/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2016 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "i40e_logs.h" #include "base/i40e_prototype.h" #include "base/i40e_adminq_cmd.h" #include "base/i40e_type.h" #include "i40e_rxtx.h" #include "i40e_ethdev.h" #include "i40e_pf.h" /* busy wait delay in msec */ #define I40EVF_BUSY_WAIT_DELAY 10 #define I40EVF_BUSY_WAIT_COUNT 50 #define MAX_RESET_WAIT_CNT 20 #define I40EVF_ALARM_INTERVAL 50000 /* us */ struct i40evf_arq_msg_info { enum virtchnl_ops ops; enum i40e_status_code result; uint16_t buf_len; uint16_t msg_len; uint8_t *msg; }; struct vf_cmd_info { enum virtchnl_ops ops; uint8_t *in_args; uint32_t in_args_size; uint8_t *out_buffer; /* Input & output type. pass in buffer size and pass out * actual return result */ uint32_t out_size; }; enum i40evf_aq_result { I40EVF_MSG_ERR = -1, /* Meet error when accessing admin queue */ I40EVF_MSG_NON, /* Read nothing from admin queue */ I40EVF_MSG_SYS, /* Read system msg from admin queue */ I40EVF_MSG_CMD, /* Read async command result */ }; static int i40evf_dev_configure(struct rte_eth_dev *dev); static int i40evf_dev_start(struct rte_eth_dev *dev); static void i40evf_dev_stop(struct rte_eth_dev *dev); static void i40evf_dev_info_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info); static int i40evf_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete); static int i40evf_dev_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats); static int i40evf_dev_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats, unsigned n); static int i40evf_dev_xstats_get_names(struct rte_eth_dev *dev, struct rte_eth_xstat_name *xstats_names, unsigned limit); static void i40evf_dev_xstats_reset(struct rte_eth_dev *dev); static int i40evf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on); static int i40evf_vlan_offload_set(struct rte_eth_dev *dev, int mask); static void i40evf_dev_close(struct rte_eth_dev *dev); static int i40evf_dev_reset(struct rte_eth_dev *dev); static void i40evf_dev_promiscuous_enable(struct rte_eth_dev *dev); static void i40evf_dev_promiscuous_disable(struct rte_eth_dev *dev); static void i40evf_dev_allmulticast_enable(struct rte_eth_dev *dev); static void i40evf_dev_allmulticast_disable(struct rte_eth_dev *dev); static int i40evf_init_vlan(struct rte_eth_dev *dev); static int i40evf_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id); static int i40evf_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id); static int i40evf_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id); static int i40evf_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id); static int i40evf_add_mac_addr(struct rte_eth_dev *dev, struct ether_addr *addr, uint32_t index, uint32_t pool); static void i40evf_del_mac_addr(struct rte_eth_dev *dev, uint32_t index); static int i40evf_dev_rss_reta_update(struct rte_eth_dev *dev, struct rte_eth_rss_reta_entry64 *reta_conf, uint16_t reta_size); static int i40evf_dev_rss_reta_query(struct rte_eth_dev *dev, struct rte_eth_rss_reta_entry64 *reta_conf, uint16_t reta_size); static int i40evf_config_rss(struct i40e_vf *vf); static int i40evf_dev_rss_hash_update(struct rte_eth_dev *dev, struct rte_eth_rss_conf *rss_conf); static int i40evf_dev_rss_hash_conf_get(struct rte_eth_dev *dev, struct rte_eth_rss_conf *rss_conf); static int i40evf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu); static int i40evf_set_default_mac_addr(struct rte_eth_dev *dev, struct ether_addr *mac_addr); static int i40evf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id); static int i40evf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id); static void i40evf_handle_pf_event(struct rte_eth_dev *dev, uint8_t *msg, uint16_t msglen); static int i40evf_add_del_mc_addr_list(struct rte_eth_dev *dev, struct ether_addr *mc_addr_set, uint32_t nb_mc_addr, bool add); static int i40evf_set_mc_addr_list(struct rte_eth_dev *dev, struct ether_addr *mc_addr_set, uint32_t nb_mc_addr); /* Default hash key buffer for RSS */ static uint32_t rss_key_default[I40E_VFQF_HKEY_MAX_INDEX + 1]; struct rte_i40evf_xstats_name_off { char name[RTE_ETH_XSTATS_NAME_SIZE]; unsigned offset; }; static const struct rte_i40evf_xstats_name_off rte_i40evf_stats_strings[] = { {"rx_bytes", offsetof(struct i40e_eth_stats, rx_bytes)}, {"rx_unicast_packets", offsetof(struct i40e_eth_stats, rx_unicast)}, {"rx_multicast_packets", offsetof(struct i40e_eth_stats, rx_multicast)}, {"rx_broadcast_packets", offsetof(struct i40e_eth_stats, rx_broadcast)}, {"rx_dropped_packets", offsetof(struct i40e_eth_stats, rx_discards)}, {"rx_unknown_protocol_packets", offsetof(struct i40e_eth_stats, rx_unknown_protocol)}, {"tx_bytes", offsetof(struct i40e_eth_stats, tx_bytes)}, {"tx_unicast_packets", offsetof(struct i40e_eth_stats, tx_unicast)}, {"tx_multicast_packets", offsetof(struct i40e_eth_stats, tx_multicast)}, {"tx_broadcast_packets", offsetof(struct i40e_eth_stats, tx_broadcast)}, {"tx_dropped_packets", offsetof(struct i40e_eth_stats, tx_discards)}, {"tx_error_packets", offsetof(struct i40e_eth_stats, tx_errors)}, }; #define I40EVF_NB_XSTATS (sizeof(rte_i40evf_stats_strings) / \ sizeof(rte_i40evf_stats_strings[0])) static const struct eth_dev_ops i40evf_eth_dev_ops = { .dev_configure = i40evf_dev_configure, .dev_start = i40evf_dev_start, .dev_stop = i40evf_dev_stop, .promiscuous_enable = i40evf_dev_promiscuous_enable, .promiscuous_disable = i40evf_dev_promiscuous_disable, .allmulticast_enable = i40evf_dev_allmulticast_enable, .allmulticast_disable = i40evf_dev_allmulticast_disable, .link_update = i40evf_dev_link_update, .stats_get = i40evf_dev_stats_get, .stats_reset = i40evf_dev_xstats_reset, .xstats_get = i40evf_dev_xstats_get, .xstats_get_names = i40evf_dev_xstats_get_names, .xstats_reset = i40evf_dev_xstats_reset, .dev_close = i40evf_dev_close, .dev_reset = i40evf_dev_reset, .dev_infos_get = i40evf_dev_info_get, .dev_supported_ptypes_get = i40e_dev_supported_ptypes_get, .vlan_filter_set = i40evf_vlan_filter_set, .vlan_offload_set = i40evf_vlan_offload_set, .rx_queue_start = i40evf_dev_rx_queue_start, .rx_queue_stop = i40evf_dev_rx_queue_stop, .tx_queue_start = i40evf_dev_tx_queue_start, .tx_queue_stop = i40evf_dev_tx_queue_stop, .rx_queue_setup = i40e_dev_rx_queue_setup, .rx_queue_release = i40e_dev_rx_queue_release, .rx_queue_intr_enable = i40evf_dev_rx_queue_intr_enable, .rx_queue_intr_disable = i40evf_dev_rx_queue_intr_disable, .rx_descriptor_done = i40e_dev_rx_descriptor_done, .rx_descriptor_status = i40e_dev_rx_descriptor_status, .tx_descriptor_status = i40e_dev_tx_descriptor_status, .tx_queue_setup = i40e_dev_tx_queue_setup, .tx_queue_release = i40e_dev_tx_queue_release, .rx_queue_count = i40e_dev_rx_queue_count, .rxq_info_get = i40e_rxq_info_get, .txq_info_get = i40e_txq_info_get, .mac_addr_add = i40evf_add_mac_addr, .mac_addr_remove = i40evf_del_mac_addr, .set_mc_addr_list = i40evf_set_mc_addr_list, .reta_update = i40evf_dev_rss_reta_update, .reta_query = i40evf_dev_rss_reta_query, .rss_hash_update = i40evf_dev_rss_hash_update, .rss_hash_conf_get = i40evf_dev_rss_hash_conf_get, .mtu_set = i40evf_dev_mtu_set, .mac_addr_set = i40evf_set_default_mac_addr, }; /* * Read data in admin queue to get msg from pf driver */ static enum i40evf_aq_result i40evf_read_pfmsg(struct rte_eth_dev *dev, struct i40evf_arq_msg_info *data) { struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private); struct i40e_arq_event_info event; enum virtchnl_ops opcode; enum i40e_status_code retval; int ret; enum i40evf_aq_result result = I40EVF_MSG_NON; event.buf_len = data->buf_len; event.msg_buf = data->msg; ret = i40e_clean_arq_element(hw, &event, NULL); /* Can't read any msg from adminQ */ if (ret) { if (ret != I40E_ERR_ADMIN_QUEUE_NO_WORK) result = I40EVF_MSG_ERR; return result; } opcode = (enum virtchnl_ops)rte_le_to_cpu_32(event.desc.cookie_high); retval = (enum i40e_status_code)rte_le_to_cpu_32(event.desc.cookie_low); /* pf sys event */ if (opcode == VIRTCHNL_OP_EVENT) { struct virtchnl_pf_event *vpe = (struct virtchnl_pf_event *)event.msg_buf; result = I40EVF_MSG_SYS; switch (vpe->event) { case VIRTCHNL_EVENT_LINK_CHANGE: vf->link_up = vpe->event_data.link_event.link_status; vf->link_speed = vpe->event_data.link_event.link_speed; vf->pend_msg |= PFMSG_LINK_CHANGE; PMD_DRV_LOG(INFO, "Link status update:%s", vf->link_up ? "up" : "down"); break; case VIRTCHNL_EVENT_RESET_IMPENDING: vf->vf_reset = true; vf->pend_msg |= PFMSG_RESET_IMPENDING; PMD_DRV_LOG(INFO, "vf is reseting"); break; case VIRTCHNL_EVENT_PF_DRIVER_CLOSE: vf->dev_closed = true; vf->pend_msg |= PFMSG_DRIVER_CLOSE; PMD_DRV_LOG(INFO, "PF driver closed"); break; default: PMD_DRV_LOG(ERR, "%s: Unknown event %d from pf", __func__, vpe->event); } } else { /* async reply msg on command issued by vf previously */ result = I40EVF_MSG_CMD; /* Actual data length read from PF */ data->msg_len = event.msg_len; } data->result = retval; data->ops = opcode; return result; } /** * clear current command. Only call in case execute * _atomic_set_cmd successfully. */ static inline void _clear_cmd(struct i40e_vf *vf) { rte_wmb(); vf->pend_cmd = VIRTCHNL_OP_UNKNOWN; } /* * Check there is pending cmd in execution. If none, set new command. */ static inline int _atomic_set_cmd(struct i40e_vf *vf, enum virtchnl_ops ops) { int ret = rte_atomic32_cmpset(&vf->pend_cmd, VIRTCHNL_OP_UNKNOWN, ops); if (!ret) PMD_DRV_LOG(ERR, "There is incomplete cmd %d", vf->pend_cmd); return !ret; } #define MAX_TRY_TIMES 200 #define ASQ_DELAY_MS 10 static int i40evf_execute_vf_cmd(struct rte_eth_dev *dev, struct vf_cmd_info *args) { struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private); struct i40evf_arq_msg_info info; enum i40evf_aq_result ret; int err, i = 0; if (_atomic_set_cmd(vf, args->ops)) return -1; info.msg = args->out_buffer; info.buf_len = args->out_size; info.ops = VIRTCHNL_OP_UNKNOWN; info.result = I40E_SUCCESS; err = i40e_aq_send_msg_to_pf(hw, args->ops, I40E_SUCCESS, args->in_args, args->in_args_size, NULL); if (err) { PMD_DRV_LOG(ERR, "fail to send cmd %d", args->ops); _clear_cmd(vf); return err; } switch (args->ops) { case VIRTCHNL_OP_RESET_VF: /*no need to process in this function */ err = 0; break; case VIRTCHNL_OP_VERSION: case VIRTCHNL_OP_GET_VF_RESOURCES: /* for init adminq commands, need to poll the response */ err = -1; do { ret = i40evf_read_pfmsg(dev, &info); vf->cmd_retval = info.result; if (ret == I40EVF_MSG_CMD) { err = 0; break; } else if (ret == I40EVF_MSG_ERR) break; rte_delay_ms(ASQ_DELAY_MS); /* If don't read msg or read sys event, continue */ } while (i++ < MAX_TRY_TIMES); _clear_cmd(vf); break; default: /* for other adminq in running time, waiting the cmd done flag */ err = -1; do { if (vf->pend_cmd == VIRTCHNL_OP_UNKNOWN) { err = 0; break; } rte_delay_ms(ASQ_DELAY_MS); /* If don't read msg or read sys event, continue */ } while (i++ < MAX_TRY_TIMES); /* If there's no response is received, clear command */ if (i >= MAX_TRY_TIMES) { PMD_DRV_LOG(WARNING, "No response for %d", args->ops); _clear_cmd(vf); } break; } return err | vf->cmd_retval; } /* * Check API version with sync wait until version read or fail from admin queue */ static int i40evf_check_api_version(struct rte_eth_dev *dev) { struct virtchnl_version_info version, *pver; int err; struct vf_cmd_info args; struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private); version.major = VIRTCHNL_VERSION_MAJOR; version.minor = VIRTCHNL_VERSION_MINOR; args.ops = VIRTCHNL_OP_VERSION; args.in_args = (uint8_t *)&version; args.in_args_size = sizeof(version); args.out_buffer = vf->aq_resp; args.out_size = I40E_AQ_BUF_SZ; err = i40evf_execute_vf_cmd(dev, &args); if (err) { PMD_INIT_LOG(ERR, "fail to execute command OP_VERSION"); return err; } pver = (struct virtchnl_version_info *)args.out_buffer; vf->version_major = pver->major; vf->version_minor = pver->minor; if ((vf->version_major == VIRTCHNL_VERSION_MAJOR) && (vf->version_minor <= VIRTCHNL_VERSION_MINOR)) PMD_DRV_LOG(INFO, "Peer is Linux PF host"); else { PMD_INIT_LOG(ERR, "PF/VF API version mismatch:(%u.%u)-(%u.%u)", vf->version_major, vf->version_minor, VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR); return -1; } return 0; } static int i40evf_get_vf_resource(struct rte_eth_dev *dev) { struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private); int err; struct vf_cmd_info args; uint32_t caps, len; args.ops = VIRTCHNL_OP_GET_VF_RESOURCES; args.out_buffer = vf->aq_resp; args.out_size = I40E_AQ_BUF_SZ; if (PF_IS_V11(vf)) { caps = VIRTCHNL_VF_OFFLOAD_L2 | VIRTCHNL_VF_OFFLOAD_RSS_AQ | VIRTCHNL_VF_OFFLOAD_RSS_REG | VIRTCHNL_VF_OFFLOAD_VLAN | VIRTCHNL_VF_OFFLOAD_RX_POLLING; args.in_args = (uint8_t *)∩︀ args.in_args_size = sizeof(caps); } else { args.in_args = NULL; args.in_args_size = 0; } err = i40evf_execute_vf_cmd(dev, &args); if (err) { PMD_DRV_LOG(ERR, "fail to execute command OP_GET_VF_RESOURCE"); return err; } len = sizeof(struct virtchnl_vf_resource) + I40E_MAX_VF_VSI * sizeof(struct virtchnl_vsi_resource); rte_memcpy(vf->vf_res, args.out_buffer, RTE_MIN(args.out_size, len)); i40e_vf_parse_hw_config(hw, vf->vf_res); return 0; } static int i40evf_config_promisc(struct rte_eth_dev *dev, bool enable_unicast, bool enable_multicast) { struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private); int err; struct vf_cmd_info args; struct virtchnl_promisc_info promisc; promisc.flags = 0; promisc.vsi_id = vf->vsi_res->vsi_id; if (enable_unicast) promisc.flags |= FLAG_VF_UNICAST_PROMISC; if (enable_multicast) promisc.flags |= FLAG_VF_MULTICAST_PROMISC; args.ops = VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE; args.in_args = (uint8_t *)&promisc; args.in_args_size = sizeof(promisc); args.out_buffer = vf->aq_resp; args.out_size = I40E_AQ_BUF_SZ; err = i40evf_execute_vf_cmd(dev, &args); if (err) PMD_DRV_LOG(ERR, "fail to execute command " "CONFIG_PROMISCUOUS_MODE"); return err; } static int i40evf_enable_vlan_strip(struct rte_eth_dev *dev) { struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private); struct vf_cmd_info args; int ret; memset(&args, 0, sizeof(args)); args.ops = VIRTCHNL_OP_ENABLE_VLAN_STRIPPING; args.in_args = NULL; args.in_args_size = 0; args.out_buffer = vf->aq_resp; args.out_size = I40E_AQ_BUF_SZ; ret = i40evf_execute_vf_cmd(dev, &args); if (ret) PMD_DRV_LOG(ERR, "Failed to execute command of " "VIRTCHNL_OP_ENABLE_VLAN_STRIPPING"); return ret; } static int i40evf_disable_vlan_strip(struct rte_eth_dev *dev) { struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private); struct vf_cmd_info args; int ret; memset(&args, 0, sizeof(args)); args.ops = VIRTCHNL_OP_DISABLE_VLAN_STRIPPING; args.in_args = NULL; args.in_args_size = 0; args.out_buffer = vf->aq_resp; args.out_size = I40E_AQ_BUF_SZ; ret = i40evf_execute_vf_cmd(dev, &args); if (ret) PMD_DRV_LOG(ERR, "Failed to execute command of " "VIRTCHNL_OP_DISABLE_VLAN_STRIPPING"); return ret; } static void i40evf_fill_virtchnl_vsi_txq_info(struct virtchnl_txq_info *txq_info, uint16_t vsi_id, uint16_t queue_id, uint16_t nb_txq, struct i40e_tx_queue *txq) { txq_info->vsi_id = vsi_id; txq_info->queue_id = queue_id; if (queue_id < nb_txq && txq) { txq_info->ring_len = txq->nb_tx_desc; txq_info->dma_ring_addr = txq->tx_ring_phys_addr; } } static void i40evf_fill_virtchnl_vsi_rxq_info(struct virtchnl_rxq_info *rxq_info, uint16_t vsi_id, uint16_t queue_id, uint16_t nb_rxq, uint32_t max_pkt_size, struct i40e_rx_queue *rxq) { rxq_info->vsi_id = vsi_id; rxq_info->queue_id = queue_id; rxq_info->max_pkt_size = max_pkt_size; if (queue_id < nb_rxq && rxq) { rxq_info->ring_len = rxq->nb_rx_desc; rxq_info->dma_ring_addr = rxq->rx_ring_phys_addr; rxq_info->databuffer_size = (rte_pktmbuf_data_room_size(rxq->mp) - RTE_PKTMBUF_HEADROOM); } } static int i40evf_configure_vsi_queues(struct rte_eth_dev *dev) { struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private); struct i40e_rx_queue **rxq = (struct i40e_rx_queue **)dev->data->rx_queues; struct i40e_tx_queue **txq = (struct i40e_tx_queue **)dev->data->tx_queues; struct virtchnl_vsi_queue_config_info *vc_vqci; struct virtchnl_queue_pair_info *vc_qpi; struct vf_cmd_info args; uint16_t i, nb_qp = vf->num_queue_pairs; const uint32_t size = I40E_VIRTCHNL_CONFIG_VSI_QUEUES_SIZE(vc_vqci, nb_qp); uint8_t buff[size]; int ret; memset(buff, 0, sizeof(buff)); vc_vqci = (struct virtchnl_vsi_queue_config_info *)buff; vc_vqci->vsi_id = vf->vsi_res->vsi_id; vc_vqci->num_queue_pairs = nb_qp; for (i = 0, vc_qpi = vc_vqci->qpair; i < nb_qp; i++, vc_qpi++) { i40evf_fill_virtchnl_vsi_txq_info(&vc_qpi->txq, vc_vqci->vsi_id, i, dev->data->nb_tx_queues, txq ? txq[i] : NULL); i40evf_fill_virtchnl_vsi_rxq_info(&vc_qpi->rxq, vc_vqci->vsi_id, i, dev->data->nb_rx_queues, vf->max_pkt_len, rxq ? rxq[i] : NULL); } memset(&args, 0, sizeof(args)); args.ops = VIRTCHNL_OP_CONFIG_VSI_QUEUES; args.in_args = (uint8_t *)vc_vqci; args.in_args_size = size; args.out_buffer = vf->aq_resp; args.out_size = I40E_AQ_BUF_SZ; ret = i40evf_execute_vf_cmd(dev, &args); if (ret) PMD_DRV_LOG(ERR, "Failed to execute command of " "VIRTCHNL_OP_CONFIG_VSI_QUEUES"); return ret; } static int i40evf_config_irq_map(struct rte_eth_dev *dev) { struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private); struct vf_cmd_info args; uint8_t cmd_buffer[sizeof(struct virtchnl_irq_map_info) + \ sizeof(struct virtchnl_vector_map)]; struct virtchnl_irq_map_info *map_info; struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); struct rte_intr_handle *intr_handle = &pci_dev->intr_handle; uint32_t vector_id; int i, err; if (dev->data->dev_conf.intr_conf.rxq != 0 && rte_intr_allow_others(intr_handle)) vector_id = I40E_RX_VEC_START; else vector_id = I40E_MISC_VEC_ID; map_info = (struct virtchnl_irq_map_info *)cmd_buffer; map_info->num_vectors = 1; map_info->vecmap[0].rxitr_idx = I40E_ITR_INDEX_DEFAULT; map_info->vecmap[0].vsi_id = vf->vsi_res->vsi_id; /* Alway use default dynamic MSIX interrupt */ map_info->vecmap[0].vector_id = vector_id; /* Don't map any tx queue */ map_info->vecmap[0].txq_map = 0; map_info->vecmap[0].rxq_map = 0; for (i = 0; i < dev->data->nb_rx_queues; i++) { map_info->vecmap[0].rxq_map |= 1 << i; if (rte_intr_dp_is_en(intr_handle)) intr_handle->intr_vec[i] = vector_id; } args.ops = VIRTCHNL_OP_CONFIG_IRQ_MAP; args.in_args = (u8 *)cmd_buffer; args.in_args_size = sizeof(cmd_buffer); args.out_buffer = vf->aq_resp; args.out_size = I40E_AQ_BUF_SZ; err = i40evf_execute_vf_cmd(dev, &args); if (err) PMD_DRV_LOG(ERR, "fail to execute command OP_ENABLE_QUEUES"); return err; } static int i40evf_switch_queue(struct rte_eth_dev *dev, bool isrx, uint16_t qid, bool on) { struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private); struct virtchnl_queue_select queue_select; int err; struct vf_cmd_info args; memset(&queue_select, 0, sizeof(queue_select)); queue_select.vsi_id = vf->vsi_res->vsi_id; if (isrx) queue_select.rx_queues |= 1 << qid; else queue_select.tx_queues |= 1 << qid; if (on) args.ops = VIRTCHNL_OP_ENABLE_QUEUES; else args.ops = VIRTCHNL_OP_DISABLE_QUEUES; args.in_args = (u8 *)&queue_select; args.in_args_size = sizeof(queue_select); args.out_buffer = vf->aq_resp; args.out_size = I40E_AQ_BUF_SZ; err = i40evf_execute_vf_cmd(dev, &args); if (err) PMD_DRV_LOG(ERR, "fail to switch %s %u %s", isrx ? "RX" : "TX", qid, on ? "on" : "off"); return err; } static int i40evf_start_queues(struct rte_eth_dev *dev) { struct rte_eth_dev_data *dev_data = dev->data; int i; struct i40e_rx_queue *rxq; struct i40e_tx_queue *txq; for (i = 0; i < dev->data->nb_rx_queues; i++) { rxq = dev_data->rx_queues[i]; if (rxq->rx_deferred_start) continue; if (i40evf_dev_rx_queue_start(dev, i) != 0) { PMD_DRV_LOG(ERR, "Fail to start queue %u", i); return -1; } } for (i = 0; i < dev->data->nb_tx_queues; i++) { txq = dev_data->tx_queues[i]; if (txq->tx_deferred_start) continue; if (i40evf_dev_tx_queue_start(dev, i) != 0) { PMD_DRV_LOG(ERR, "Fail to start queue %u", i); return -1; } } return 0; } static int i40evf_stop_queues(struct rte_eth_dev *dev) { int i; /* Stop TX queues first */ for (i = 0; i < dev->data->nb_tx_queues; i++) { if (i40evf_dev_tx_queue_stop(dev, i) != 0) { PMD_DRV_LOG(ERR, "Fail to stop queue %u", i); return -1; } } /* Then stop RX queues */ for (i = 0; i < dev->data->nb_rx_queues; i++) { if (i40evf_dev_rx_queue_stop(dev, i) != 0) { PMD_DRV_LOG(ERR, "Fail to stop queue %u", i); return -1; } } return 0; } static int i40evf_add_mac_addr(struct rte_eth_dev *dev, struct ether_addr *addr, __rte_unused uint32_t index, __rte_unused uint32_t pool) { struct virtchnl_ether_addr_list *list; struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private); uint8_t cmd_buffer[sizeof(struct virtchnl_ether_addr_list) + \ sizeof(struct virtchnl_ether_addr)]; int err; struct vf_cmd_info args; if (is_zero_ether_addr(addr)) { PMD_DRV_LOG(ERR, "Invalid mac:%x:%x:%x:%x:%x:%x", addr->addr_bytes[0], addr->addr_bytes[1], addr->addr_bytes[2], addr->addr_bytes[3], addr->addr_bytes[4], addr->addr_bytes[5]); return I40E_ERR_INVALID_MAC_ADDR; } list = (struct virtchnl_ether_addr_list *)cmd_buffer; list->vsi_id = vf->vsi_res->vsi_id; list->num_elements = 1; rte_memcpy(list->list[0].addr, addr->addr_bytes, sizeof(addr->addr_bytes)); args.ops = VIRTCHNL_OP_ADD_ETH_ADDR; args.in_args = cmd_buffer; args.in_args_size = sizeof(cmd_buffer); args.out_buffer = vf->aq_resp; args.out_size = I40E_AQ_BUF_SZ; err = i40evf_execute_vf_cmd(dev, &args); if (err) PMD_DRV_LOG(ERR, "fail to execute command " "OP_ADD_ETHER_ADDRESS"); else vf->vsi.mac_num++; return err; } static void i40evf_del_mac_addr_by_addr(struct rte_eth_dev *dev, struct ether_addr *addr) { struct virtchnl_ether_addr_list *list; struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private); uint8_t cmd_buffer[sizeof(struct virtchnl_ether_addr_list) + \ sizeof(struct virtchnl_ether_addr)]; int err; struct vf_cmd_info args; if (i40e_validate_mac_addr(addr->addr_bytes) != I40E_SUCCESS) { PMD_DRV_LOG(ERR, "Invalid mac:%x-%x-%x-%x-%x-%x", addr->addr_bytes[0], addr->addr_bytes[1], addr->addr_bytes[2], addr->addr_bytes[3], addr->addr_bytes[4], addr->addr_bytes[5]); return; } list = (struct virtchnl_ether_addr_list *)cmd_buffer; list->vsi_id = vf->vsi_res->vsi_id; list->num_elements = 1; rte_memcpy(list->list[0].addr, addr->addr_bytes, sizeof(addr->addr_bytes)); args.ops = VIRTCHNL_OP_DEL_ETH_ADDR; args.in_args = cmd_buffer; args.in_args_size = sizeof(cmd_buffer); args.out_buffer = vf->aq_resp; args.out_size = I40E_AQ_BUF_SZ; err = i40evf_execute_vf_cmd(dev, &args); if (err) PMD_DRV_LOG(ERR, "fail to execute command " "OP_DEL_ETHER_ADDRESS"); else vf->vsi.mac_num--; return; } static void i40evf_del_mac_addr(struct rte_eth_dev *dev, uint32_t index) { struct rte_eth_dev_data *data = dev->data; struct ether_addr *addr; addr = &data->mac_addrs[index]; i40evf_del_mac_addr_by_addr(dev, addr); } static int i40evf_query_stats(struct rte_eth_dev *dev, struct i40e_eth_stats **pstats) { struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private); struct virtchnl_queue_select q_stats; int err; struct vf_cmd_info args; memset(&q_stats, 0, sizeof(q_stats)); q_stats.vsi_id = vf->vsi_res->vsi_id; args.ops = VIRTCHNL_OP_GET_STATS; args.in_args = (u8 *)&q_stats; args.in_args_size = sizeof(q_stats); args.out_buffer = vf->aq_resp; args.out_size = I40E_AQ_BUF_SZ; err = i40evf_execute_vf_cmd(dev, &args); if (err) { PMD_DRV_LOG(ERR, "fail to execute command OP_GET_STATS"); *pstats = NULL; return err; } *pstats = (struct i40e_eth_stats *)args.out_buffer; return 0; } static void i40evf_stat_update_48(uint64_t *offset, uint64_t *stat) { if (*stat >= *offset) *stat = *stat - *offset; else *stat = (uint64_t)((*stat + ((uint64_t)1 << I40E_48_BIT_WIDTH)) - *offset); *stat &= I40E_48_BIT_MASK; } static void i40evf_stat_update_32(uint64_t *offset, uint64_t *stat) { if (*stat >= *offset) *stat = (uint64_t)(*stat - *offset); else *stat = (uint64_t)((*stat + ((uint64_t)1 << I40E_32_BIT_WIDTH)) - *offset); } static void i40evf_update_stats(struct i40e_vsi *vsi, struct i40e_eth_stats *nes) { struct i40e_eth_stats *oes = &vsi->eth_stats_offset; i40evf_stat_update_48(&oes->rx_bytes, &nes->rx_bytes); i40evf_stat_update_48(&oes->rx_unicast, &nes->rx_unicast); i40evf_stat_update_48(&oes->rx_multicast, &nes->rx_multicast); i40evf_stat_update_48(&oes->rx_broadcast, &nes->rx_broadcast); i40evf_stat_update_32(&oes->rx_discards, &nes->rx_discards); i40evf_stat_update_32(&oes->rx_unknown_protocol, &nes->rx_unknown_protocol); i40evf_stat_update_48(&oes->tx_bytes, &nes->tx_bytes); i40evf_stat_update_48(&oes->tx_unicast, &nes->tx_unicast); i40evf_stat_update_48(&oes->tx_multicast, &nes->tx_multicast); i40evf_stat_update_48(&oes->tx_broadcast, &nes->tx_broadcast); i40evf_stat_update_32(&oes->tx_errors, &nes->tx_errors); i40evf_stat_update_32(&oes->tx_discards, &nes->tx_discards); } static void i40evf_dev_xstats_reset(struct rte_eth_dev *dev) { int ret; struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private); struct i40e_eth_stats *pstats = NULL; /* read stat values to clear hardware registers */ ret = i40evf_query_stats(dev, &pstats); /* set stats offset base on current values */ if (ret == 0) vf->vsi.eth_stats_offset = *pstats; } static int i40evf_dev_xstats_get_names(__rte_unused struct rte_eth_dev *dev, struct rte_eth_xstat_name *xstats_names, __rte_unused unsigned limit) { unsigned i; if (xstats_names != NULL) for (i = 0; i < I40EVF_NB_XSTATS; i++) { snprintf(xstats_names[i].name, sizeof(xstats_names[i].name), "%s", rte_i40evf_stats_strings[i].name); } return I40EVF_NB_XSTATS; } static int i40evf_dev_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats, unsigned n) { int ret; unsigned i; struct i40e_eth_stats *pstats = NULL; struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private); struct i40e_vsi *vsi = &vf->vsi; if (n < I40EVF_NB_XSTATS) return I40EVF_NB_XSTATS; ret = i40evf_query_stats(dev, &pstats); if (ret != 0) return 0; if (!xstats) return 0; i40evf_update_stats(vsi, pstats); /* loop over xstats array and values from pstats */ for (i = 0; i < I40EVF_NB_XSTATS; i++) { xstats[i].id = i; xstats[i].value = *(uint64_t *)(((char *)pstats) + rte_i40evf_stats_strings[i].offset); } return I40EVF_NB_XSTATS; } static int i40evf_add_vlan(struct rte_eth_dev *dev, uint16_t vlanid) { struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private); struct virtchnl_vlan_filter_list *vlan_list; uint8_t cmd_buffer[sizeof(struct virtchnl_vlan_filter_list) + sizeof(uint16_t)]; int err; struct vf_cmd_info args; vlan_list = (struct virtchnl_vlan_filter_list *)cmd_buffer; vlan_list->vsi_id = vf->vsi_res->vsi_id; vlan_list->num_elements = 1; vlan_list->vlan_id[0] = vlanid; args.ops = VIRTCHNL_OP_ADD_VLAN; args.in_args = (u8 *)&cmd_buffer; args.in_args_size = sizeof(cmd_buffer); args.out_buffer = vf->aq_resp; args.out_size = I40E_AQ_BUF_SZ; err = i40evf_execute_vf_cmd(dev, &args); if (err) PMD_DRV_LOG(ERR, "fail to execute command OP_ADD_VLAN"); return err; } static int i40evf_del_vlan(struct rte_eth_dev *dev, uint16_t vlanid) { struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private); struct virtchnl_vlan_filter_list *vlan_list; uint8_t cmd_buffer[sizeof(struct virtchnl_vlan_filter_list) + sizeof(uint16_t)]; int err; struct vf_cmd_info args; vlan_list = (struct virtchnl_vlan_filter_list *)cmd_buffer; vlan_list->vsi_id = vf->vsi_res->vsi_id; vlan_list->num_elements = 1; vlan_list->vlan_id[0] = vlanid; args.ops = VIRTCHNL_OP_DEL_VLAN; args.in_args = (u8 *)&cmd_buffer; args.in_args_size = sizeof(cmd_buffer); args.out_buffer = vf->aq_resp; args.out_size = I40E_AQ_BUF_SZ; err = i40evf_execute_vf_cmd(dev, &args); if (err) PMD_DRV_LOG(ERR, "fail to execute command OP_DEL_VLAN"); return err; } static const struct rte_pci_id pci_id_i40evf_map[] = { { RTE_PCI_DEVICE(I40E_INTEL_VENDOR_ID, I40E_DEV_ID_VF) }, { RTE_PCI_DEVICE(I40E_INTEL_VENDOR_ID, I40E_DEV_ID_VF_HV) }, { RTE_PCI_DEVICE(I40E_INTEL_VENDOR_ID, I40E_DEV_ID_X722_A0_VF) }, { RTE_PCI_DEVICE(I40E_INTEL_VENDOR_ID, I40E_DEV_ID_X722_VF) }, { .vendor_id = 0, /* sentinel */ }, }; /* Disable IRQ0 */ static inline void i40evf_disable_irq0(struct i40e_hw *hw) { /* Disable all interrupt types */ I40E_WRITE_REG(hw, I40E_VFINT_ICR0_ENA1, 0); I40E_WRITE_REG(hw, I40E_VFINT_DYN_CTL01, I40E_VFINT_DYN_CTL01_ITR_INDX_MASK); I40EVF_WRITE_FLUSH(hw); } /* Enable IRQ0 */ static inline void i40evf_enable_irq0(struct i40e_hw *hw) { /* Enable admin queue interrupt trigger */ uint32_t val; i40evf_disable_irq0(hw); val = I40E_READ_REG(hw, I40E_VFINT_ICR0_ENA1); val |= I40E_VFINT_ICR0_ENA1_ADMINQ_MASK | I40E_VFINT_ICR0_ENA1_LINK_STAT_CHANGE_MASK; I40E_WRITE_REG(hw, I40E_VFINT_ICR0_ENA1, val); I40E_WRITE_REG(hw, I40E_VFINT_DYN_CTL01, I40E_VFINT_DYN_CTL01_INTENA_MASK | I40E_VFINT_DYN_CTL01_CLEARPBA_MASK | I40E_VFINT_DYN_CTL01_ITR_INDX_MASK); I40EVF_WRITE_FLUSH(hw); } static int i40evf_check_vf_reset_done(struct rte_eth_dev *dev) { int i, reset; struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private); for (i = 0; i < MAX_RESET_WAIT_CNT; i++) { reset = I40E_READ_REG(hw, I40E_VFGEN_RSTAT) & I40E_VFGEN_RSTAT_VFR_STATE_MASK; reset = reset >> I40E_VFGEN_RSTAT_VFR_STATE_SHIFT; if (reset == VIRTCHNL_VFR_VFACTIVE || reset == VIRTCHNL_VFR_COMPLETED) break; rte_delay_ms(50); } if (i >= MAX_RESET_WAIT_CNT) return -1; vf->vf_reset = false; vf->pend_msg &= ~PFMSG_RESET_IMPENDING; return 0; } static int i40evf_reset_vf(struct rte_eth_dev *dev) { int ret; struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); if (i40e_vf_reset(hw) != I40E_SUCCESS) { PMD_INIT_LOG(ERR, "Reset VF NIC failed"); return -1; } /** * After issuing vf reset command to pf, pf won't necessarily * reset vf, it depends on what state it exactly is. If it's not * initialized yet, it won't have vf reset since it's in a certain * state. If not, it will try to reset. Even vf is reset, pf will * set I40E_VFGEN_RSTAT to COMPLETE first, then wait 10ms and set * it to ACTIVE. In this duration, vf may not catch the moment that * COMPLETE is set. So, for vf, we'll try to wait a long time. */ rte_delay_ms(200); ret = i40evf_check_vf_reset_done(dev); if (ret) { PMD_INIT_LOG(ERR, "VF is still resetting"); return ret; } return 0; } static int i40evf_init_vf(struct rte_eth_dev *dev) { int i, err, bufsz; struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private); uint16_t interval = i40e_calc_itr_interval(0, 0); vf->adapter = I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); vf->dev_data = dev->data; err = i40e_set_mac_type(hw); if (err) { PMD_INIT_LOG(ERR, "set_mac_type failed: %d", err); goto err; } err = i40evf_check_vf_reset_done(dev); if (err) goto err; i40e_init_adminq_parameter(hw); err = i40e_init_adminq(hw); if (err) { PMD_INIT_LOG(ERR, "init_adminq failed: %d", err); goto err; } /* Reset VF and wait until it's complete */ if (i40evf_reset_vf(dev)) { PMD_INIT_LOG(ERR, "reset NIC failed"); goto err_aq; } /* VF reset, shutdown admin queue and initialize again */ if (i40e_shutdown_adminq(hw) != I40E_SUCCESS) { PMD_INIT_LOG(ERR, "i40e_shutdown_adminq failed"); goto err; } i40e_init_adminq_parameter(hw); if (i40e_init_adminq(hw) != I40E_SUCCESS) { PMD_INIT_LOG(ERR, "init_adminq failed"); goto err; } vf->aq_resp = rte_zmalloc("vf_aq_resp", I40E_AQ_BUF_SZ, 0); if (!vf->aq_resp) { PMD_INIT_LOG(ERR, "unable to allocate vf_aq_resp memory"); goto err_aq; } if (i40evf_check_api_version(dev) != 0) { PMD_INIT_LOG(ERR, "check_api version failed"); goto err_api; } bufsz = sizeof(struct virtchnl_vf_resource) + (I40E_MAX_VF_VSI * sizeof(struct virtchnl_vsi_resource)); vf->vf_res = rte_zmalloc("vf_res", bufsz, 0); if (!vf->vf_res) { PMD_INIT_LOG(ERR, "unable to allocate vf_res memory"); goto err_api; } if (i40evf_get_vf_resource(dev) != 0) { PMD_INIT_LOG(ERR, "i40evf_get_vf_config failed"); goto err_alloc; } /* got VF config message back from PF, now we can parse it */ for (i = 0; i < vf->vf_res->num_vsis; i++) { if (vf->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV) vf->vsi_res = &vf->vf_res->vsi_res[i]; } if (!vf->vsi_res) { PMD_INIT_LOG(ERR, "no LAN VSI found"); goto err_alloc; } if (hw->mac.type == I40E_MAC_X722_VF) vf->flags = I40E_FLAG_RSS_AQ_CAPABLE; vf->vsi.vsi_id = vf->vsi_res->vsi_id; switch (vf->vsi_res->vsi_type) { case VIRTCHNL_VSI_SRIOV: vf->vsi.type = I40E_VSI_SRIOV; break; default: vf->vsi.type = I40E_VSI_TYPE_UNKNOWN; break; } vf->vsi.nb_qps = vf->vsi_res->num_queue_pairs; vf->vsi.adapter = I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); /* Store the MAC address configured by host, or generate random one */ if (is_valid_assigned_ether_addr((struct ether_addr *)hw->mac.addr)) vf->flags |= I40E_FLAG_VF_MAC_BY_PF; else eth_random_addr(hw->mac.addr); /* Generate a random one */ I40E_WRITE_REG(hw, I40E_VFINT_DYN_CTL01, (I40E_ITR_INDEX_DEFAULT << I40E_VFINT_DYN_CTL0_ITR_INDX_SHIFT) | (interval << I40E_VFINT_DYN_CTL0_INTERVAL_SHIFT)); I40EVF_WRITE_FLUSH(hw); return 0; err_alloc: rte_free(vf->vf_res); vf->vsi_res = NULL; err_api: rte_free(vf->aq_resp); err_aq: i40e_shutdown_adminq(hw); /* ignore error */ err: return -1; } static int i40evf_uninit_vf(struct rte_eth_dev *dev) { struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private); struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); PMD_INIT_FUNC_TRACE(); if (hw->adapter_closed == 0) i40evf_dev_close(dev); rte_free(vf->vf_res); vf->vf_res = NULL; rte_free(vf->aq_resp); vf->aq_resp = NULL; return 0; } static void i40evf_handle_pf_event(struct rte_eth_dev *dev, uint8_t *msg, __rte_unused uint16_t msglen) { struct virtchnl_pf_event *pf_msg = (struct virtchnl_pf_event *)msg; struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private); switch (pf_msg->event) { case VIRTCHNL_EVENT_RESET_IMPENDING: PMD_DRV_LOG(DEBUG, "VIRTCHNL_EVENT_RESET_IMPENDING event"); _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET, NULL); break; case VIRTCHNL_EVENT_LINK_CHANGE: PMD_DRV_LOG(DEBUG, "VIRTCHNL_EVENT_LINK_CHANGE event"); vf->link_up = pf_msg->event_data.link_event.link_status; vf->link_speed = pf_msg->event_data.link_event.link_speed; break; case VIRTCHNL_EVENT_PF_DRIVER_CLOSE: PMD_DRV_LOG(DEBUG, "VIRTCHNL_EVENT_PF_DRIVER_CLOSE event"); break; default: PMD_DRV_LOG(ERR, " unknown event received %u", pf_msg->event); break; } } static void i40evf_handle_aq_msg(struct rte_eth_dev *dev) { struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private); struct i40e_arq_event_info info; uint16_t pending, aq_opc; enum virtchnl_ops msg_opc; enum i40e_status_code msg_ret; int ret; info.buf_len = I40E_AQ_BUF_SZ; if (!vf->aq_resp) { PMD_DRV_LOG(ERR, "Buffer for adminq resp should not be NULL"); return; } info.msg_buf = vf->aq_resp; pending = 1; while (pending) { ret = i40e_clean_arq_element(hw, &info, &pending); if (ret != I40E_SUCCESS) { PMD_DRV_LOG(INFO, "Failed to read msg from AdminQ," "ret: %d", ret); break; } aq_opc = rte_le_to_cpu_16(info.desc.opcode); /* For the message sent from pf to vf, opcode is stored in * cookie_high of struct i40e_aq_desc, while return error code * are stored in cookie_low, Which is done by * i40e_aq_send_msg_to_vf in PF driver.*/ msg_opc = (enum virtchnl_ops)rte_le_to_cpu_32( info.desc.cookie_high); msg_ret = (enum i40e_status_code)rte_le_to_cpu_32( info.desc.cookie_low); switch (aq_opc) { case i40e_aqc_opc_send_msg_to_vf: if (msg_opc == VIRTCHNL_OP_EVENT) /* process event*/ i40evf_handle_pf_event(dev, info.msg_buf, info.msg_len); else { /* read message and it's expected one */ if (msg_opc == vf->pend_cmd) { vf->cmd_retval = msg_ret; /* prevent compiler reordering */ rte_compiler_barrier(); _clear_cmd(vf); } else PMD_DRV_LOG(ERR, "command mismatch," "expect %u, get %u", vf->pend_cmd, msg_opc); PMD_DRV_LOG(DEBUG, "adminq response is received," " opcode = %d", msg_opc); } break; default: PMD_DRV_LOG(ERR, "Request %u is not supported yet", aq_opc); break; } } } /** * Interrupt handler triggered by NIC for handling * specific interrupt. Only adminq interrupt is processed in VF. * * @param handle * Pointer to interrupt handle. * @param param * The address of parameter (struct rte_eth_dev *) regsitered before. * * @return * void */ static void i40evf_dev_alarm_handler(void *param) { struct rte_eth_dev *dev = (struct rte_eth_dev *)param; struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t icr0; i40evf_disable_irq0(hw); /* read out interrupt causes */ icr0 = I40E_READ_REG(hw, I40E_VFINT_ICR01); /* No interrupt event indicated */ if (!(icr0 & I40E_VFINT_ICR01_INTEVENT_MASK)) goto done; if (icr0 & I40E_VFINT_ICR01_ADMINQ_MASK) { PMD_DRV_LOG(DEBUG, "ICR01_ADMINQ is reported"); i40evf_handle_aq_msg(dev); } /* Link Status Change interrupt */ if (icr0 & I40E_VFINT_ICR01_LINK_STAT_CHANGE_MASK) PMD_DRV_LOG(DEBUG, "LINK_STAT_CHANGE is reported," " do nothing"); done: i40evf_enable_irq0(hw); rte_eal_alarm_set(I40EVF_ALARM_INTERVAL, i40evf_dev_alarm_handler, dev); } static int i40evf_dev_init(struct rte_eth_dev *eth_dev) { struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); PMD_INIT_FUNC_TRACE(); /* assign ops func pointer */ eth_dev->dev_ops = &i40evf_eth_dev_ops; eth_dev->rx_pkt_burst = &i40e_recv_pkts; eth_dev->tx_pkt_burst = &i40e_xmit_pkts; /* * For secondary processes, we don't initialise any further as primary * has already done this work. */ if (rte_eal_process_type() != RTE_PROC_PRIMARY){ i40e_set_rx_function(eth_dev); i40e_set_tx_function(eth_dev); return 0; } i40e_set_default_ptype_table(eth_dev); rte_eth_copy_pci_info(eth_dev, pci_dev); hw->vendor_id = pci_dev->id.vendor_id; hw->device_id = pci_dev->id.device_id; hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id; hw->subsystem_device_id = pci_dev->id.subsystem_device_id; hw->bus.device = pci_dev->addr.devid; hw->bus.func = pci_dev->addr.function; hw->hw_addr = (void *)pci_dev->mem_resource[0].addr; hw->adapter_stopped = 0; hw->adapter_closed = 0; if(i40evf_init_vf(eth_dev) != 0) { PMD_INIT_LOG(ERR, "Init vf failed"); return -1; } i40e_set_default_pctype_table(eth_dev); rte_eal_alarm_set(I40EVF_ALARM_INTERVAL, i40evf_dev_alarm_handler, eth_dev); /* configure and enable device interrupt */ i40evf_enable_irq0(hw); /* copy mac addr */ eth_dev->data->mac_addrs = rte_zmalloc("i40evf_mac", ETHER_ADDR_LEN * I40E_NUM_MACADDR_MAX, 0); if (eth_dev->data->mac_addrs == NULL) { PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to" " store MAC addresses", ETHER_ADDR_LEN * I40E_NUM_MACADDR_MAX); return -ENOMEM; } ether_addr_copy((struct ether_addr *)hw->mac.addr, ð_dev->data->mac_addrs[0]); return 0; } static int i40evf_dev_uninit(struct rte_eth_dev *eth_dev) { PMD_INIT_FUNC_TRACE(); if (rte_eal_process_type() != RTE_PROC_PRIMARY) return -EPERM; eth_dev->dev_ops = NULL; eth_dev->rx_pkt_burst = NULL; eth_dev->tx_pkt_burst = NULL; if (i40evf_uninit_vf(eth_dev) != 0) { PMD_INIT_LOG(ERR, "i40evf_uninit_vf failed"); return -1; } return 0; } static int eth_i40evf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, struct rte_pci_device *pci_dev) { return rte_eth_dev_pci_generic_probe(pci_dev, sizeof(struct i40e_adapter), i40evf_dev_init); } static int eth_i40evf_pci_remove(struct rte_pci_device *pci_dev) { return rte_eth_dev_pci_generic_remove(pci_dev, i40evf_dev_uninit); } /* * virtual function driver struct */ static struct rte_pci_driver rte_i40evf_pmd = { .id_table = pci_id_i40evf_map, .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_IOVA_AS_VA, .probe = eth_i40evf_pci_probe, .remove = eth_i40evf_pci_remove, }; RTE_PMD_REGISTER_PCI(net_i40e_vf, rte_i40evf_pmd); RTE_PMD_REGISTER_PCI_TABLE(net_i40e_vf, pci_id_i40evf_map); RTE_PMD_REGISTER_KMOD_DEP(net_i40e_vf, "* igb_uio | vfio-pci"); static int i40evf_dev_configure(struct rte_eth_dev *dev) { struct i40e_adapter *ad = I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); /* Initialize to TRUE. If any of Rx queues doesn't meet the bulk * allocation or vector Rx preconditions we will reset it. */ ad->rx_bulk_alloc_allowed = true; ad->rx_vec_allowed = true; ad->tx_simple_allowed = true; ad->tx_vec_allowed = true; return i40evf_init_vlan(dev); } static int i40evf_init_vlan(struct rte_eth_dev *dev) { /* Apply vlan offload setting */ i40evf_vlan_offload_set(dev, ETH_VLAN_STRIP_MASK); return 0; } static int i40evf_vlan_offload_set(struct rte_eth_dev *dev, int mask) { struct rte_eth_conf *dev_conf = &dev->data->dev_conf; struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private); if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)) return -ENOTSUP; /* Vlan stripping setting */ if (mask & ETH_VLAN_STRIP_MASK) { /* Enable or disable VLAN stripping */ if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP) i40evf_enable_vlan_strip(dev); else i40evf_disable_vlan_strip(dev); } return 0; } static int i40evf_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id) { struct i40e_rx_queue *rxq; int err; struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); PMD_INIT_FUNC_TRACE(); rxq = dev->data->rx_queues[rx_queue_id]; err = i40e_alloc_rx_queue_mbufs(rxq); if (err) { PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf"); return err; } rte_wmb(); /* Init the RX tail register. */ I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1); I40EVF_WRITE_FLUSH(hw); /* Ready to switch the queue on */ err = i40evf_switch_queue(dev, TRUE, rx_queue_id, TRUE); if (err) { PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on", rx_queue_id); return err; } dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED; return 0; } static int i40evf_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id) { struct i40e_rx_queue *rxq; int err; rxq = dev->data->rx_queues[rx_queue_id]; err = i40evf_switch_queue(dev, TRUE, rx_queue_id, FALSE); if (err) { PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off", rx_queue_id); return err; } i40e_rx_queue_release_mbufs(rxq); i40e_reset_rx_queue(rxq); dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED; return 0; } static int i40evf_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id) { int err; PMD_INIT_FUNC_TRACE(); /* Ready to switch the queue on */ err = i40evf_switch_queue(dev, FALSE, tx_queue_id, TRUE); if (err) { PMD_DRV_LOG(ERR, "Failed to switch TX queue %u on", tx_queue_id); return err; } dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED; return 0; } static int i40evf_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id) { struct i40e_tx_queue *txq; int err; txq = dev->data->tx_queues[tx_queue_id]; err = i40evf_switch_queue(dev, FALSE, tx_queue_id, FALSE); if (err) { PMD_DRV_LOG(ERR, "Failed to switch TX queue %u off", tx_queue_id); return err; } i40e_tx_queue_release_mbufs(txq); i40e_reset_tx_queue(txq); dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED; return 0; } static int i40evf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on) { int ret; if (on) ret = i40evf_add_vlan(dev, vlan_id); else ret = i40evf_del_vlan(dev,vlan_id); return ret; } static int i40evf_rxq_init(struct rte_eth_dev *dev, struct i40e_rx_queue *rxq) { struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct rte_eth_dev_data *dev_data = dev->data; struct rte_pktmbuf_pool_private *mbp_priv; uint16_t buf_size, len; rxq->qrx_tail = hw->hw_addr + I40E_QRX_TAIL1(rxq->queue_id); I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1); I40EVF_WRITE_FLUSH(hw); /* Calculate the maximum packet length allowed */ mbp_priv = rte_mempool_get_priv(rxq->mp); buf_size = (uint16_t)(mbp_priv->mbuf_data_room_size - RTE_PKTMBUF_HEADROOM); rxq->hs_mode = i40e_header_split_none; rxq->rx_hdr_len = 0; rxq->rx_buf_len = RTE_ALIGN(buf_size, (1 << I40E_RXQ_CTX_DBUFF_SHIFT)); len = rxq->rx_buf_len * I40E_MAX_CHAINED_RX_BUFFERS; rxq->max_pkt_len = RTE_MIN(len, dev_data->dev_conf.rxmode.max_rx_pkt_len); /** * Check if the jumbo frame and maximum packet length are set correctly */ if (dev_data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) { if (rxq->max_pkt_len <= ETHER_MAX_LEN || rxq->max_pkt_len > I40E_FRAME_SIZE_MAX) { PMD_DRV_LOG(ERR, "maximum packet length must be " "larger than %u and smaller than %u, as jumbo " "frame is enabled", (uint32_t)ETHER_MAX_LEN, (uint32_t)I40E_FRAME_SIZE_MAX); return I40E_ERR_CONFIG; } } else { if (rxq->max_pkt_len < ETHER_MIN_LEN || rxq->max_pkt_len > ETHER_MAX_LEN) { PMD_DRV_LOG(ERR, "maximum packet length must be " "larger than %u and smaller than %u, as jumbo " "frame is disabled", (uint32_t)ETHER_MIN_LEN, (uint32_t)ETHER_MAX_LEN); return I40E_ERR_CONFIG; } } if ((dev_data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER) || rxq->max_pkt_len > buf_size) dev_data->scattered_rx = 1; return 0; } static int i40evf_rx_init(struct rte_eth_dev *dev) { struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private); uint16_t i; int ret = I40E_SUCCESS; struct i40e_rx_queue **rxq = (struct i40e_rx_queue **)dev->data->rx_queues; i40evf_config_rss(vf); for (i = 0; i < dev->data->nb_rx_queues; i++) { if (!rxq[i] || !rxq[i]->q_set) continue; ret = i40evf_rxq_init(dev, rxq[i]); if (ret != I40E_SUCCESS) break; } if (ret == I40E_SUCCESS) i40e_set_rx_function(dev); return ret; } static void i40evf_tx_init(struct rte_eth_dev *dev) { uint16_t i; struct i40e_tx_queue **txq = (struct i40e_tx_queue **)dev->data->tx_queues; struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); for (i = 0; i < dev->data->nb_tx_queues; i++) txq[i]->qtx_tail = hw->hw_addr + I40E_QTX_TAIL1(i); i40e_set_tx_function(dev); } static inline void i40evf_enable_queues_intr(struct rte_eth_dev *dev) { struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); struct rte_intr_handle *intr_handle = &pci_dev->intr_handle; if (!rte_intr_allow_others(intr_handle)) { I40E_WRITE_REG(hw, I40E_VFINT_DYN_CTL01, I40E_VFINT_DYN_CTL01_INTENA_MASK | I40E_VFINT_DYN_CTL01_CLEARPBA_MASK | I40E_VFINT_DYN_CTL01_ITR_INDX_MASK); I40EVF_WRITE_FLUSH(hw); return; } I40EVF_WRITE_FLUSH(hw); } static inline void i40evf_disable_queues_intr(struct rte_eth_dev *dev) { struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); struct rte_intr_handle *intr_handle = &pci_dev->intr_handle; if (!rte_intr_allow_others(intr_handle)) { I40E_WRITE_REG(hw, I40E_VFINT_DYN_CTL01, I40E_VFINT_DYN_CTL01_ITR_INDX_MASK); I40EVF_WRITE_FLUSH(hw); return; } I40EVF_WRITE_FLUSH(hw); } static int i40evf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id) { struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); struct rte_intr_handle *intr_handle = &pci_dev->intr_handle; struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint16_t interval = i40e_calc_itr_interval(0, 0); uint16_t msix_intr; msix_intr = intr_handle->intr_vec[queue_id]; if (msix_intr == I40E_MISC_VEC_ID) I40E_WRITE_REG(hw, I40E_VFINT_DYN_CTL01, I40E_VFINT_DYN_CTL01_INTENA_MASK | I40E_VFINT_DYN_CTL01_CLEARPBA_MASK | (0 << I40E_VFINT_DYN_CTL01_ITR_INDX_SHIFT) | (interval << I40E_VFINT_DYN_CTL01_INTERVAL_SHIFT)); else I40E_WRITE_REG(hw, I40E_VFINT_DYN_CTLN1(msix_intr - I40E_RX_VEC_START), I40E_VFINT_DYN_CTLN1_INTENA_MASK | I40E_VFINT_DYN_CTLN1_CLEARPBA_MASK | (0 << I40E_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) | (interval << I40E_VFINT_DYN_CTLN1_INTERVAL_SHIFT)); I40EVF_WRITE_FLUSH(hw); return 0; } static int i40evf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id) { struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); struct rte_intr_handle *intr_handle = &pci_dev->intr_handle; struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint16_t msix_intr; msix_intr = intr_handle->intr_vec[queue_id]; if (msix_intr == I40E_MISC_VEC_ID) I40E_WRITE_REG(hw, I40E_VFINT_DYN_CTL01, 0); else I40E_WRITE_REG(hw, I40E_VFINT_DYN_CTLN1(msix_intr - I40E_RX_VEC_START), 0); I40EVF_WRITE_FLUSH(hw); return 0; } static void i40evf_add_del_all_mac_addr(struct rte_eth_dev *dev, bool add) { struct virtchnl_ether_addr_list *list; struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private); int err, i, j; int next_begin = 0; int begin = 0; uint32_t len; struct ether_addr *addr; struct vf_cmd_info args; do { j = 0; len = sizeof(struct virtchnl_ether_addr_list); for (i = begin; i < I40E_NUM_MACADDR_MAX; i++, next_begin++) { if (is_zero_ether_addr(&dev->data->mac_addrs[i])) continue; len += sizeof(struct virtchnl_ether_addr); if (len >= I40E_AQ_BUF_SZ) { next_begin = i + 1; break; } } list = rte_zmalloc("i40evf_del_mac_buffer", len, 0); if (!list) { PMD_DRV_LOG(ERR, "fail to allocate memory"); return; } for (i = begin; i < next_begin; i++) { addr = &dev->data->mac_addrs[i]; if (is_zero_ether_addr(addr)) continue; rte_memcpy(list->list[j].addr, addr->addr_bytes, sizeof(addr->addr_bytes)); PMD_DRV_LOG(DEBUG, "add/rm mac:%x:%x:%x:%x:%x:%x", addr->addr_bytes[0], addr->addr_bytes[1], addr->addr_bytes[2], addr->addr_bytes[3], addr->addr_bytes[4], addr->addr_bytes[5]); j++; } list->vsi_id = vf->vsi_res->vsi_id; list->num_elements = j; args.ops = add ? VIRTCHNL_OP_ADD_ETH_ADDR : VIRTCHNL_OP_DEL_ETH_ADDR; args.in_args = (uint8_t *)list; args.in_args_size = len; args.out_buffer = vf->aq_resp; args.out_size = I40E_AQ_BUF_SZ; err = i40evf_execute_vf_cmd(dev, &args); if (err) { PMD_DRV_LOG(ERR, "fail to execute command %s", add ? "OP_ADD_ETHER_ADDRESS" : "OP_DEL_ETHER_ADDRESS"); } else { if (add) vf->vsi.mac_num++; else vf->vsi.mac_num--; } rte_free(list); begin = next_begin; } while (begin < I40E_NUM_MACADDR_MAX); } static int i40evf_dev_start(struct rte_eth_dev *dev) { struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private); struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); struct rte_intr_handle *intr_handle = &pci_dev->intr_handle; uint32_t intr_vector = 0; PMD_INIT_FUNC_TRACE(); hw->adapter_stopped = 0; vf->max_pkt_len = dev->data->dev_conf.rxmode.max_rx_pkt_len; vf->num_queue_pairs = RTE_MAX(dev->data->nb_rx_queues, dev->data->nb_tx_queues); /* check and configure queue intr-vector mapping */ if (rte_intr_cap_multiple(intr_handle) && dev->data->dev_conf.intr_conf.rxq) { intr_vector = dev->data->nb_rx_queues; if (rte_intr_efd_enable(intr_handle, intr_vector)) return -1; } if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) { intr_handle->intr_vec = rte_zmalloc("intr_vec", dev->data->nb_rx_queues * sizeof(int), 0); if (!intr_handle->intr_vec) { PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues" " intr_vec", dev->data->nb_rx_queues); return -ENOMEM; } } if (i40evf_rx_init(dev) != 0){ PMD_DRV_LOG(ERR, "failed to do RX init"); return -1; } i40evf_tx_init(dev); if (i40evf_configure_vsi_queues(dev) != 0) { PMD_DRV_LOG(ERR, "configure queues failed"); goto err_queue; } if (i40evf_config_irq_map(dev)) { PMD_DRV_LOG(ERR, "config_irq_map failed"); goto err_queue; } /* Set all mac addrs */ i40evf_add_del_all_mac_addr(dev, TRUE); /* Set all multicast addresses */ i40evf_add_del_mc_addr_list(dev, vf->mc_addrs, vf->mc_addrs_num, TRUE); if (i40evf_start_queues(dev) != 0) { PMD_DRV_LOG(ERR, "enable queues failed"); goto err_mac; } /* only enable interrupt in rx interrupt mode */ if (dev->data->dev_conf.intr_conf.rxq != 0) rte_intr_enable(intr_handle); i40evf_enable_queues_intr(dev); return 0; err_mac: i40evf_add_del_all_mac_addr(dev, FALSE); i40evf_add_del_mc_addr_list(dev, vf->mc_addrs, vf->mc_addrs_num, FALSE); err_queue: return -1; } static void i40evf_dev_stop(struct rte_eth_dev *dev) { struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); struct rte_intr_handle *intr_handle = &pci_dev->intr_handle; struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private); PMD_INIT_FUNC_TRACE(); if (dev->data->dev_conf.intr_conf.rxq != 0) rte_intr_disable(intr_handle); if (hw->adapter_stopped == 1) return; i40evf_stop_queues(dev); i40evf_disable_queues_intr(dev); i40e_dev_clear_queues(dev); /* Clean datapath event and queue/vec mapping */ rte_intr_efd_disable(intr_handle); if (intr_handle->intr_vec) { rte_free(intr_handle->intr_vec); intr_handle->intr_vec = NULL; } /* remove all mac addrs */ i40evf_add_del_all_mac_addr(dev, FALSE); /* remove all multicast addresses */ i40evf_add_del_mc_addr_list(dev, vf->mc_addrs, vf->mc_addrs_num, FALSE); hw->adapter_stopped = 1; } static int i40evf_dev_link_update(struct rte_eth_dev *dev, __rte_unused int wait_to_complete) { struct rte_eth_link new_link; struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private); /* * DPDK pf host provide interfacet to acquire link status * while Linux driver does not */ memset(&new_link, 0, sizeof(new_link)); /* Linux driver PF host */ switch (vf->link_speed) { case I40E_LINK_SPEED_100MB: new_link.link_speed = ETH_SPEED_NUM_100M; break; case I40E_LINK_SPEED_1GB: new_link.link_speed = ETH_SPEED_NUM_1G; break; case I40E_LINK_SPEED_10GB: new_link.link_speed = ETH_SPEED_NUM_10G; break; case I40E_LINK_SPEED_20GB: new_link.link_speed = ETH_SPEED_NUM_20G; break; case I40E_LINK_SPEED_25GB: new_link.link_speed = ETH_SPEED_NUM_25G; break; case I40E_LINK_SPEED_40GB: new_link.link_speed = ETH_SPEED_NUM_40G; break; default: new_link.link_speed = ETH_SPEED_NUM_100M; break; } /* full duplex only */ new_link.link_duplex = ETH_LINK_FULL_DUPLEX; new_link.link_status = vf->link_up ? ETH_LINK_UP : ETH_LINK_DOWN; new_link.link_autoneg = !(dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED); return rte_eth_linkstatus_set(dev, &new_link); } static void i40evf_dev_promiscuous_enable(struct rte_eth_dev *dev) { struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private); int ret; /* If enabled, just return */ if (vf->promisc_unicast_enabled) return; ret = i40evf_config_promisc(dev, 1, vf->promisc_multicast_enabled); if (ret == 0) vf->promisc_unicast_enabled = TRUE; } static void i40evf_dev_promiscuous_disable(struct rte_eth_dev *dev) { struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private); int ret; /* If disabled, just return */ if (!vf->promisc_unicast_enabled) return; ret = i40evf_config_promisc(dev, 0, vf->promisc_multicast_enabled); if (ret == 0) vf->promisc_unicast_enabled = FALSE; } static void i40evf_dev_allmulticast_enable(struct rte_eth_dev *dev) { struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private); int ret; /* If enabled, just return */ if (vf->promisc_multicast_enabled) return; ret = i40evf_config_promisc(dev, vf->promisc_unicast_enabled, 1); if (ret == 0) vf->promisc_multicast_enabled = TRUE; } static void i40evf_dev_allmulticast_disable(struct rte_eth_dev *dev) { struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private); int ret; /* If enabled, just return */ if (!vf->promisc_multicast_enabled) return; ret = i40evf_config_promisc(dev, vf->promisc_unicast_enabled, 0); if (ret == 0) vf->promisc_multicast_enabled = FALSE; } static void i40evf_dev_info_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) { struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private); dev_info->max_rx_queues = vf->vsi_res->num_queue_pairs; dev_info->max_tx_queues = vf->vsi_res->num_queue_pairs; dev_info->min_rx_bufsize = I40E_BUF_SIZE_MIN; dev_info->max_rx_pktlen = I40E_FRAME_SIZE_MAX; dev_info->hash_key_size = (I40E_VFQF_HKEY_MAX_INDEX + 1) * sizeof(uint32_t); dev_info->reta_size = ETH_RSS_RETA_SIZE_64; dev_info->flow_type_rss_offloads = vf->adapter->flow_types_mask; dev_info->max_mac_addrs = I40E_NUM_MACADDR_MAX; dev_info->rx_queue_offload_capa = 0; dev_info->rx_offload_capa = DEV_RX_OFFLOAD_VLAN_STRIP | DEV_RX_OFFLOAD_QINQ_STRIP | DEV_RX_OFFLOAD_IPV4_CKSUM | DEV_RX_OFFLOAD_UDP_CKSUM | DEV_RX_OFFLOAD_TCP_CKSUM | DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM | DEV_RX_OFFLOAD_SCATTER | DEV_RX_OFFLOAD_JUMBO_FRAME | DEV_RX_OFFLOAD_VLAN_FILTER; dev_info->tx_queue_offload_capa = 0; dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT | DEV_TX_OFFLOAD_QINQ_INSERT | DEV_TX_OFFLOAD_IPV4_CKSUM | DEV_TX_OFFLOAD_UDP_CKSUM | DEV_TX_OFFLOAD_TCP_CKSUM | DEV_TX_OFFLOAD_SCTP_CKSUM | DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM | DEV_TX_OFFLOAD_TCP_TSO | DEV_TX_OFFLOAD_VXLAN_TNL_TSO | DEV_TX_OFFLOAD_GRE_TNL_TSO | DEV_TX_OFFLOAD_IPIP_TNL_TSO | DEV_TX_OFFLOAD_GENEVE_TNL_TSO | DEV_TX_OFFLOAD_MULTI_SEGS; dev_info->default_rxconf = (struct rte_eth_rxconf) { .rx_thresh = { .pthresh = I40E_DEFAULT_RX_PTHRESH, .hthresh = I40E_DEFAULT_RX_HTHRESH, .wthresh = I40E_DEFAULT_RX_WTHRESH, }, .rx_free_thresh = I40E_DEFAULT_RX_FREE_THRESH, .rx_drop_en = 0, .offloads = 0, }; dev_info->default_txconf = (struct rte_eth_txconf) { .tx_thresh = { .pthresh = I40E_DEFAULT_TX_PTHRESH, .hthresh = I40E_DEFAULT_TX_HTHRESH, .wthresh = I40E_DEFAULT_TX_WTHRESH, }, .tx_free_thresh = I40E_DEFAULT_TX_FREE_THRESH, .tx_rs_thresh = I40E_DEFAULT_TX_RSBIT_THRESH, .offloads = 0, }; dev_info->rx_desc_lim = (struct rte_eth_desc_lim) { .nb_max = I40E_MAX_RING_DESC, .nb_min = I40E_MIN_RING_DESC, .nb_align = I40E_ALIGN_RING_DESC, }; dev_info->tx_desc_lim = (struct rte_eth_desc_lim) { .nb_max = I40E_MAX_RING_DESC, .nb_min = I40E_MIN_RING_DESC, .nb_align = I40E_ALIGN_RING_DESC, }; } static int i40evf_dev_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats) { int ret; struct i40e_eth_stats *pstats = NULL; struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private); struct i40e_vsi *vsi = &vf->vsi; ret = i40evf_query_stats(dev, &pstats); if (ret == 0) { i40evf_update_stats(vsi, pstats); stats->ipackets = pstats->rx_unicast + pstats->rx_multicast + pstats->rx_broadcast; stats->opackets = pstats->tx_broadcast + pstats->tx_multicast + pstats->tx_unicast; stats->imissed = pstats->rx_discards; stats->oerrors = pstats->tx_errors + pstats->tx_discards; stats->ibytes = pstats->rx_bytes; stats->obytes = pstats->tx_bytes; } else { PMD_DRV_LOG(ERR, "Get statistics failed"); } return ret; } static void i40evf_dev_close(struct rte_eth_dev *dev) { struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); i40evf_dev_stop(dev); i40e_dev_free_queues(dev); /* * disable promiscuous mode before reset vf * it is a workaround solution when work with kernel driver * and it is not the normal way */ i40evf_dev_promiscuous_disable(dev); i40evf_dev_allmulticast_disable(dev); rte_eal_alarm_cancel(i40evf_dev_alarm_handler, dev); i40evf_reset_vf(dev); i40e_shutdown_adminq(hw); i40evf_disable_irq0(hw); hw->adapter_closed = 1; } /* * Reset VF device only to re-initialize resources in PMD layer */ static int i40evf_dev_reset(struct rte_eth_dev *dev) { int ret; ret = i40evf_dev_uninit(dev); if (ret) return ret; ret = i40evf_dev_init(dev); return ret; } static int i40evf_get_rss_lut(struct i40e_vsi *vsi, uint8_t *lut, uint16_t lut_size) { struct i40e_vf *vf = I40E_VSI_TO_VF(vsi); struct i40e_hw *hw = I40E_VSI_TO_HW(vsi); int ret; if (!lut) return -EINVAL; if (vf->flags & I40E_FLAG_RSS_AQ_CAPABLE) { ret = i40e_aq_get_rss_lut(hw, vsi->vsi_id, FALSE, lut, lut_size); if (ret) { PMD_DRV_LOG(ERR, "Failed to get RSS lookup table"); return ret; } } else { uint32_t *lut_dw = (uint32_t *)lut; uint16_t i, lut_size_dw = lut_size / 4; for (i = 0; i < lut_size_dw; i++) lut_dw[i] = I40E_READ_REG(hw, I40E_VFQF_HLUT(i)); } return 0; } static int i40evf_set_rss_lut(struct i40e_vsi *vsi, uint8_t *lut, uint16_t lut_size) { struct i40e_vf *vf; struct i40e_hw *hw; int ret; if (!vsi || !lut) return -EINVAL; vf = I40E_VSI_TO_VF(vsi); hw = I40E_VSI_TO_HW(vsi); if (vf->flags & I40E_FLAG_RSS_AQ_CAPABLE) { ret = i40e_aq_set_rss_lut(hw, vsi->vsi_id, FALSE, lut, lut_size); if (ret) { PMD_DRV_LOG(ERR, "Failed to set RSS lookup table"); return ret; } } else { uint32_t *lut_dw = (uint32_t *)lut; uint16_t i, lut_size_dw = lut_size / 4; for (i = 0; i < lut_size_dw; i++) I40E_WRITE_REG(hw, I40E_VFQF_HLUT(i), lut_dw[i]); I40EVF_WRITE_FLUSH(hw); } return 0; } static int i40evf_dev_rss_reta_update(struct rte_eth_dev *dev, struct rte_eth_rss_reta_entry64 *reta_conf, uint16_t reta_size) { struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private); uint8_t *lut; uint16_t i, idx, shift; int ret; if (reta_size != ETH_RSS_RETA_SIZE_64) { PMD_DRV_LOG(ERR, "The size of hash lookup table configured " "(%d) doesn't match the number of hardware can " "support (%d)", reta_size, ETH_RSS_RETA_SIZE_64); return -EINVAL; } lut = rte_zmalloc("i40e_rss_lut", reta_size, 0); if (!lut) { PMD_DRV_LOG(ERR, "No memory can be allocated"); return -ENOMEM; } ret = i40evf_get_rss_lut(&vf->vsi, lut, reta_size); if (ret) goto out; for (i = 0; i < reta_size; i++) { idx = i / RTE_RETA_GROUP_SIZE; shift = i % RTE_RETA_GROUP_SIZE; if (reta_conf[idx].mask & (1ULL << shift)) lut[i] = reta_conf[idx].reta[shift]; } ret = i40evf_set_rss_lut(&vf->vsi, lut, reta_size); out: rte_free(lut); return ret; } static int i40evf_dev_rss_reta_query(struct rte_eth_dev *dev, struct rte_eth_rss_reta_entry64 *reta_conf, uint16_t reta_size) { struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private); uint16_t i, idx, shift; uint8_t *lut; int ret; if (reta_size != ETH_RSS_RETA_SIZE_64) { PMD_DRV_LOG(ERR, "The size of hash lookup table configured " "(%d) doesn't match the number of hardware can " "support (%d)", reta_size, ETH_RSS_RETA_SIZE_64); return -EINVAL; } lut = rte_zmalloc("i40e_rss_lut", reta_size, 0); if (!lut) { PMD_DRV_LOG(ERR, "No memory can be allocated"); return -ENOMEM; } ret = i40evf_get_rss_lut(&vf->vsi, lut, reta_size); if (ret) goto out; for (i = 0; i < reta_size; i++) { idx = i / RTE_RETA_GROUP_SIZE; shift = i % RTE_RETA_GROUP_SIZE; if (reta_conf[idx].mask & (1ULL << shift)) reta_conf[idx].reta[shift] = lut[i]; } out: rte_free(lut); return ret; } static int i40evf_set_rss_key(struct i40e_vsi *vsi, uint8_t *key, uint8_t key_len) { struct i40e_vf *vf = I40E_VSI_TO_VF(vsi); struct i40e_hw *hw = I40E_VSI_TO_HW(vsi); int ret = 0; if (!key || key_len == 0) { PMD_DRV_LOG(DEBUG, "No key to be configured"); return 0; } else if (key_len != (I40E_VFQF_HKEY_MAX_INDEX + 1) * sizeof(uint32_t)) { PMD_DRV_LOG(ERR, "Invalid key length %u", key_len); return -EINVAL; } if (vf->flags & I40E_FLAG_RSS_AQ_CAPABLE) { struct i40e_aqc_get_set_rss_key_data *key_dw = (struct i40e_aqc_get_set_rss_key_data *)key; ret = i40e_aq_set_rss_key(hw, vsi->vsi_id, key_dw); if (ret) PMD_INIT_LOG(ERR, "Failed to configure RSS key " "via AQ"); } else { uint32_t *hash_key = (uint32_t *)key; uint16_t i; for (i = 0; i <= I40E_VFQF_HKEY_MAX_INDEX; i++) i40e_write_rx_ctl(hw, I40E_VFQF_HKEY(i), hash_key[i]); I40EVF_WRITE_FLUSH(hw); } return ret; } static int i40evf_get_rss_key(struct i40e_vsi *vsi, uint8_t *key, uint8_t *key_len) { struct i40e_vf *vf = I40E_VSI_TO_VF(vsi); struct i40e_hw *hw = I40E_VSI_TO_HW(vsi); int ret; if (!key || !key_len) return -EINVAL; if (vf->flags & I40E_FLAG_RSS_AQ_CAPABLE) { ret = i40e_aq_get_rss_key(hw, vsi->vsi_id, (struct i40e_aqc_get_set_rss_key_data *)key); if (ret) { PMD_INIT_LOG(ERR, "Failed to get RSS key via AQ"); return ret; } } else { uint32_t *key_dw = (uint32_t *)key; uint16_t i; for (i = 0; i <= I40E_VFQF_HKEY_MAX_INDEX; i++) key_dw[i] = i40e_read_rx_ctl(hw, I40E_VFQF_HKEY(i)); } *key_len = (I40E_VFQF_HKEY_MAX_INDEX + 1) * sizeof(uint32_t); return 0; } static int i40evf_hw_rss_hash_set(struct i40e_vf *vf, struct rte_eth_rss_conf *rss_conf) { struct i40e_hw *hw = I40E_VF_TO_HW(vf); uint64_t hena; int ret; ret = i40evf_set_rss_key(&vf->vsi, rss_conf->rss_key, rss_conf->rss_key_len); if (ret) return ret; hena = i40e_config_hena(vf->adapter, rss_conf->rss_hf); i40e_write_rx_ctl(hw, I40E_VFQF_HENA(0), (uint32_t)hena); i40e_write_rx_ctl(hw, I40E_VFQF_HENA(1), (uint32_t)(hena >> 32)); I40EVF_WRITE_FLUSH(hw); return 0; } static void i40evf_disable_rss(struct i40e_vf *vf) { struct i40e_hw *hw = I40E_VF_TO_HW(vf); i40e_write_rx_ctl(hw, I40E_VFQF_HENA(0), 0); i40e_write_rx_ctl(hw, I40E_VFQF_HENA(1), 0); I40EVF_WRITE_FLUSH(hw); } static int i40evf_config_rss(struct i40e_vf *vf) { struct i40e_hw *hw = I40E_VF_TO_HW(vf); struct rte_eth_rss_conf rss_conf; uint32_t i, j, lut = 0, nb_q = (I40E_VFQF_HLUT_MAX_INDEX + 1) * 4; uint16_t num; if (vf->dev_data->dev_conf.rxmode.mq_mode != ETH_MQ_RX_RSS) { i40evf_disable_rss(vf); PMD_DRV_LOG(DEBUG, "RSS not configured"); return 0; } num = RTE_MIN(vf->dev_data->nb_rx_queues, I40E_MAX_QP_NUM_PER_VF); /* Fill out the look up table */ for (i = 0, j = 0; i < nb_q; i++, j++) { if (j >= num) j = 0; lut = (lut << 8) | j; if ((i & 3) == 3) I40E_WRITE_REG(hw, I40E_VFQF_HLUT(i >> 2), lut); } rss_conf = vf->dev_data->dev_conf.rx_adv_conf.rss_conf; if ((rss_conf.rss_hf & vf->adapter->flow_types_mask) == 0) { i40evf_disable_rss(vf); PMD_DRV_LOG(DEBUG, "No hash flag is set"); return 0; } if (rss_conf.rss_key == NULL || rss_conf.rss_key_len < (I40E_VFQF_HKEY_MAX_INDEX + 1) * sizeof(uint32_t)) { /* Calculate the default hash key */ for (i = 0; i <= I40E_VFQF_HKEY_MAX_INDEX; i++) rss_key_default[i] = (uint32_t)rte_rand(); rss_conf.rss_key = (uint8_t *)rss_key_default; rss_conf.rss_key_len = (I40E_VFQF_HKEY_MAX_INDEX + 1) * sizeof(uint32_t); } return i40evf_hw_rss_hash_set(vf, &rss_conf); } static int i40evf_dev_rss_hash_update(struct rte_eth_dev *dev, struct rte_eth_rss_conf *rss_conf) { struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private); struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint64_t rss_hf = rss_conf->rss_hf & vf->adapter->flow_types_mask; uint64_t hena; hena = (uint64_t)i40e_read_rx_ctl(hw, I40E_VFQF_HENA(0)); hena |= ((uint64_t)i40e_read_rx_ctl(hw, I40E_VFQF_HENA(1))) << 32; if (!(hena & vf->adapter->pctypes_mask)) { /* RSS disabled */ if (rss_hf != 0) /* Enable RSS */ return -EINVAL; return 0; } /* RSS enabled */ if (rss_hf == 0) /* Disable RSS */ return -EINVAL; return i40evf_hw_rss_hash_set(vf, rss_conf); } static int i40evf_dev_rss_hash_conf_get(struct rte_eth_dev *dev, struct rte_eth_rss_conf *rss_conf) { struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private); struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint64_t hena; i40evf_get_rss_key(&vf->vsi, rss_conf->rss_key, &rss_conf->rss_key_len); hena = (uint64_t)i40e_read_rx_ctl(hw, I40E_VFQF_HENA(0)); hena |= ((uint64_t)i40e_read_rx_ctl(hw, I40E_VFQF_HENA(1))) << 32; rss_conf->rss_hf = i40e_parse_hena(vf->adapter, hena); return 0; } static int i40evf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu) { struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private); struct rte_eth_dev_data *dev_data = vf->dev_data; uint32_t frame_size = mtu + I40E_ETH_OVERHEAD; int ret = 0; /* check if mtu is within the allowed range */ if ((mtu < ETHER_MIN_MTU) || (frame_size > I40E_FRAME_SIZE_MAX)) return -EINVAL; /* mtu setting is forbidden if port is start */ if (dev_data->dev_started) { PMD_DRV_LOG(ERR, "port %d must be stopped before configuration", dev_data->port_id); return -EBUSY; } if (frame_size > ETHER_MAX_LEN) dev_data->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME; else dev_data->dev_conf.rxmode.offloads &= ~DEV_RX_OFFLOAD_JUMBO_FRAME; dev_data->dev_conf.rxmode.max_rx_pkt_len = frame_size; return ret; } static int i40evf_set_default_mac_addr(struct rte_eth_dev *dev, struct ether_addr *mac_addr) { struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private); struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); if (!is_valid_assigned_ether_addr(mac_addr)) { PMD_DRV_LOG(ERR, "Tried to set invalid MAC address."); return -EINVAL; } if (vf->flags & I40E_FLAG_VF_MAC_BY_PF) return -EPERM; i40evf_del_mac_addr_by_addr(dev, (struct ether_addr *)hw->mac.addr); if (i40evf_add_mac_addr(dev, mac_addr, 0, 0) != 0) return -EIO; ether_addr_copy(mac_addr, (struct ether_addr *)hw->mac.addr); return 0; } static int i40evf_add_del_mc_addr_list(struct rte_eth_dev *dev, struct ether_addr *mc_addrs, uint32_t mc_addrs_num, bool add) { struct virtchnl_ether_addr_list *list; struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private); uint8_t cmd_buffer[sizeof(struct virtchnl_ether_addr_list) + (I40E_NUM_MACADDR_MAX * sizeof(struct virtchnl_ether_addr))]; uint32_t i; int err; struct vf_cmd_info args; if (mc_addrs == NULL || mc_addrs_num == 0) return 0; if (mc_addrs_num > I40E_NUM_MACADDR_MAX) return -EINVAL; list = (struct virtchnl_ether_addr_list *)cmd_buffer; list->vsi_id = vf->vsi_res->vsi_id; list->num_elements = mc_addrs_num; for (i = 0; i < mc_addrs_num; i++) { if (!I40E_IS_MULTICAST(mc_addrs[i].addr_bytes)) { PMD_DRV_LOG(ERR, "Invalid mac:%x:%x:%x:%x:%x:%x", mc_addrs[i].addr_bytes[0], mc_addrs[i].addr_bytes[1], mc_addrs[i].addr_bytes[2], mc_addrs[i].addr_bytes[3], mc_addrs[i].addr_bytes[4], mc_addrs[i].addr_bytes[5]); return -EINVAL; } memcpy(list->list[i].addr, mc_addrs[i].addr_bytes, sizeof(list->list[i].addr)); } args.ops = add ? VIRTCHNL_OP_ADD_ETH_ADDR : VIRTCHNL_OP_DEL_ETH_ADDR; args.in_args = cmd_buffer; args.in_args_size = sizeof(struct virtchnl_ether_addr_list) + i * sizeof(struct virtchnl_ether_addr); args.out_buffer = vf->aq_resp; args.out_size = I40E_AQ_BUF_SZ; err = i40evf_execute_vf_cmd(dev, &args); if (err) { PMD_DRV_LOG(ERR, "fail to execute command %s", add ? "OP_ADD_ETH_ADDR" : "OP_DEL_ETH_ADDR"); return err; } return 0; } static int i40evf_set_mc_addr_list(struct rte_eth_dev *dev, struct ether_addr *mc_addrs, uint32_t mc_addrs_num) { struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private); int err; /* flush previous addresses */ err = i40evf_add_del_mc_addr_list(dev, vf->mc_addrs, vf->mc_addrs_num, FALSE); if (err) return err; vf->mc_addrs_num = 0; /* add new ones */ err = i40evf_add_del_mc_addr_list(dev, mc_addrs, mc_addrs_num, TRUE); if (err) return err; vf->mc_addrs_num = mc_addrs_num; memcpy(vf->mc_addrs, mc_addrs, mc_addrs_num * sizeof(*mc_addrs)); return 0; }