/* SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 2009-2018 Solarflare Communications Inc. * All rights reserved. */ #include "efx.h" #include "efx_impl.h" #include "mcdi_mon.h" #if EFSYS_OPT_MON_MCDI #if EFSYS_OPT_MON_STATS /* Get port mask from one-based MCDI port number */ #define MCDI_MON_PORT_MASK(_emip) (1U << ((_emip)->emi_port - 1)) #define MCDI_STATIC_SENSOR_ASSERT(_field) \ EFX_STATIC_ASSERT(MC_CMD_SENSOR_STATE_ ## _field \ == EFX_MON_STAT_STATE_ ## _field) static void mcdi_mon_decode_stats( __in efx_nic_t *enp, __in_bcount(sensor_mask_size) uint32_t *sensor_mask, __in size_t sensor_mask_size, __in_opt efsys_mem_t *esmp, __out_bcount_opt(sensor_mask_size) uint32_t *stat_maskp, __inout_ecount_opt(EFX_MON_NSTATS) efx_mon_stat_value_t *stat) { efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); efx_mon_stat_portmask_t port_mask; uint16_t sensor; size_t sensor_max; uint32_t stat_mask[(EFX_MON_NSTATS + 31) / 32]; uint32_t idx = 0; uint32_t page = 0; /* Assert the MC_CMD_SENSOR and EFX_MON_STATE namespaces agree */ MCDI_STATIC_SENSOR_ASSERT(OK); MCDI_STATIC_SENSOR_ASSERT(WARNING); MCDI_STATIC_SENSOR_ASSERT(FATAL); MCDI_STATIC_SENSOR_ASSERT(BROKEN); MCDI_STATIC_SENSOR_ASSERT(NO_READING); sensor_max = 8 * sensor_mask_size; EFSYS_ASSERT(emip->emi_port > 0); /* MCDI port number is one-based */ port_mask = (efx_mon_stat_portmask_t)MCDI_MON_PORT_MASK(emip); memset(stat_mask, 0, sizeof (stat_mask)); /* * The MCDI sensor readings in the DMA buffer are a packed array of * MC_CMD_SENSOR_VALUE_ENTRY structures, which only includes entries for * supported sensors (bit set in sensor_mask). The sensor_mask and * sensor readings do not include entries for the per-page NEXT_PAGE * flag. * * sensor_mask may legitimately contain MCDI sensors that the driver * does not understand. */ for (sensor = 0; sensor < sensor_max; ++sensor) { efx_mon_stat_t id; efx_mon_stat_portmask_t stat_portmask = 0; boolean_t decode_ok; efx_mon_stat_unit_t stat_unit; if ((sensor % (MC_CMD_SENSOR_PAGE0_NEXT + 1)) == MC_CMD_SENSOR_PAGE0_NEXT) { page++; continue; /* This sensor is one of the page boundary bits. */ } if (~(sensor_mask[page]) & (1U << (sensor % (sizeof (sensor_mask[page]) * 8)))) continue; /* This sensor not in DMA buffer */ idx++; /* * Valid stat in DMA buffer that we need to increment over, even * if we couldn't look up the id */ decode_ok = efx_mon_mcdi_to_efx_stat(sensor, &id); decode_ok = decode_ok && efx_mon_get_stat_portmap(id, &stat_portmask); if (!(decode_ok && (stat_portmask & port_mask))) continue; /* Either bad decode, or don't know what port stat is on */ EFSYS_ASSERT(id < EFX_MON_NSTATS); /* * stat_mask is a bitmask indexed by EFX_MON_* monitor statistic * identifiers from efx_mon_stat_t (without NEXT_PAGE bits). * * If there is an entry in the MCDI sensor to monitor statistic * map then the sensor reading is used for the value of the * monitor statistic. */ stat_mask[id / EFX_MON_MASK_ELEMENT_SIZE] |= (1U << (id % EFX_MON_MASK_ELEMENT_SIZE)); if (stat != NULL && esmp != NULL && !EFSYS_MEM_IS_NULL(esmp)) { efx_dword_t dword; /* Get MCDI sensor reading from DMA buffer */ EFSYS_MEM_READD(esmp, 4 * (idx - 1), &dword); /* Update EFX monitor stat from MCDI sensor reading */ stat[id].emsv_value = (uint16_t)EFX_DWORD_FIELD(dword, MC_CMD_SENSOR_VALUE_ENTRY_TYPEDEF_VALUE); stat[id].emsv_state = (uint16_t)EFX_DWORD_FIELD(dword, MC_CMD_SENSOR_VALUE_ENTRY_TYPEDEF_STATE); stat[id].emsv_unit = efx_mon_get_stat_unit(id, &stat_unit) ? stat_unit : EFX_MON_STAT_UNIT_UNKNOWN; } } if (stat_maskp != NULL) { memcpy(stat_maskp, stat_mask, sizeof (stat_mask)); } } __checkReturn efx_rc_t mcdi_mon_ev( __in efx_nic_t *enp, __in efx_qword_t *eqp, __out efx_mon_stat_t *idp, __out efx_mon_stat_value_t *valuep) { efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); efx_mon_stat_portmask_t port_mask, sensor_port_mask; uint16_t sensor; uint16_t state; uint16_t value; efx_mon_stat_t id; efx_rc_t rc; EFSYS_ASSERT(emip->emi_port > 0); /* MCDI port number is one-based */ port_mask = MCDI_MON_PORT_MASK(emip); sensor = (uint16_t)MCDI_EV_FIELD(eqp, SENSOREVT_MONITOR); state = (uint16_t)MCDI_EV_FIELD(eqp, SENSOREVT_STATE); value = (uint16_t)MCDI_EV_FIELD(eqp, SENSOREVT_VALUE); /* Hardware must support this MCDI sensor */ EFSYS_ASSERT3U(sensor, <, (8 * enp->en_nic_cfg.enc_mcdi_sensor_mask_size)); EFSYS_ASSERT((sensor % (MC_CMD_SENSOR_PAGE0_NEXT + 1)) != MC_CMD_SENSOR_PAGE0_NEXT); EFSYS_ASSERT(enp->en_nic_cfg.enc_mcdi_sensor_maskp != NULL); EFSYS_ASSERT((enp->en_nic_cfg.enc_mcdi_sensor_maskp[ sensor / (MC_CMD_SENSOR_PAGE0_NEXT + 1)] & (1U << (sensor % (MC_CMD_SENSOR_PAGE0_NEXT + 1)))) != 0); /* And we need to understand it, to get port-map */ if (!efx_mon_mcdi_to_efx_stat(sensor, &id)) { rc = ENOTSUP; goto fail1; } if (!(efx_mon_get_stat_portmap(id, &sensor_port_mask) && (port_mask && sensor_port_mask))) { return (ENODEV); } EFSYS_ASSERT(id < EFX_MON_NSTATS); *idp = id; valuep->emsv_value = value; valuep->emsv_state = state; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t efx_mcdi_read_sensors( __in efx_nic_t *enp, __in efsys_mem_t *esmp, __in uint32_t size) { efx_mcdi_req_t req; EFX_MCDI_DECLARE_BUF(payload, MC_CMD_READ_SENSORS_EXT_IN_LEN, MC_CMD_READ_SENSORS_EXT_OUT_LEN); uint32_t addr_lo, addr_hi; efx_rc_t rc; if (EFSYS_MEM_SIZE(esmp) < size) { rc = EINVAL; goto fail1; } req.emr_cmd = MC_CMD_READ_SENSORS; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_READ_SENSORS_EXT_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_READ_SENSORS_EXT_OUT_LEN; addr_lo = (uint32_t)(EFSYS_MEM_ADDR(esmp) & 0xffffffff); addr_hi = (uint32_t)(EFSYS_MEM_ADDR(esmp) >> 32); MCDI_IN_SET_DWORD(req, READ_SENSORS_EXT_IN_DMA_ADDR_LO, addr_lo); MCDI_IN_SET_DWORD(req, READ_SENSORS_EXT_IN_DMA_ADDR_HI, addr_hi); MCDI_IN_SET_DWORD(req, READ_SENSORS_EXT_IN_LENGTH, size); efx_mcdi_execute(enp, &req); return (req.emr_rc); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t efx_mcdi_sensor_info_npages( __in efx_nic_t *enp, __out uint32_t *npagesp) { efx_mcdi_req_t req; EFX_MCDI_DECLARE_BUF(payload, MC_CMD_SENSOR_INFO_EXT_IN_LEN, MC_CMD_SENSOR_INFO_OUT_LENMAX); int page; efx_rc_t rc; EFSYS_ASSERT(npagesp != NULL); page = 0; do { (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_SENSOR_INFO; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_SENSOR_INFO_EXT_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_SENSOR_INFO_OUT_LENMAX; MCDI_IN_SET_DWORD(req, SENSOR_INFO_EXT_IN_PAGE, page++); efx_mcdi_execute_quiet(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } } while (MCDI_OUT_DWORD(req, SENSOR_INFO_OUT_MASK) & (1U << MC_CMD_SENSOR_PAGE0_NEXT)); *npagesp = page; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t efx_mcdi_sensor_info( __in efx_nic_t *enp, __out_ecount(npages) uint32_t *sensor_maskp, __in size_t npages) { efx_mcdi_req_t req; EFX_MCDI_DECLARE_BUF(payload, MC_CMD_SENSOR_INFO_EXT_IN_LEN, MC_CMD_SENSOR_INFO_OUT_LENMAX); uint32_t page; efx_rc_t rc; EFSYS_ASSERT(sensor_maskp != NULL); if (npages < 1) { rc = EINVAL; goto fail1; } for (page = 0; page < npages; page++) { uint32_t mask; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_SENSOR_INFO; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_SENSOR_INFO_EXT_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_SENSOR_INFO_OUT_LENMAX; MCDI_IN_SET_DWORD(req, SENSOR_INFO_EXT_IN_PAGE, page); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail2; } mask = MCDI_OUT_DWORD(req, SENSOR_INFO_OUT_MASK); if ((page != (npages - 1)) && ((mask & (1U << MC_CMD_SENSOR_PAGE0_NEXT)) == 0)) { rc = EINVAL; goto fail3; } sensor_maskp[page] = mask; } if (sensor_maskp[npages - 1] & (1U << MC_CMD_SENSOR_PAGE0_NEXT)) { rc = EINVAL; goto fail4; } return (0); fail4: EFSYS_PROBE(fail4); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t efx_mcdi_sensor_info_page( __in efx_nic_t *enp, __in uint32_t page, __out uint32_t *mask_part, __out_ecount((sizeof (*mask_part) * 8) - 1) efx_mon_stat_limits_t *limits) { efx_mcdi_req_t req; EFX_MCDI_DECLARE_BUF(payload, MC_CMD_SENSOR_INFO_EXT_IN_LEN, MC_CMD_SENSOR_INFO_OUT_LENMAX); efx_rc_t rc; uint32_t mask_copy; efx_dword_t *maskp; efx_qword_t *limit_info; EFSYS_ASSERT(mask_part != NULL); EFSYS_ASSERT(limits != NULL); memset(limits, 0, ((sizeof (*mask_part) * 8) - 1) * sizeof (efx_mon_stat_limits_t)); req.emr_cmd = MC_CMD_SENSOR_INFO; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_SENSOR_INFO_EXT_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_SENSOR_INFO_OUT_LENMAX; MCDI_IN_SET_DWORD(req, SENSOR_INFO_EXT_IN_PAGE, page); efx_mcdi_execute(enp, &req); rc = req.emr_rc; if (rc != 0) goto fail1; EFSYS_ASSERT(sizeof (*limit_info) == MC_CMD_SENSOR_INFO_ENTRY_TYPEDEF_LEN); maskp = MCDI_OUT2(req, efx_dword_t, SENSOR_INFO_OUT_MASK); limit_info = (efx_qword_t *)(maskp + 1); *mask_part = maskp->ed_u32[0]; mask_copy = *mask_part; /* Copy an entry for all but the highest bit set. */ while (mask_copy) { if (mask_copy == (1U << MC_CMD_SENSOR_PAGE0_NEXT)) { /* Only next page bit set. */ mask_copy = 0; } else { /* Clear lowest bit */ mask_copy = mask_copy & ~(mask_copy ^ (mask_copy - 1)); /* And copy out limit entry into buffer */ limits->emlv_warning_min = EFX_QWORD_FIELD(*limit_info, MC_CMD_SENSOR_INFO_ENTRY_TYPEDEF_MIN1); limits->emlv_warning_max = EFX_QWORD_FIELD(*limit_info, MC_CMD_SENSOR_INFO_ENTRY_TYPEDEF_MAX1); limits->emlv_fatal_min = EFX_QWORD_FIELD(*limit_info, MC_CMD_SENSOR_INFO_ENTRY_TYPEDEF_MIN2); limits->emlv_fatal_max = EFX_QWORD_FIELD(*limit_info, MC_CMD_SENSOR_INFO_ENTRY_TYPEDEF_MAX2); limits++; limit_info++; } } return (rc); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t mcdi_mon_stats_update( __in efx_nic_t *enp, __in efsys_mem_t *esmp, __inout_ecount(EFX_MON_NSTATS) efx_mon_stat_value_t *values) { efx_nic_cfg_t *encp = &(enp->en_nic_cfg); uint32_t size = encp->enc_mon_stat_dma_buf_size; efx_rc_t rc; if ((rc = efx_mcdi_read_sensors(enp, esmp, size)) != 0) goto fail1; EFSYS_DMA_SYNC_FOR_KERNEL(esmp, 0, size); mcdi_mon_decode_stats(enp, encp->enc_mcdi_sensor_maskp, encp->enc_mcdi_sensor_mask_size, esmp, NULL, values); return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static void lowest_set_bit( __in uint32_t input_mask, __out uint32_t *lowest_bit_mask, __out uint32_t *lowest_bit_num ) { uint32_t x; uint32_t set_bit, bit_index; x = (input_mask ^ (input_mask - 1)); set_bit = (x + 1) >> 1; if (!set_bit) set_bit = (1U << 31U); bit_index = 0; if (set_bit & 0xFFFF0000) bit_index += 16; if (set_bit & 0xFF00FF00) bit_index += 8; if (set_bit & 0xF0F0F0F0) bit_index += 4; if (set_bit & 0xCCCCCCCC) bit_index += 2; if (set_bit & 0xAAAAAAAA) bit_index += 1; *lowest_bit_mask = set_bit; *lowest_bit_num = bit_index; } __checkReturn efx_rc_t mcdi_mon_limits_update( __in efx_nic_t *enp, __inout_ecount(EFX_MON_NSTATS) efx_mon_stat_limits_t *values) { efx_rc_t rc; uint32_t page; uint32_t page_mask; uint32_t limit_index; efx_mon_stat_limits_t limits[sizeof (page_mask) * 8]; efx_mon_stat_t stat; page = 0; page--; do { page++; rc = efx_mcdi_sensor_info_page(enp, page, &page_mask, limits); if (rc != 0) goto fail1; limit_index = 0; while (page_mask) { uint32_t set_bit; uint32_t page_index; uint32_t mcdi_index; if (page_mask == (1U << MC_CMD_SENSOR_PAGE0_NEXT)) break; lowest_set_bit(page_mask, &set_bit, &page_index); page_mask = page_mask & ~set_bit; mcdi_index = page_index + (sizeof (page_mask) * 8 * page); /* * This can fail if MCDI reports newer stats than the * drivers understand, or the bit is the next page bit. * * Driver needs to be tolerant of this. */ if (!efx_mon_mcdi_to_efx_stat(mcdi_index, &stat)) continue; values[stat] = limits[limit_index]; limit_index++; } } while (page_mask & (1U << MC_CMD_SENSOR_PAGE0_NEXT)); return (rc); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t mcdi_mon_cfg_build( __in efx_nic_t *enp) { efx_nic_cfg_t *encp = &(enp->en_nic_cfg); uint32_t npages; efx_rc_t rc; switch (enp->en_family) { #if EFSYS_OPT_SIENA case EFX_FAMILY_SIENA: encp->enc_mon_type = EFX_MON_SFC90X0; break; #endif #if EFSYS_OPT_HUNTINGTON case EFX_FAMILY_HUNTINGTON: encp->enc_mon_type = EFX_MON_SFC91X0; break; #endif #if EFSYS_OPT_MEDFORD case EFX_FAMILY_MEDFORD: encp->enc_mon_type = EFX_MON_SFC92X0; break; #endif #if EFSYS_OPT_MEDFORD2 case EFX_FAMILY_MEDFORD2: encp->enc_mon_type = EFX_MON_SFC92X0; break; #endif default: rc = EINVAL; goto fail1; } /* Get mc sensor mask size */ npages = 0; if ((rc = efx_mcdi_sensor_info_npages(enp, &npages)) != 0) goto fail2; encp->enc_mon_stat_dma_buf_size = npages * EFX_MON_STATS_PAGE_SIZE; encp->enc_mcdi_sensor_mask_size = npages * sizeof (uint32_t); /* Allocate mc sensor mask */ EFSYS_KMEM_ALLOC(enp->en_esip, encp->enc_mcdi_sensor_mask_size, encp->enc_mcdi_sensor_maskp); if (encp->enc_mcdi_sensor_maskp == NULL) { rc = ENOMEM; goto fail3; } /* Read mc sensor mask */ if ((rc = efx_mcdi_sensor_info(enp, encp->enc_mcdi_sensor_maskp, npages)) != 0) goto fail4; /* Build monitor statistics mask */ mcdi_mon_decode_stats(enp, encp->enc_mcdi_sensor_maskp, encp->enc_mcdi_sensor_mask_size, NULL, encp->enc_mon_stat_mask, NULL); return (0); fail4: EFSYS_PROBE(fail4); EFSYS_KMEM_FREE(enp->en_esip, encp->enc_mcdi_sensor_mask_size, encp->enc_mcdi_sensor_maskp); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } void mcdi_mon_cfg_free( __in efx_nic_t *enp) { efx_nic_cfg_t *encp = &(enp->en_nic_cfg); if (encp->enc_mcdi_sensor_maskp != NULL) { EFSYS_KMEM_FREE(enp->en_esip, encp->enc_mcdi_sensor_mask_size, encp->enc_mcdi_sensor_maskp); } } #endif /* EFSYS_OPT_MON_STATS */ #endif /* EFSYS_OPT_MON_MCDI */