ETH_TAP_IFACE_ARG "= " ETH_TAP_MAC_ARG "=" ETH_TAP_MAC_ARG_FMT " " ETH_TAP_REMOTE_ARG "="); int tap_logtype; RTE_INIT(tap_init_log) { tap_logtype = rte_log_register("pmd.net.tap"); if (tap_logtype >= 0) rte_log_set_level(tap_logtype, RTE_LOG_NOTICE); }