/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2013-2015 Intel Corporation */ #include #include #include #include "fm10k.h" #include "base/fm10k_type.h" #include #ifndef __INTEL_COMPILER #pragma GCC diagnostic ignored "-Wcast-qual" #endif static void fm10k_reset_tx_queue(struct fm10k_tx_queue *txq); /* Handling the offload flags (olflags) field takes computation * time when receiving packets. Therefore we provide a flag to disable * the processing of the olflags field when they are not needed. This * gives improved performance, at the cost of losing the offload info * in the received packet */ #ifdef RTE_LIBRTE_FM10K_RX_OLFLAGS_ENABLE /* Vlan present flag shift */ #define VP_SHIFT (2) /* L3 type shift */ #define L3TYPE_SHIFT (4) /* L4 type shift */ #define L4TYPE_SHIFT (7) /* HBO flag shift */ #define HBOFLAG_SHIFT (10) /* RXE flag shift */ #define RXEFLAG_SHIFT (13) /* IPE/L4E flag shift */ #define L3L4EFLAG_SHIFT (14) /* shift PKT_RX_L4_CKSUM_GOOD into one byte by 1 bit */ #define CKSUM_SHIFT (1) static inline void fm10k_desc_to_olflags_v(__m128i descs[4], struct rte_mbuf **rx_pkts) { __m128i ptype0, ptype1, vtag0, vtag1, eflag0, eflag1, cksumflag; union { uint16_t e[4]; uint64_t dword; } vol; const __m128i pkttype_msk = _mm_set_epi16( 0x0000, 0x0000, 0x0000, 0x0000, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED); /* mask everything except rss type */ const __m128i rsstype_msk = _mm_set_epi16( 0x0000, 0x0000, 0x0000, 0x0000, 0x000F, 0x000F, 0x000F, 0x000F); /* mask for HBO and RXE flag flags */ const __m128i rxe_msk = _mm_set_epi16( 0x0000, 0x0000, 0x0000, 0x0000, 0x0001, 0x0001, 0x0001, 0x0001); /* mask the lower byte of ol_flags */ const __m128i ol_flags_msk = _mm_set_epi16( 0x0000, 0x0000, 0x0000, 0x0000, 0x00FF, 0x00FF, 0x00FF, 0x00FF); const __m128i l3l4cksum_flag = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, (PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD) >> CKSUM_SHIFT, (PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD) >> CKSUM_SHIFT, (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> CKSUM_SHIFT, (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> CKSUM_SHIFT); const __m128i rxe_flag = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); /* map rss type to rss hash flag */ const __m128i rss_flags = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, 0, PKT_RX_RSS_HASH, 0, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, 0); /* Calculate RSS_hash and Vlan fields */ ptype0 = _mm_unpacklo_epi16(descs[0], descs[1]); ptype1 = _mm_unpacklo_epi16(descs[2], descs[3]); vtag0 = _mm_unpackhi_epi16(descs[0], descs[1]); vtag1 = _mm_unpackhi_epi16(descs[2], descs[3]); ptype0 = _mm_unpacklo_epi32(ptype0, ptype1); ptype0 = _mm_and_si128(ptype0, rsstype_msk); ptype0 = _mm_shuffle_epi8(rss_flags, ptype0); vtag1 = _mm_unpacklo_epi32(vtag0, vtag1); eflag0 = vtag1; cksumflag = vtag1; vtag1 = _mm_srli_epi16(vtag1, VP_SHIFT); vtag1 = _mm_and_si128(vtag1, pkttype_msk); vtag1 = _mm_or_si128(ptype0, vtag1); /* Process err flags, simply set RECIP_ERR bit if HBO/IXE is set */ eflag1 = _mm_srli_epi16(eflag0, RXEFLAG_SHIFT); eflag0 = _mm_srli_epi16(eflag0, HBOFLAG_SHIFT); eflag0 = _mm_or_si128(eflag0, eflag1); eflag0 = _mm_and_si128(eflag0, rxe_msk); eflag0 = _mm_shuffle_epi8(rxe_flag, eflag0); vtag1 = _mm_or_si128(eflag0, vtag1); /* Process L4/L3 checksum error flags */ cksumflag = _mm_srli_epi16(cksumflag, L3L4EFLAG_SHIFT); cksumflag = _mm_shuffle_epi8(l3l4cksum_flag, cksumflag); /* clean the higher byte and shift back the flag bits */ cksumflag = _mm_and_si128(cksumflag, ol_flags_msk); cksumflag = _mm_slli_epi16(cksumflag, CKSUM_SHIFT); vtag1 = _mm_or_si128(cksumflag, vtag1); vol.dword = _mm_cvtsi128_si64(vtag1); rx_pkts[0]->ol_flags = vol.e[0]; rx_pkts[1]->ol_flags = vol.e[1]; rx_pkts[2]->ol_flags = vol.e[2]; rx_pkts[3]->ol_flags = vol.e[3]; } /* @note: When this function is changed, make corresponding change to * fm10k_dev_supported_ptypes_get(). */ static inline void fm10k_desc_to_pktype_v(__m128i descs[4], struct rte_mbuf **rx_pkts) { __m128i l3l4type0, l3l4type1, l3type, l4type; union { uint16_t e[4]; uint64_t dword; } vol; /* L3 pkt type mask Bit4 to Bit6 */ const __m128i l3type_msk = _mm_set_epi16( 0x0000, 0x0000, 0x0000, 0x0000, 0x0070, 0x0070, 0x0070, 0x0070); /* L4 pkt type mask Bit7 to Bit9 */ const __m128i l4type_msk = _mm_set_epi16( 0x0000, 0x0000, 0x0000, 0x0000, 0x0380, 0x0380, 0x0380, 0x0380); /* convert RRC l3 type to mbuf format */ const __m128i l3type_flags = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, RTE_PTYPE_L3_IPV6_EXT, RTE_PTYPE_L3_IPV6, RTE_PTYPE_L3_IPV4_EXT, RTE_PTYPE_L3_IPV4, 0); /* Convert RRC l4 type to mbuf format l4type_flags shift-left 8 bits * to fill into8 bits length. */ const __m128i l4type_flags = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0, RTE_PTYPE_TUNNEL_GENEVE >> 8, RTE_PTYPE_TUNNEL_NVGRE >> 8, RTE_PTYPE_TUNNEL_VXLAN >> 8, RTE_PTYPE_TUNNEL_GRE >> 8, RTE_PTYPE_L4_UDP >> 8, RTE_PTYPE_L4_TCP >> 8, 0); l3l4type0 = _mm_unpacklo_epi16(descs[0], descs[1]); l3l4type1 = _mm_unpacklo_epi16(descs[2], descs[3]); l3l4type0 = _mm_unpacklo_epi32(l3l4type0, l3l4type1); l3type = _mm_and_si128(l3l4type0, l3type_msk); l4type = _mm_and_si128(l3l4type0, l4type_msk); l3type = _mm_srli_epi16(l3type, L3TYPE_SHIFT); l4type = _mm_srli_epi16(l4type, L4TYPE_SHIFT); l3type = _mm_shuffle_epi8(l3type_flags, l3type); /* l4type_flags shift-left for 8 bits, need shift-right back */ l4type = _mm_shuffle_epi8(l4type_flags, l4type); l4type = _mm_slli_epi16(l4type, 8); l3l4type0 = _mm_or_si128(l3type, l4type); vol.dword = _mm_cvtsi128_si64(l3l4type0); rx_pkts[0]->packet_type = vol.e[0]; rx_pkts[1]->packet_type = vol.e[1]; rx_pkts[2]->packet_type = vol.e[2]; rx_pkts[3]->packet_type = vol.e[3]; } #else #define fm10k_desc_to_olflags_v(desc, rx_pkts) do {} while (0) #define fm10k_desc_to_pktype_v(desc, rx_pkts) do {} while (0) #endif int __attribute__((cold)) fm10k_rx_vec_condition_check(struct rte_eth_dev *dev) { #ifndef RTE_LIBRTE_IEEE1588 struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode; struct rte_fdir_conf *fconf = &dev->data->dev_conf.fdir_conf; #ifndef RTE_FM10K_RX_OLFLAGS_ENABLE /* whithout rx ol_flags, no VP flag report */ if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_EXTEND) return -1; #endif /* no fdir support */ if (fconf->mode != RTE_FDIR_MODE_NONE) return -1; /* no header split support */ if (rxmode->offloads & DEV_RX_OFFLOAD_HEADER_SPLIT) return -1; return 0; #else RTE_SET_USED(dev); return -1; #endif } int __attribute__((cold)) fm10k_rxq_vec_setup(struct fm10k_rx_queue *rxq) { uintptr_t p; struct rte_mbuf mb_def = { .buf_addr = 0 }; /* zeroed mbuf */ mb_def.nb_segs = 1; /* data_off will be ajusted after new mbuf allocated for 512-byte * alignment. */ mb_def.data_off = RTE_PKTMBUF_HEADROOM; mb_def.port = rxq->port_id; rte_mbuf_refcnt_set(&mb_def, 1); /* prevent compiler reordering: rearm_data covers previous fields */ rte_compiler_barrier(); p = (uintptr_t)&mb_def.rearm_data; rxq->mbuf_initializer = *(uint64_t *)p; return 0; } static inline void fm10k_rxq_rearm(struct fm10k_rx_queue *rxq) { int i; uint16_t rx_id; volatile union fm10k_rx_desc *rxdp; struct rte_mbuf **mb_alloc = &rxq->sw_ring[rxq->rxrearm_start]; struct rte_mbuf *mb0, *mb1; __m128i head_off = _mm_set_epi64x( RTE_PKTMBUF_HEADROOM + FM10K_RX_DATABUF_ALIGN - 1, RTE_PKTMBUF_HEADROOM + FM10K_RX_DATABUF_ALIGN - 1); __m128i dma_addr0, dma_addr1; /* Rx buffer need to be aligned with 512 byte */ const __m128i hba_msk = _mm_set_epi64x(0, UINT64_MAX - FM10K_RX_DATABUF_ALIGN + 1); rxdp = rxq->hw_ring + rxq->rxrearm_start; /* Pull 'n' more MBUFs into the software ring */ if (rte_mempool_get_bulk(rxq->mp, (void *)mb_alloc, RTE_FM10K_RXQ_REARM_THRESH) < 0) { dma_addr0 = _mm_setzero_si128(); /* Clean up all the HW/SW ring content */ for (i = 0; i < RTE_FM10K_RXQ_REARM_THRESH; i++) { mb_alloc[i] = &rxq->fake_mbuf; _mm_store_si128((__m128i *)&rxdp[i].q, dma_addr0); } rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed += RTE_FM10K_RXQ_REARM_THRESH; return; } /* Initialize the mbufs in vector, process 2 mbufs in one loop */ for (i = 0; i < RTE_FM10K_RXQ_REARM_THRESH; i += 2, mb_alloc += 2) { __m128i vaddr0, vaddr1; uintptr_t p0, p1; mb0 = mb_alloc[0]; mb1 = mb_alloc[1]; /* Flush mbuf with pkt template. * Data to be rearmed is 6 bytes long. */ p0 = (uintptr_t)&mb0->rearm_data; *(uint64_t *)p0 = rxq->mbuf_initializer; p1 = (uintptr_t)&mb1->rearm_data; *(uint64_t *)p1 = rxq->mbuf_initializer; /* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) != offsetof(struct rte_mbuf, buf_addr) + 8); vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr); vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr); /* convert pa to dma_addr hdr/data */ dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0); dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1); /* add headroom to pa values */ dma_addr0 = _mm_add_epi64(dma_addr0, head_off); dma_addr1 = _mm_add_epi64(dma_addr1, head_off); /* Do 512 byte alignment to satisfy HW requirement, in the * meanwhile, set Header Buffer Address to zero. */ dma_addr0 = _mm_and_si128(dma_addr0, hba_msk); dma_addr1 = _mm_and_si128(dma_addr1, hba_msk); /* flush desc with pa dma_addr */ _mm_store_si128((__m128i *)&rxdp++->q, dma_addr0); _mm_store_si128((__m128i *)&rxdp++->q, dma_addr1); /* enforce 512B alignment on default Rx virtual addresses */ mb0->data_off = (uint16_t)(RTE_PTR_ALIGN((char *)mb0->buf_addr + RTE_PKTMBUF_HEADROOM, FM10K_RX_DATABUF_ALIGN) - (char *)mb0->buf_addr); mb1->data_off = (uint16_t)(RTE_PTR_ALIGN((char *)mb1->buf_addr + RTE_PKTMBUF_HEADROOM, FM10K_RX_DATABUF_ALIGN) - (char *)mb1->buf_addr); } rxq->rxrearm_start += RTE_FM10K_RXQ_REARM_THRESH; if (rxq->rxrearm_start >= rxq->nb_desc) rxq->rxrearm_start = 0; rxq->rxrearm_nb -= RTE_FM10K_RXQ_REARM_THRESH; rx_id = (uint16_t)((rxq->rxrearm_start == 0) ? (rxq->nb_desc - 1) : (rxq->rxrearm_start - 1)); /* Update the tail pointer on the NIC */ FM10K_PCI_REG_WRITE(rxq->tail_ptr, rx_id); } void __attribute__((cold)) fm10k_rx_queue_release_mbufs_vec(struct fm10k_rx_queue *rxq) { const unsigned mask = rxq->nb_desc - 1; unsigned i; if (rxq->sw_ring == NULL || rxq->rxrearm_nb >= rxq->nb_desc) return; /* free all mbufs that are valid in the ring */ for (i = rxq->next_dd; i != rxq->rxrearm_start; i = (i + 1) & mask) rte_pktmbuf_free_seg(rxq->sw_ring[i]); rxq->rxrearm_nb = rxq->nb_desc; /* set all entries to NULL */ memset(rxq->sw_ring, 0, sizeof(rxq->sw_ring[0]) * rxq->nb_desc); } static inline uint16_t fm10k_recv_raw_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts, uint8_t *split_packet) { volatile union fm10k_rx_desc *rxdp; struct rte_mbuf **mbufp; uint16_t nb_pkts_recd; int pos; struct fm10k_rx_queue *rxq = rx_queue; uint64_t var; __m128i shuf_msk; __m128i dd_check, eop_check; uint16_t next_dd; next_dd = rxq->next_dd; /* Just the act of getting into the function from the application is * going to cost about 7 cycles */ rxdp = rxq->hw_ring + next_dd; rte_prefetch0(rxdp); /* See if we need to rearm the RX queue - gives the prefetch a bit * of time to act */ if (rxq->rxrearm_nb > RTE_FM10K_RXQ_REARM_THRESH) fm10k_rxq_rearm(rxq); /* Before we start moving massive data around, check to see if * there is actually a packet available */ if (!(rxdp->d.staterr & FM10K_RXD_STATUS_DD)) return 0; /* Vecotr RX will process 4 packets at a time, strip the unaligned * tails in case it's not multiple of 4. */ nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_FM10K_DESCS_PER_LOOP); /* 4 packets DD mask */ dd_check = _mm_set_epi64x(0x0000000100000001LL, 0x0000000100000001LL); /* 4 packets EOP mask */ eop_check = _mm_set_epi64x(0x0000000200000002LL, 0x0000000200000002LL); /* mask to shuffle from desc. to mbuf */ shuf_msk = _mm_set_epi8( 7, 6, 5, 4, /* octet 4~7, 32bits rss */ 15, 14, /* octet 14~15, low 16 bits vlan_macip */ 13, 12, /* octet 12~13, 16 bits data_len */ 0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */ 13, 12, /* octet 12~13, low 16 bits pkt_len */ 0xFF, 0xFF, /* skip high 16 bits pkt_type */ 0xFF, 0xFF /* Skip pkt_type field in shuffle operation */ ); /* * Compile-time verify the shuffle mask * NOTE: some field positions already verified above, but duplicated * here for completeness in case of future modifications. */ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) != offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4); RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) != offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8); RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) != offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10); RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) != offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12); /* Cache is empty -> need to scan the buffer rings, but first move * the next 'n' mbufs into the cache */ mbufp = &rxq->sw_ring[next_dd]; /* A. load 4 packet in one loop * [A*. mask out 4 unused dirty field in desc] * B. copy 4 mbuf point from swring to rx_pkts * C. calc the number of DD bits among the 4 packets * [C*. extract the end-of-packet bit, if requested] * D. fill info. from desc to mbuf */ for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts; pos += RTE_FM10K_DESCS_PER_LOOP, rxdp += RTE_FM10K_DESCS_PER_LOOP) { __m128i descs0[RTE_FM10K_DESCS_PER_LOOP]; __m128i pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4; __m128i zero, staterr, sterr_tmp1, sterr_tmp2; __m128i mbp1; /* 2 64 bit or 4 32 bit mbuf pointers in one XMM reg. */ #if defined(RTE_ARCH_X86_64) __m128i mbp2; #endif /* B.1 load 2 (64 bit) or 4 (32 bit) mbuf points */ mbp1 = _mm_loadu_si128((__m128i *)&mbufp[pos]); /* Read desc statuses backwards to avoid race condition */ /* A.1 load 4 pkts desc */ descs0[3] = _mm_loadu_si128((__m128i *)(rxdp + 3)); rte_compiler_barrier(); /* B.2 copy 2 64 bit or 4 32 bit mbuf point into rx_pkts */ _mm_storeu_si128((__m128i *)&rx_pkts[pos], mbp1); #if defined(RTE_ARCH_X86_64) /* B.1 load 2 64 bit mbuf poitns */ mbp2 = _mm_loadu_si128((__m128i *)&mbufp[pos+2]); #endif descs0[2] = _mm_loadu_si128((__m128i *)(rxdp + 2)); rte_compiler_barrier(); /* B.1 load 2 mbuf point */ descs0[1] = _mm_loadu_si128((__m128i *)(rxdp + 1)); rte_compiler_barrier(); descs0[0] = _mm_loadu_si128((__m128i *)(rxdp)); #if defined(RTE_ARCH_X86_64) /* B.2 copy 2 mbuf point into rx_pkts */ _mm_storeu_si128((__m128i *)&rx_pkts[pos+2], mbp2); #endif /* avoid compiler reorder optimization */ rte_compiler_barrier(); if (split_packet) { rte_mbuf_prefetch_part2(rx_pkts[pos]); rte_mbuf_prefetch_part2(rx_pkts[pos + 1]); rte_mbuf_prefetch_part2(rx_pkts[pos + 2]); rte_mbuf_prefetch_part2(rx_pkts[pos + 3]); } /* D.1 pkt 3,4 convert format from desc to pktmbuf */ pkt_mb4 = _mm_shuffle_epi8(descs0[3], shuf_msk); pkt_mb3 = _mm_shuffle_epi8(descs0[2], shuf_msk); /* C.1 4=>2 filter staterr info only */ sterr_tmp2 = _mm_unpackhi_epi32(descs0[3], descs0[2]); /* C.1 4=>2 filter staterr info only */ sterr_tmp1 = _mm_unpackhi_epi32(descs0[1], descs0[0]); /* set ol_flags with vlan packet type */ fm10k_desc_to_olflags_v(descs0, &rx_pkts[pos]); /* D.1 pkt 1,2 convert format from desc to pktmbuf */ pkt_mb2 = _mm_shuffle_epi8(descs0[1], shuf_msk); pkt_mb1 = _mm_shuffle_epi8(descs0[0], shuf_msk); /* C.2 get 4 pkts staterr value */ zero = _mm_xor_si128(dd_check, dd_check); staterr = _mm_unpacklo_epi32(sterr_tmp1, sterr_tmp2); /* D.3 copy final 3,4 data to rx_pkts */ _mm_storeu_si128((void *)&rx_pkts[pos+3]->rx_descriptor_fields1, pkt_mb4); _mm_storeu_si128((void *)&rx_pkts[pos+2]->rx_descriptor_fields1, pkt_mb3); /* C* extract and record EOP bit */ if (split_packet) { __m128i eop_shuf_mask = _mm_set_epi8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x04, 0x0C, 0x00, 0x08 ); /* and with mask to extract bits, flipping 1-0 */ __m128i eop_bits = _mm_andnot_si128(staterr, eop_check); /* the staterr values are not in order, as the count * count of dd bits doesn't care. However, for end of * packet tracking, we do care, so shuffle. This also * compresses the 32-bit values to 8-bit */ eop_bits = _mm_shuffle_epi8(eop_bits, eop_shuf_mask); /* store the resulting 32-bit value */ *(int *)split_packet = _mm_cvtsi128_si32(eop_bits); split_packet += RTE_FM10K_DESCS_PER_LOOP; /* zero-out next pointers */ rx_pkts[pos]->next = NULL; rx_pkts[pos + 1]->next = NULL; rx_pkts[pos + 2]->next = NULL; rx_pkts[pos + 3]->next = NULL; } /* C.3 calc available number of desc */ staterr = _mm_and_si128(staterr, dd_check); staterr = _mm_packs_epi32(staterr, zero); /* D.3 copy final 1,2 data to rx_pkts */ _mm_storeu_si128((void *)&rx_pkts[pos+1]->rx_descriptor_fields1, pkt_mb2); _mm_storeu_si128((void *)&rx_pkts[pos]->rx_descriptor_fields1, pkt_mb1); fm10k_desc_to_pktype_v(descs0, &rx_pkts[pos]); /* C.4 calc avaialbe number of desc */ var = __builtin_popcountll(_mm_cvtsi128_si64(staterr)); nb_pkts_recd += var; if (likely(var != RTE_FM10K_DESCS_PER_LOOP)) break; } /* Update our internal tail pointer */ rxq->next_dd = (uint16_t)(rxq->next_dd + nb_pkts_recd); rxq->next_dd = (uint16_t)(rxq->next_dd & (rxq->nb_desc - 1)); rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd); return nb_pkts_recd; } /* vPMD receive routine * * Notice: * - don't support ol_flags for rss and csum err */ uint16_t fm10k_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { return fm10k_recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL); } static inline uint16_t fm10k_reassemble_packets(struct fm10k_rx_queue *rxq, struct rte_mbuf **rx_bufs, uint16_t nb_bufs, uint8_t *split_flags) { struct rte_mbuf *pkts[RTE_FM10K_MAX_RX_BURST]; /*finished pkts*/ struct rte_mbuf *start = rxq->pkt_first_seg; struct rte_mbuf *end = rxq->pkt_last_seg; unsigned pkt_idx, buf_idx; for (buf_idx = 0, pkt_idx = 0; buf_idx < nb_bufs; buf_idx++) { if (end != NULL) { /* processing a split packet */ end->next = rx_bufs[buf_idx]; start->nb_segs++; start->pkt_len += rx_bufs[buf_idx]->data_len; end = end->next; if (!split_flags[buf_idx]) { /* it's the last packet of the set */ #ifdef RTE_LIBRTE_FM10K_RX_OLFLAGS_ENABLE start->hash = end->hash; start->ol_flags = end->ol_flags; start->packet_type = end->packet_type; #endif pkts[pkt_idx++] = start; start = end = NULL; } } else { /* not processing a split packet */ if (!split_flags[buf_idx]) { /* not a split packet, save and skip */ pkts[pkt_idx++] = rx_bufs[buf_idx]; continue; } end = start = rx_bufs[buf_idx]; } } /* save the partial packet for next time */ rxq->pkt_first_seg = start; rxq->pkt_last_seg = end; memcpy(rx_bufs, pkts, pkt_idx * (sizeof(*pkts))); return pkt_idx; } /* * vPMD receive routine that reassembles scattered packets * * Notice: * - don't support ol_flags for rss and csum err * - nb_pkts > RTE_FM10K_MAX_RX_BURST, only scan RTE_FM10K_MAX_RX_BURST * numbers of DD bit */ uint16_t fm10k_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { struct fm10k_rx_queue *rxq = rx_queue; uint8_t split_flags[RTE_FM10K_MAX_RX_BURST] = {0}; unsigned i = 0; /* Split_flags only can support max of RTE_FM10K_MAX_RX_BURST */ nb_pkts = RTE_MIN(nb_pkts, RTE_FM10K_MAX_RX_BURST); /* get some new buffers */ uint16_t nb_bufs = fm10k_recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts, split_flags); if (nb_bufs == 0) return 0; /* happy day case, full burst + no packets to be joined */ const uint64_t *split_fl64 = (uint64_t *)split_flags; if (rxq->pkt_first_seg == NULL && split_fl64[0] == 0 && split_fl64[1] == 0 && split_fl64[2] == 0 && split_fl64[3] == 0) return nb_bufs; /* reassemble any packets that need reassembly*/ if (rxq->pkt_first_seg == NULL) { /* find the first split flag, and only reassemble then*/ while (i < nb_bufs && !split_flags[i]) i++; if (i == nb_bufs) return nb_bufs; rxq->pkt_first_seg = rx_pkts[i]; } return i + fm10k_reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i, &split_flags[i]); } static const struct fm10k_txq_ops vec_txq_ops = { .reset = fm10k_reset_tx_queue, }; void __attribute__((cold)) fm10k_txq_vec_setup(struct fm10k_tx_queue *txq) { txq->ops = &vec_txq_ops; } int __attribute__((cold)) fm10k_tx_vec_condition_check(struct fm10k_tx_queue *txq) { /* Vector TX can't offload any features yet */ if (txq->offloads != 0) return -1; if (txq->tx_ftag_en) return -1; return 0; } static inline void vtx1(volatile struct fm10k_tx_desc *txdp, struct rte_mbuf *pkt, uint64_t flags) { __m128i descriptor = _mm_set_epi64x(flags << 56 | (uint64_t)pkt->vlan_tci << 16 | (uint64_t)pkt->data_len, MBUF_DMA_ADDR(pkt)); _mm_store_si128((__m128i *)txdp, descriptor); } static inline void vtx(volatile struct fm10k_tx_desc *txdp, struct rte_mbuf **pkt, uint16_t nb_pkts, uint64_t flags) { int i; for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt) vtx1(txdp, *pkt, flags); } static __rte_always_inline int fm10k_tx_free_bufs(struct fm10k_tx_queue *txq) { struct rte_mbuf **txep; uint8_t flags; uint32_t n; uint32_t i; int nb_free = 0; struct rte_mbuf *m, *free[RTE_FM10K_TX_MAX_FREE_BUF_SZ]; /* check DD bit on threshold descriptor */ flags = txq->hw_ring[txq->next_dd].flags; if (!(flags & FM10K_TXD_FLAG_DONE)) return 0; n = txq->rs_thresh; /* First buffer to free from S/W ring is at index * next_dd - (rs_thresh-1) */ txep = &txq->sw_ring[txq->next_dd - (n - 1)]; m = rte_pktmbuf_prefree_seg(txep[0]); if (likely(m != NULL)) { free[0] = m; nb_free = 1; for (i = 1; i < n; i++) { m = rte_pktmbuf_prefree_seg(txep[i]); if (likely(m != NULL)) { if (likely(m->pool == free[0]->pool)) free[nb_free++] = m; else { rte_mempool_put_bulk(free[0]->pool, (void *)free, nb_free); free[0] = m; nb_free = 1; } } } rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free); } else { for (i = 1; i < n; i++) { m = rte_pktmbuf_prefree_seg(txep[i]); if (m != NULL) rte_mempool_put(m->pool, m); } } /* buffers were freed, update counters */ txq->nb_free = (uint16_t)(txq->nb_free + txq->rs_thresh); txq->next_dd = (uint16_t)(txq->next_dd + txq->rs_thresh); if (txq->next_dd >= txq->nb_desc) txq->next_dd = (uint16_t)(txq->rs_thresh - 1); return txq->rs_thresh; } static __rte_always_inline void tx_backlog_entry(struct rte_mbuf **txep, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) { int i; for (i = 0; i < (int)nb_pkts; ++i) txep[i] = tx_pkts[i]; } uint16_t fm10k_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) { struct fm10k_tx_queue *txq = (struct fm10k_tx_queue *)tx_queue; volatile struct fm10k_tx_desc *txdp; struct rte_mbuf **txep; uint16_t n, nb_commit, tx_id; uint64_t flags = FM10K_TXD_FLAG_LAST; uint64_t rs = FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_LAST; int i; /* cross rx_thresh boundary is not allowed */ nb_pkts = RTE_MIN(nb_pkts, txq->rs_thresh); if (txq->nb_free < txq->free_thresh) fm10k_tx_free_bufs(txq); nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_free, nb_pkts); if (unlikely(nb_pkts == 0)) return 0; tx_id = txq->next_free; txdp = &txq->hw_ring[tx_id]; txep = &txq->sw_ring[tx_id]; txq->nb_free = (uint16_t)(txq->nb_free - nb_pkts); n = (uint16_t)(txq->nb_desc - tx_id); if (nb_commit >= n) { tx_backlog_entry(txep, tx_pkts, n); for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp) vtx1(txdp, *tx_pkts, flags); vtx1(txdp, *tx_pkts++, rs); nb_commit = (uint16_t)(nb_commit - n); tx_id = 0; txq->next_rs = (uint16_t)(txq->rs_thresh - 1); /* avoid reach the end of ring */ txdp = &(txq->hw_ring[tx_id]); txep = &txq->sw_ring[tx_id]; } tx_backlog_entry(txep, tx_pkts, nb_commit); vtx(txdp, tx_pkts, nb_commit, flags); tx_id = (uint16_t)(tx_id + nb_commit); if (tx_id > txq->next_rs) { txq->hw_ring[txq->next_rs].flags |= FM10K_TXD_FLAG_RS; txq->next_rs = (uint16_t)(txq->next_rs + txq->rs_thresh); } txq->next_free = tx_id; FM10K_PCI_REG_WRITE(txq->tail_ptr, txq->next_free); return nb_pkts; } static void __attribute__((cold)) fm10k_reset_tx_queue(struct fm10k_tx_queue *txq) { static const struct fm10k_tx_desc zeroed_desc = {0}; struct rte_mbuf **txe = txq->sw_ring; uint16_t i; /* Zero out HW ring memory */ for (i = 0; i < txq->nb_desc; i++) txq->hw_ring[i] = zeroed_desc; /* Initialize SW ring entries */ for (i = 0; i < txq->nb_desc; i++) txe[i] = NULL; txq->next_dd = (uint16_t)(txq->rs_thresh - 1); txq->next_rs = (uint16_t)(txq->rs_thresh - 1); txq->next_free = 0; txq->nb_used = 0; /* Always allow 1 descriptor to be un-allocated to avoid * a H/W race condition */ txq->nb_free = (uint16_t)(txq->nb_desc - 1); FM10K_PCI_REG_WRITE(txq->tail_ptr, 0); }