/* SPDX-License-Identifier: BSD-3-Clause * Copyright 2016 6WIND S.A. * Copyright 2016 Mellanox Technologies, Ltd */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "testpmd.h" /** Parser token indices. */ enum index { /* Special tokens. */ ZERO = 0, END, /* Common tokens. */ INTEGER, UNSIGNED, PREFIX, BOOLEAN, STRING, HEX, MAC_ADDR, IPV4_ADDR, IPV6_ADDR, RULE_ID, PORT_ID, GROUP_ID, PRIORITY_LEVEL, /* Top-level command. */ FLOW, /* Sub-level commands. */ VALIDATE, CREATE, DESTROY, FLUSH, QUERY, LIST, ISOLATE, /* Destroy arguments. */ DESTROY_RULE, /* Query arguments. */ QUERY_ACTION, /* List arguments. */ LIST_GROUP, /* Validate/create arguments. */ GROUP, PRIORITY, INGRESS, EGRESS, TRANSFER, /* Validate/create pattern. */ PATTERN, ITEM_PARAM_IS, ITEM_PARAM_SPEC, ITEM_PARAM_LAST, ITEM_PARAM_MASK, ITEM_PARAM_PREFIX, ITEM_NEXT, ITEM_END, ITEM_VOID, ITEM_INVERT, ITEM_ANY, ITEM_ANY_NUM, ITEM_PF, ITEM_VF, ITEM_VF_ID, ITEM_PHY_PORT, ITEM_PHY_PORT_INDEX, ITEM_PORT_ID, ITEM_PORT_ID_ID, ITEM_MARK, ITEM_MARK_ID, ITEM_RAW, ITEM_RAW_RELATIVE, ITEM_RAW_SEARCH, ITEM_RAW_OFFSET, ITEM_RAW_LIMIT, ITEM_RAW_PATTERN, ITEM_ETH, ITEM_ETH_DST, ITEM_ETH_SRC, ITEM_ETH_TYPE, ITEM_VLAN, ITEM_VLAN_TCI, ITEM_VLAN_PCP, ITEM_VLAN_DEI, ITEM_VLAN_VID, ITEM_VLAN_INNER_TYPE, ITEM_IPV4, ITEM_IPV4_TOS, ITEM_IPV4_TTL, ITEM_IPV4_PROTO, ITEM_IPV4_SRC, ITEM_IPV4_DST, ITEM_IPV6, ITEM_IPV6_TC, ITEM_IPV6_FLOW, ITEM_IPV6_PROTO, ITEM_IPV6_HOP, ITEM_IPV6_SRC, ITEM_IPV6_DST, ITEM_ICMP, ITEM_ICMP_TYPE, ITEM_ICMP_CODE, ITEM_UDP, ITEM_UDP_SRC, ITEM_UDP_DST, ITEM_TCP, ITEM_TCP_SRC, ITEM_TCP_DST, ITEM_TCP_FLAGS, ITEM_SCTP, ITEM_SCTP_SRC, ITEM_SCTP_DST, ITEM_SCTP_TAG, ITEM_SCTP_CKSUM, ITEM_VXLAN, ITEM_VXLAN_VNI, ITEM_E_TAG, ITEM_E_TAG_GRP_ECID_B, ITEM_NVGRE, ITEM_NVGRE_TNI, ITEM_MPLS, ITEM_MPLS_LABEL, ITEM_GRE, ITEM_GRE_PROTO, ITEM_FUZZY, ITEM_FUZZY_THRESH, ITEM_GTP, ITEM_GTP_TEID, ITEM_GTPC, ITEM_GTPU, ITEM_GENEVE, ITEM_GENEVE_VNI, ITEM_GENEVE_PROTO, ITEM_VXLAN_GPE, ITEM_VXLAN_GPE_VNI, ITEM_ARP_ETH_IPV4, ITEM_ARP_ETH_IPV4_SHA, ITEM_ARP_ETH_IPV4_SPA, ITEM_ARP_ETH_IPV4_THA, ITEM_ARP_ETH_IPV4_TPA, ITEM_IPV6_EXT, ITEM_IPV6_EXT_NEXT_HDR, ITEM_ICMP6, ITEM_ICMP6_TYPE, ITEM_ICMP6_CODE, ITEM_ICMP6_ND_NS, ITEM_ICMP6_ND_NS_TARGET_ADDR, ITEM_ICMP6_ND_NA, ITEM_ICMP6_ND_NA_TARGET_ADDR, ITEM_ICMP6_ND_OPT, ITEM_ICMP6_ND_OPT_TYPE, ITEM_ICMP6_ND_OPT_SLA_ETH, ITEM_ICMP6_ND_OPT_SLA_ETH_SLA, ITEM_ICMP6_ND_OPT_TLA_ETH, ITEM_ICMP6_ND_OPT_TLA_ETH_TLA, ITEM_META, ITEM_META_DATA, /* Validate/create actions. */ ACTIONS, ACTION_NEXT, ACTION_END, ACTION_VOID, ACTION_PASSTHRU, ACTION_JUMP, ACTION_JUMP_GROUP, ACTION_MARK, ACTION_MARK_ID, ACTION_FLAG, ACTION_QUEUE, ACTION_QUEUE_INDEX, ACTION_DROP, ACTION_COUNT, ACTION_COUNT_SHARED, ACTION_COUNT_ID, ACTION_RSS, ACTION_RSS_FUNC, ACTION_RSS_LEVEL, ACTION_RSS_FUNC_DEFAULT, ACTION_RSS_FUNC_TOEPLITZ, ACTION_RSS_FUNC_SIMPLE_XOR, ACTION_RSS_TYPES, ACTION_RSS_TYPE, ACTION_RSS_KEY, ACTION_RSS_KEY_LEN, ACTION_RSS_QUEUES, ACTION_RSS_QUEUE, ACTION_PF, ACTION_VF, ACTION_VF_ORIGINAL, ACTION_VF_ID, ACTION_PHY_PORT, ACTION_PHY_PORT_ORIGINAL, ACTION_PHY_PORT_INDEX, ACTION_PORT_ID, ACTION_PORT_ID_ORIGINAL, ACTION_PORT_ID_ID, ACTION_METER, ACTION_METER_ID, ACTION_OF_SET_MPLS_TTL, ACTION_OF_SET_MPLS_TTL_MPLS_TTL, ACTION_OF_DEC_MPLS_TTL, ACTION_OF_SET_NW_TTL, ACTION_OF_SET_NW_TTL_NW_TTL, ACTION_OF_DEC_NW_TTL, ACTION_OF_COPY_TTL_OUT, ACTION_OF_COPY_TTL_IN, ACTION_OF_POP_VLAN, ACTION_OF_PUSH_VLAN, ACTION_OF_PUSH_VLAN_ETHERTYPE, ACTION_OF_SET_VLAN_VID, ACTION_OF_SET_VLAN_VID_VLAN_VID, ACTION_OF_SET_VLAN_PCP, ACTION_OF_SET_VLAN_PCP_VLAN_PCP, ACTION_OF_POP_MPLS, ACTION_OF_POP_MPLS_ETHERTYPE, ACTION_OF_PUSH_MPLS, ACTION_OF_PUSH_MPLS_ETHERTYPE, ACTION_VXLAN_ENCAP, ACTION_VXLAN_DECAP, ACTION_NVGRE_ENCAP, ACTION_NVGRE_DECAP, ACTION_L2_ENCAP, ACTION_L2_DECAP, ACTION_MPLSOGRE_ENCAP, ACTION_MPLSOGRE_DECAP, ACTION_MPLSOUDP_ENCAP, ACTION_MPLSOUDP_DECAP, ACTION_SET_IPV4_SRC, ACTION_SET_IPV4_SRC_IPV4_SRC, ACTION_SET_IPV4_DST, ACTION_SET_IPV4_DST_IPV4_DST, ACTION_SET_IPV6_SRC, ACTION_SET_IPV6_SRC_IPV6_SRC, ACTION_SET_IPV6_DST, ACTION_SET_IPV6_DST_IPV6_DST, ACTION_SET_TP_SRC, ACTION_SET_TP_SRC_TP_SRC, ACTION_SET_TP_DST, ACTION_SET_TP_DST_TP_DST, ACTION_MAC_SWAP, ACTION_DEC_TTL, ACTION_SET_TTL, ACTION_SET_TTL_TTL, ACTION_SET_MAC_SRC, ACTION_SET_MAC_SRC_MAC_SRC, ACTION_SET_MAC_DST, ACTION_SET_MAC_DST_MAC_DST, }; /** Maximum size for pattern in struct rte_flow_item_raw. */ #define ITEM_RAW_PATTERN_SIZE 40 /** Storage size for struct rte_flow_item_raw including pattern. */ #define ITEM_RAW_SIZE \ (sizeof(struct rte_flow_item_raw) + ITEM_RAW_PATTERN_SIZE) /** Maximum number of queue indices in struct rte_flow_action_rss. */ #define ACTION_RSS_QUEUE_NUM 32 /** Storage for struct rte_flow_action_rss including external data. */ struct action_rss_data { struct rte_flow_action_rss conf; uint8_t key[RSS_HASH_KEY_LENGTH]; uint16_t queue[ACTION_RSS_QUEUE_NUM]; }; /** Maximum number of items in struct rte_flow_action_vxlan_encap. */ #define ACTION_VXLAN_ENCAP_ITEMS_NUM 6 /** Storage for struct rte_flow_action_vxlan_encap including external data. */ struct action_vxlan_encap_data { struct rte_flow_action_vxlan_encap conf; struct rte_flow_item items[ACTION_VXLAN_ENCAP_ITEMS_NUM]; struct rte_flow_item_eth item_eth; struct rte_flow_item_vlan item_vlan; union { struct rte_flow_item_ipv4 item_ipv4; struct rte_flow_item_ipv6 item_ipv6; }; struct rte_flow_item_udp item_udp; struct rte_flow_item_vxlan item_vxlan; }; /** Maximum number of items in struct rte_flow_action_nvgre_encap. */ #define ACTION_NVGRE_ENCAP_ITEMS_NUM 5 /** Storage for struct rte_flow_action_nvgre_encap including external data. */ struct action_nvgre_encap_data { struct rte_flow_action_nvgre_encap conf; struct rte_flow_item items[ACTION_NVGRE_ENCAP_ITEMS_NUM]; struct rte_flow_item_eth item_eth; struct rte_flow_item_vlan item_vlan; union { struct rte_flow_item_ipv4 item_ipv4; struct rte_flow_item_ipv6 item_ipv6; }; struct rte_flow_item_nvgre item_nvgre; }; /** Maximum data size in struct rte_flow_action_raw_encap. */ #define ACTION_RAW_ENCAP_MAX_DATA 128 /** Storage for struct rte_flow_action_raw_encap including external data. */ struct action_raw_encap_data { struct rte_flow_action_raw_encap conf; uint8_t data[ACTION_RAW_ENCAP_MAX_DATA]; uint8_t preserve[ACTION_RAW_ENCAP_MAX_DATA]; }; /** Storage for struct rte_flow_action_raw_decap including external data. */ struct action_raw_decap_data { struct rte_flow_action_raw_decap conf; uint8_t data[ACTION_RAW_ENCAP_MAX_DATA]; }; /** Maximum number of subsequent tokens and arguments on the stack. */ #define CTX_STACK_SIZE 16 /** Parser context. */ struct context { /** Stack of subsequent token lists to process. */ const enum index *next[CTX_STACK_SIZE]; /** Arguments for stacked tokens. */ const void *args[CTX_STACK_SIZE]; enum index curr; /**< Current token index. */ enum index prev; /**< Index of the last token seen. */ int next_num; /**< Number of entries in next[]. */ int args_num; /**< Number of entries in args[]. */ uint32_t eol:1; /**< EOL has been detected. */ uint32_t last:1; /**< No more arguments. */ portid_t port; /**< Current port ID (for completions). */ uint32_t objdata; /**< Object-specific data. */ void *object; /**< Address of current object for relative offsets. */ void *objmask; /**< Object a full mask must be written to. */ }; /** Token argument. */ struct arg { uint32_t hton:1; /**< Use network byte ordering. */ uint32_t sign:1; /**< Value is signed. */ uint32_t bounded:1; /**< Value is bounded. */ uintmax_t min; /**< Minimum value if bounded. */ uintmax_t max; /**< Maximum value if bounded. */ uint32_t offset; /**< Relative offset from ctx->object. */ uint32_t size; /**< Field size. */ const uint8_t *mask; /**< Bit-mask to use instead of offset/size. */ }; /** Parser token definition. */ struct token { /** Type displayed during completion (defaults to "TOKEN"). */ const char *type; /** Help displayed during completion (defaults to token name). */ const char *help; /** Private data used by parser functions. */ const void *priv; /** * Lists of subsequent tokens to push on the stack. Each call to the * parser consumes the last entry of that stack. */ const enum index *const *next; /** Arguments stack for subsequent tokens that need them. */ const struct arg *const *args; /** * Token-processing callback, returns -1 in case of error, the * length of the matched string otherwise. If NULL, attempts to * match the token name. * * If buf is not NULL, the result should be stored in it according * to context. An error is returned if not large enough. */ int (*call)(struct context *ctx, const struct token *token, const char *str, unsigned int len, void *buf, unsigned int size); /** * Callback that provides possible values for this token, used for * completion. Returns -1 in case of error, the number of possible * values otherwise. If NULL, the token name is used. * * If buf is not NULL, entry index ent is written to buf and the * full length of the entry is returned (same behavior as * snprintf()). */ int (*comp)(struct context *ctx, const struct token *token, unsigned int ent, char *buf, unsigned int size); /** Mandatory token name, no default value. */ const char *name; }; /** Static initializer for the next field. */ #define NEXT(...) (const enum index *const []){ __VA_ARGS__, NULL, } /** Static initializer for a NEXT() entry. */ #define NEXT_ENTRY(...) (const enum index []){ __VA_ARGS__, ZERO, } /** Static initializer for the args field. */ #define ARGS(...) (const struct arg *const []){ __VA_ARGS__, NULL, } /** Static initializer for ARGS() to target a field. */ #define ARGS_ENTRY(s, f) \ (&(const struct arg){ \ .offset = offsetof(s, f), \ .size = sizeof(((s *)0)->f), \ }) /** Static initializer for ARGS() to target a bit-field. */ #define ARGS_ENTRY_BF(s, f, b) \ (&(const struct arg){ \ .size = sizeof(s), \ .mask = (const void *)&(const s){ .f = (1 << (b)) - 1 }, \ }) /** Static initializer for ARGS() to target an arbitrary bit-mask. */ #define ARGS_ENTRY_MASK(s, f, m) \ (&(const struct arg){ \ .offset = offsetof(s, f), \ .size = sizeof(((s *)0)->f), \ .mask = (const void *)(m), \ }) /** Same as ARGS_ENTRY_MASK() using network byte ordering for the value. */ #define ARGS_ENTRY_MASK_HTON(s, f, m) \ (&(const struct arg){ \ .hton = 1, \ .offset = offsetof(s, f), \ .size = sizeof(((s *)0)->f), \ .mask = (const void *)(m), \ }) /** Static initializer for ARGS() to target a pointer. */ #define ARGS_ENTRY_PTR(s, f) \ (&(const struct arg){ \ .size = sizeof(*((s *)0)->f), \ }) /** Static initializer for ARGS() with arbitrary offset and size. */ #define ARGS_ENTRY_ARB(o, s) \ (&(const struct arg){ \ .offset = (o), \ .size = (s), \ }) /** Same as ARGS_ENTRY_ARB() with bounded values. */ #define ARGS_ENTRY_ARB_BOUNDED(o, s, i, a) \ (&(const struct arg){ \ .bounded = 1, \ .min = (i), \ .max = (a), \ .offset = (o), \ .size = (s), \ }) /** Same as ARGS_ENTRY() using network byte ordering. */ #define ARGS_ENTRY_HTON(s, f) \ (&(const struct arg){ \ .hton = 1, \ .offset = offsetof(s, f), \ .size = sizeof(((s *)0)->f), \ }) /** Parser output buffer layout expected by cmd_flow_parsed(). */ struct buffer { enum index command; /**< Flow command. */ portid_t port; /**< Affected port ID. */ union { struct { struct rte_flow_attr attr; struct rte_flow_item *pattern; struct rte_flow_action *actions; uint32_t pattern_n; uint32_t actions_n; uint8_t *data; } vc; /**< Validate/create arguments. */ struct { uint32_t *rule; uint32_t rule_n; } destroy; /**< Destroy arguments. */ struct { uint32_t rule; struct rte_flow_action action; } query; /**< Query arguments. */ struct { uint32_t *group; uint32_t group_n; } list; /**< List arguments. */ struct { int set; } isolate; /**< Isolated mode arguments. */ } args; /**< Command arguments. */ }; /** Private data for pattern items. */ struct parse_item_priv { enum rte_flow_item_type type; /**< Item type. */ uint32_t size; /**< Size of item specification structure. */ }; #define PRIV_ITEM(t, s) \ (&(const struct parse_item_priv){ \ .type = RTE_FLOW_ITEM_TYPE_ ## t, \ .size = s, \ }) /** Private data for actions. */ struct parse_action_priv { enum rte_flow_action_type type; /**< Action type. */ uint32_t size; /**< Size of action configuration structure. */ }; #define PRIV_ACTION(t, s) \ (&(const struct parse_action_priv){ \ .type = RTE_FLOW_ACTION_TYPE_ ## t, \ .size = s, \ }) static const enum index next_vc_attr[] = { GROUP, PRIORITY, INGRESS, EGRESS, TRANSFER, PATTERN, ZERO, }; static const enum index next_destroy_attr[] = { DESTROY_RULE, END, ZERO, }; static const enum index next_list_attr[] = { LIST_GROUP, END, ZERO, }; static const enum index item_param[] = { ITEM_PARAM_IS, ITEM_PARAM_SPEC, ITEM_PARAM_LAST, ITEM_PARAM_MASK, ITEM_PARAM_PREFIX, ZERO, }; static const enum index next_item[] = { ITEM_END, ITEM_VOID, ITEM_INVERT, ITEM_ANY, ITEM_PF, ITEM_VF, ITEM_PHY_PORT, ITEM_PORT_ID, ITEM_MARK, ITEM_RAW, ITEM_ETH, ITEM_VLAN, ITEM_IPV4, ITEM_IPV6, ITEM_ICMP, ITEM_UDP, ITEM_TCP, ITEM_SCTP, ITEM_VXLAN, ITEM_E_TAG, ITEM_NVGRE, ITEM_MPLS, ITEM_GRE, ITEM_FUZZY, ITEM_GTP, ITEM_GTPC, ITEM_GTPU, ITEM_GENEVE, ITEM_VXLAN_GPE, ITEM_ARP_ETH_IPV4, ITEM_IPV6_EXT, ITEM_ICMP6, ITEM_ICMP6_ND_NS, ITEM_ICMP6_ND_NA, ITEM_ICMP6_ND_OPT, ITEM_ICMP6_ND_OPT_SLA_ETH, ITEM_ICMP6_ND_OPT_TLA_ETH, ITEM_META, ZERO, }; static const enum index item_fuzzy[] = { ITEM_FUZZY_THRESH, ITEM_NEXT, ZERO, }; static const enum index item_any[] = { ITEM_ANY_NUM, ITEM_NEXT, ZERO, }; static const enum index item_vf[] = { ITEM_VF_ID, ITEM_NEXT, ZERO, }; static const enum index item_phy_port[] = { ITEM_PHY_PORT_INDEX, ITEM_NEXT, ZERO, }; static const enum index item_port_id[] = { ITEM_PORT_ID_ID, ITEM_NEXT, ZERO, }; static const enum index item_mark[] = { ITEM_MARK_ID, ITEM_NEXT, ZERO, }; static const enum index item_raw[] = { ITEM_RAW_RELATIVE, ITEM_RAW_SEARCH, ITEM_RAW_OFFSET, ITEM_RAW_LIMIT, ITEM_RAW_PATTERN, ITEM_NEXT, ZERO, }; static const enum index item_eth[] = { ITEM_ETH_DST, ITEM_ETH_SRC, ITEM_ETH_TYPE, ITEM_NEXT, ZERO, }; static const enum index item_vlan[] = { ITEM_VLAN_TCI, ITEM_VLAN_PCP, ITEM_VLAN_DEI, ITEM_VLAN_VID, ITEM_VLAN_INNER_TYPE, ITEM_NEXT, ZERO, }; static const enum index item_ipv4[] = { ITEM_IPV4_TOS, ITEM_IPV4_TTL, ITEM_IPV4_PROTO, ITEM_IPV4_SRC, ITEM_IPV4_DST, ITEM_NEXT, ZERO, }; static const enum index item_ipv6[] = { ITEM_IPV6_TC, ITEM_IPV6_FLOW, ITEM_IPV6_PROTO, ITEM_IPV6_HOP, ITEM_IPV6_SRC, ITEM_IPV6_DST, ITEM_NEXT, ZERO, }; static const enum index item_icmp[] = { ITEM_ICMP_TYPE, ITEM_ICMP_CODE, ITEM_NEXT, ZERO, }; static const enum index item_udp[] = { ITEM_UDP_SRC, ITEM_UDP_DST, ITEM_NEXT, ZERO, }; static const enum index item_tcp[] = { ITEM_TCP_SRC, ITEM_TCP_DST, ITEM_TCP_FLAGS, ITEM_NEXT, ZERO, }; static const enum index item_sctp[] = { ITEM_SCTP_SRC, ITEM_SCTP_DST, ITEM_SCTP_TAG, ITEM_SCTP_CKSUM, ITEM_NEXT, ZERO, }; static const enum index item_vxlan[] = { ITEM_VXLAN_VNI, ITEM_NEXT, ZERO, }; static const enum index item_e_tag[] = { ITEM_E_TAG_GRP_ECID_B, ITEM_NEXT, ZERO, }; static const enum index item_nvgre[] = { ITEM_NVGRE_TNI, ITEM_NEXT, ZERO, }; static const enum index item_mpls[] = { ITEM_MPLS_LABEL, ITEM_NEXT, ZERO, }; static const enum index item_gre[] = { ITEM_GRE_PROTO, ITEM_NEXT, ZERO, }; static const enum index item_gtp[] = { ITEM_GTP_TEID, ITEM_NEXT, ZERO, }; static const enum index item_geneve[] = { ITEM_GENEVE_VNI, ITEM_GENEVE_PROTO, ITEM_NEXT, ZERO, }; static const enum index item_vxlan_gpe[] = { ITEM_VXLAN_GPE_VNI, ITEM_NEXT, ZERO, }; static const enum index item_arp_eth_ipv4[] = { ITEM_ARP_ETH_IPV4_SHA, ITEM_ARP_ETH_IPV4_SPA, ITEM_ARP_ETH_IPV4_THA, ITEM_ARP_ETH_IPV4_TPA, ITEM_NEXT, ZERO, }; static const enum index item_ipv6_ext[] = { ITEM_IPV6_EXT_NEXT_HDR, ITEM_NEXT, ZERO, }; static const enum index item_icmp6[] = { ITEM_ICMP6_TYPE, ITEM_ICMP6_CODE, ITEM_NEXT, ZERO, }; static const enum index item_icmp6_nd_ns[] = { ITEM_ICMP6_ND_NS_TARGET_ADDR, ITEM_NEXT, ZERO, }; static const enum index item_icmp6_nd_na[] = { ITEM_ICMP6_ND_NA_TARGET_ADDR, ITEM_NEXT, ZERO, }; static const enum index item_icmp6_nd_opt[] = { ITEM_ICMP6_ND_OPT_TYPE, ITEM_NEXT, ZERO, }; static const enum index item_icmp6_nd_opt_sla_eth[] = { ITEM_ICMP6_ND_OPT_SLA_ETH_SLA, ITEM_NEXT, ZERO, }; static const enum index item_icmp6_nd_opt_tla_eth[] = { ITEM_ICMP6_ND_OPT_TLA_ETH_TLA, ITEM_NEXT, ZERO, }; static const enum index item_meta[] = { ITEM_META_DATA, ITEM_NEXT, ZERO, }; static const enum index next_action[] = { ACTION_END, ACTION_VOID, ACTION_PASSTHRU, ACTION_JUMP, ACTION_MARK, ACTION_FLAG, ACTION_QUEUE, ACTION_DROP, ACTION_COUNT, ACTION_RSS, ACTION_PF, ACTION_VF, ACTION_PHY_PORT, ACTION_PORT_ID, ACTION_METER, ACTION_OF_SET_MPLS_TTL, ACTION_OF_DEC_MPLS_TTL, ACTION_OF_SET_NW_TTL, ACTION_OF_DEC_NW_TTL, ACTION_OF_COPY_TTL_OUT, ACTION_OF_COPY_TTL_IN, ACTION_OF_POP_VLAN, ACTION_OF_PUSH_VLAN, ACTION_OF_SET_VLAN_VID, ACTION_OF_SET_VLAN_PCP, ACTION_OF_POP_MPLS, ACTION_OF_PUSH_MPLS, ACTION_VXLAN_ENCAP, ACTION_VXLAN_DECAP, ACTION_NVGRE_ENCAP, ACTION_NVGRE_DECAP, ACTION_L2_ENCAP, ACTION_L2_DECAP, ACTION_MPLSOGRE_ENCAP, ACTION_MPLSOGRE_DECAP, ACTION_MPLSOUDP_ENCAP, ACTION_MPLSOUDP_DECAP, ACTION_SET_IPV4_SRC, ACTION_SET_IPV4_DST, ACTION_SET_IPV6_SRC, ACTION_SET_IPV6_DST, ACTION_SET_TP_SRC, ACTION_SET_TP_DST, ACTION_MAC_SWAP, ACTION_DEC_TTL, ACTION_SET_TTL, ACTION_SET_MAC_SRC, ACTION_SET_MAC_DST, ZERO, }; static const enum index action_mark[] = { ACTION_MARK_ID, ACTION_NEXT, ZERO, }; static const enum index action_queue[] = { ACTION_QUEUE_INDEX, ACTION_NEXT, ZERO, }; static const enum index action_count[] = { ACTION_COUNT_ID, ACTION_COUNT_SHARED, ACTION_NEXT, ZERO, }; static const enum index action_rss[] = { ACTION_RSS_FUNC, ACTION_RSS_LEVEL, ACTION_RSS_TYPES, ACTION_RSS_KEY, ACTION_RSS_KEY_LEN, ACTION_RSS_QUEUES, ACTION_NEXT, ZERO, }; static const enum index action_vf[] = { ACTION_VF_ORIGINAL, ACTION_VF_ID, ACTION_NEXT, ZERO, }; static const enum index action_phy_port[] = { ACTION_PHY_PORT_ORIGINAL, ACTION_PHY_PORT_INDEX, ACTION_NEXT, ZERO, }; static const enum index action_port_id[] = { ACTION_PORT_ID_ORIGINAL, ACTION_PORT_ID_ID, ACTION_NEXT, ZERO, }; static const enum index action_meter[] = { ACTION_METER_ID, ACTION_NEXT, ZERO, }; static const enum index action_of_set_mpls_ttl[] = { ACTION_OF_SET_MPLS_TTL_MPLS_TTL, ACTION_NEXT, ZERO, }; static const enum index action_of_set_nw_ttl[] = { ACTION_OF_SET_NW_TTL_NW_TTL, ACTION_NEXT, ZERO, }; static const enum index action_of_push_vlan[] = { ACTION_OF_PUSH_VLAN_ETHERTYPE, ACTION_NEXT, ZERO, }; static const enum index action_of_set_vlan_vid[] = { ACTION_OF_SET_VLAN_VID_VLAN_VID, ACTION_NEXT, ZERO, }; static const enum index action_of_set_vlan_pcp[] = { ACTION_OF_SET_VLAN_PCP_VLAN_PCP, ACTION_NEXT, ZERO, }; static const enum index action_of_pop_mpls[] = { ACTION_OF_POP_MPLS_ETHERTYPE, ACTION_NEXT, ZERO, }; static const enum index action_of_push_mpls[] = { ACTION_OF_PUSH_MPLS_ETHERTYPE, ACTION_NEXT, ZERO, }; static const enum index action_set_ipv4_src[] = { ACTION_SET_IPV4_SRC_IPV4_SRC, ACTION_NEXT, ZERO, }; static const enum index action_set_mac_src[] = { ACTION_SET_MAC_SRC_MAC_SRC, ACTION_NEXT, ZERO, }; static const enum index action_set_ipv4_dst[] = { ACTION_SET_IPV4_DST_IPV4_DST, ACTION_NEXT, ZERO, }; static const enum index action_set_ipv6_src[] = { ACTION_SET_IPV6_SRC_IPV6_SRC, ACTION_NEXT, ZERO, }; static const enum index action_set_ipv6_dst[] = { ACTION_SET_IPV6_DST_IPV6_DST, ACTION_NEXT, ZERO, }; static const enum index action_set_tp_src[] = { ACTION_SET_TP_SRC_TP_SRC, ACTION_NEXT, ZERO, }; static const enum index action_set_tp_dst[] = { ACTION_SET_TP_DST_TP_DST, ACTION_NEXT, ZERO, }; static const enum index action_set_ttl[] = { ACTION_SET_TTL_TTL, ACTION_NEXT, ZERO, }; static const enum index action_jump[] = { ACTION_JUMP_GROUP, ACTION_NEXT, ZERO, }; static const enum index action_set_mac_dst[] = { ACTION_SET_MAC_DST_MAC_DST, ACTION_NEXT, ZERO, }; static int parse_init(struct context *, const struct token *, const char *, unsigned int, void *, unsigned int); static int parse_vc(struct context *, const struct token *, const char *, unsigned int, void *, unsigned int); static int parse_vc_spec(struct context *, const struct token *, const char *, unsigned int, void *, unsigned int); static int parse_vc_conf(struct context *, const struct token *, const char *, unsigned int, void *, unsigned int); static int parse_vc_action_rss(struct context *, const struct token *, const char *, unsigned int, void *, unsigned int); static int parse_vc_action_rss_func(struct context *, const struct token *, const char *, unsigned int, void *, unsigned int); static int parse_vc_action_rss_type(struct context *, const struct token *, const char *, unsigned int, void *, unsigned int); static int parse_vc_action_rss_queue(struct context *, const struct token *, const char *, unsigned int, void *, unsigned int); static int parse_vc_action_vxlan_encap(struct context *, const struct token *, const char *, unsigned int, void *, unsigned int); static int parse_vc_action_nvgre_encap(struct context *, const struct token *, const char *, unsigned int, void *, unsigned int); static int parse_vc_action_l2_encap(struct context *, const struct token *, const char *, unsigned int, void *, unsigned int); static int parse_vc_action_l2_decap(struct context *, const struct token *, const char *, unsigned int, void *, unsigned int); static int parse_vc_action_mplsogre_encap(struct context *, const struct token *, const char *, unsigned int, void *, unsigned int); static int parse_vc_action_mplsogre_decap(struct context *, const struct token *, const char *, unsigned int, void *, unsigned int); static int parse_vc_action_mplsoudp_encap(struct context *, const struct token *, const char *, unsigned int, void *, unsigned int); static int parse_vc_action_mplsoudp_decap(struct context *, const struct token *, const char *, unsigned int, void *, unsigned int); static int parse_destroy(struct context *, const struct token *, const char *, unsigned int, void *, unsigned int); static int parse_flush(struct context *, const struct token *, const char *, unsigned int, void *, unsigned int); static int parse_query(struct context *, const struct token *, const char *, unsigned int, void *, unsigned int); static int parse_action(struct context *, const struct token *, const char *, unsigned int, void *, unsigned int); static int parse_list(struct context *, const struct token *, const char *, unsigned int, void *, unsigned int); static int parse_isolate(struct context *, const struct token *, const char *, unsigned int, void *, unsigned int); static int parse_int(struct context *, const struct token *, const char *, unsigned int, void *, unsigned int); static int parse_prefix(struct context *, const struct token *, const char *, unsigned int, void *, unsigned int); static int parse_boolean(struct context *, const struct token *, const char *, unsigned int, void *, unsigned int); static int parse_string(struct context *, const struct token *, const char *, unsigned int, void *, unsigned int); static int parse_hex(struct context *ctx, const struct token *token, const char *str, unsigned int len, void *buf, unsigned int size); static int parse_mac_addr(struct context *, const struct token *, const char *, unsigned int, void *, unsigned int); static int parse_ipv4_addr(struct context *, const struct token *, const char *, unsigned int, void *, unsigned int); static int parse_ipv6_addr(struct context *, const struct token *, const char *, unsigned int, void *, unsigned int); static int parse_port(struct context *, const struct token *, const char *, unsigned int, void *, unsigned int); static int comp_none(struct context *, const struct token *, unsigned int, char *, unsigned int); static int comp_boolean(struct context *, const struct token *, unsigned int, char *, unsigned int); static int comp_action(struct context *, const struct token *, unsigned int, char *, unsigned int); static int comp_port(struct context *, const struct token *, unsigned int, char *, unsigned int); static int comp_rule_id(struct context *, const struct token *, unsigned int, char *, unsigned int); static int comp_vc_action_rss_type(struct context *, const struct token *, unsigned int, char *, unsigned int); static int comp_vc_action_rss_queue(struct context *, const struct token *, unsigned int, char *, unsigned int); /** Token definitions. */ static const struct token token_list[] = { /* Special tokens. */ [ZERO] = { .name = "ZERO", .help = "null entry, abused as the entry point", .next = NEXT(NEXT_ENTRY(FLOW)), }, [END] = { .name = "", .type = "RETURN", .help = "command may end here", }, /* Common tokens. */ [INTEGER] = { .name = "{int}", .type = "INTEGER", .help = "integer value", .call = parse_int, .comp = comp_none, }, [UNSIGNED] = { .name = "{unsigned}", .type = "UNSIGNED", .help = "unsigned integer value", .call = parse_int, .comp = comp_none, }, [PREFIX] = { .name = "{prefix}", .type = "PREFIX", .help = "prefix length for bit-mask", .call = parse_prefix, .comp = comp_none, }, [BOOLEAN] = { .name = "{boolean}", .type = "BOOLEAN", .help = "any boolean value", .call = parse_boolean, .comp = comp_boolean, }, [STRING] = { .name = "{string}", .type = "STRING", .help = "fixed string", .call = parse_string, .comp = comp_none, }, [HEX] = { .name = "{hex}", .type = "HEX", .help = "fixed string", .call = parse_hex, .comp = comp_none, }, [MAC_ADDR] = { .name = "{MAC address}", .type = "MAC-48", .help = "standard MAC address notation", .call = parse_mac_addr, .comp = comp_none, }, [IPV4_ADDR] = { .name = "{IPv4 address}", .type = "IPV4 ADDRESS", .help = "standard IPv4 address notation", .call = parse_ipv4_addr, .comp = comp_none, }, [IPV6_ADDR] = { .name = "{IPv6 address}", .type = "IPV6 ADDRESS", .help = "standard IPv6 address notation", .call = parse_ipv6_addr, .comp = comp_none, }, [RULE_ID] = { .name = "{rule id}", .type = "RULE ID", .help = "rule identifier", .call = parse_int, .comp = comp_rule_id, }, [PORT_ID] = { .name = "{port_id}", .type = "PORT ID", .help = "port identifier", .call = parse_port, .comp = comp_port, }, [GROUP_ID] = { .name = "{group_id}", .type = "GROUP ID", .help = "group identifier", .call = parse_int, .comp = comp_none, }, [PRIORITY_LEVEL] = { .name = "{level}", .type = "PRIORITY", .help = "priority level", .call = parse_int, .comp = comp_none, }, /* Top-level command. */ [FLOW] = { .name = "flow", .type = "{command} {port_id} [{arg} [...]]", .help = "manage ingress/egress flow rules", .next = NEXT(NEXT_ENTRY (VALIDATE, CREATE, DESTROY, FLUSH, LIST, QUERY, ISOLATE)), .call = parse_init, }, /* Sub-level commands. */ [VALIDATE] = { .name = "validate", .help = "check whether a flow rule can be created", .next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)), .args = ARGS(ARGS_ENTRY(struct buffer, port)), .call = parse_vc, }, [CREATE] = { .name = "create", .help = "create a flow rule", .next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)), .args = ARGS(ARGS_ENTRY(struct buffer, port)), .call = parse_vc, }, [DESTROY] = { .name = "destroy", .help = "destroy specific flow rules", .next = NEXT(NEXT_ENTRY(DESTROY_RULE), NEXT_ENTRY(PORT_ID)), .args = ARGS(ARGS_ENTRY(struct buffer, port)), .call = parse_destroy, }, [FLUSH] = { .name = "flush", .help = "destroy all flow rules", .next = NEXT(NEXT_ENTRY(PORT_ID)), .args = ARGS(ARGS_ENTRY(struct buffer, port)), .call = parse_flush, }, [QUERY] = { .name = "query", .help = "query an existing flow rule", .next = NEXT(NEXT_ENTRY(QUERY_ACTION), NEXT_ENTRY(RULE_ID), NEXT_ENTRY(PORT_ID)), .args = ARGS(ARGS_ENTRY(struct buffer, args.query.action.type), ARGS_ENTRY(struct buffer, args.query.rule), ARGS_ENTRY(struct buffer, port)), .call = parse_query, }, [LIST] = { .name = "list", .help = "list existing flow rules", .next = NEXT(next_list_attr, NEXT_ENTRY(PORT_ID)), .args = ARGS(ARGS_ENTRY(struct buffer, port)), .call = parse_list, }, [ISOLATE] = { .name = "isolate", .help = "restrict ingress traffic to the defined flow rules", .next = NEXT(NEXT_ENTRY(BOOLEAN), NEXT_ENTRY(PORT_ID)), .args = ARGS(ARGS_ENTRY(struct buffer, args.isolate.set), ARGS_ENTRY(struct buffer, port)), .call = parse_isolate, }, /* Destroy arguments. */ [DESTROY_RULE] = { .name = "rule", .help = "specify a rule identifier", .next = NEXT(next_destroy_attr, NEXT_ENTRY(RULE_ID)), .args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.destroy.rule)), .call = parse_destroy, }, /* Query arguments. */ [QUERY_ACTION] = { .name = "{action}", .type = "ACTION", .help = "action to query, must be part of the rule", .call = parse_action, .comp = comp_action, }, /* List arguments. */ [LIST_GROUP] = { .name = "group", .help = "specify a group", .next = NEXT(next_list_attr, NEXT_ENTRY(GROUP_ID)), .args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.list.group)), .call = parse_list, }, /* Validate/create attributes. */ [GROUP] = { .name = "group", .help = "specify a group", .next = NEXT(next_vc_attr, NEXT_ENTRY(GROUP_ID)), .args = ARGS(ARGS_ENTRY(struct rte_flow_attr, group)), .call = parse_vc, }, [PRIORITY] = { .name = "priority", .help = "specify a priority level", .next = NEXT(next_vc_attr, NEXT_ENTRY(PRIORITY_LEVEL)), .args = ARGS(ARGS_ENTRY(struct rte_flow_attr, priority)), .call = parse_vc, }, [INGRESS] = { .name = "ingress", .help = "affect rule to ingress", .next = NEXT(next_vc_attr), .call = parse_vc, }, [EGRESS] = { .name = "egress", .help = "affect rule to egress", .next = NEXT(next_vc_attr), .call = parse_vc, }, [TRANSFER] = { .name = "transfer", .help = "apply rule directly to endpoints found in pattern", .next = NEXT(next_vc_attr), .call = parse_vc, }, /* Validate/create pattern. */ [PATTERN] = { .name = "pattern", .help = "submit a list of pattern items", .next = NEXT(next_item), .call = parse_vc, }, [ITEM_PARAM_IS] = { .name = "is", .help = "match value perfectly (with full bit-mask)", .call = parse_vc_spec, }, [ITEM_PARAM_SPEC] = { .name = "spec", .help = "match value according to configured bit-mask", .call = parse_vc_spec, }, [ITEM_PARAM_LAST] = { .name = "last", .help = "specify upper bound to establish a range", .call = parse_vc_spec, }, [ITEM_PARAM_MASK] = { .name = "mask", .help = "specify bit-mask with relevant bits set to one", .call = parse_vc_spec, }, [ITEM_PARAM_PREFIX] = { .name = "prefix", .help = "generate bit-mask from a prefix length", .call = parse_vc_spec, }, [ITEM_NEXT] = { .name = "/", .help = "specify next pattern item", .next = NEXT(next_item), }, [ITEM_END] = { .name = "end", .help = "end list of pattern items", .priv = PRIV_ITEM(END, 0), .next = NEXT(NEXT_ENTRY(ACTIONS)), .call = parse_vc, }, [ITEM_VOID] = { .name = "void", .help = "no-op pattern item", .priv = PRIV_ITEM(VOID, 0), .next = NEXT(NEXT_ENTRY(ITEM_NEXT)), .call = parse_vc, }, [ITEM_INVERT] = { .name = "invert", .help = "perform actions when pattern does not match", .priv = PRIV_ITEM(INVERT, 0), .next = NEXT(NEXT_ENTRY(ITEM_NEXT)), .call = parse_vc, }, [ITEM_ANY] = { .name = "any", .help = "match any protocol for the current layer", .priv = PRIV_ITEM(ANY, sizeof(struct rte_flow_item_any)), .next = NEXT(item_any), .call = parse_vc, }, [ITEM_ANY_NUM] = { .name = "num", .help = "number of layers covered", .next = NEXT(item_any, NEXT_ENTRY(UNSIGNED), item_param), .args = ARGS(ARGS_ENTRY(struct rte_flow_item_any, num)), }, [ITEM_PF] = { .name = "pf", .help = "match traffic from/to the physical function", .priv = PRIV_ITEM(PF, 0), .next = NEXT(NEXT_ENTRY(ITEM_NEXT)), .call = parse_vc, }, [ITEM_VF] = { .name = "vf", .help = "match traffic from/to a virtual function ID", .priv = PRIV_ITEM(VF, sizeof(struct rte_flow_item_vf)), .next = NEXT(item_vf), .call = parse_vc, }, [ITEM_VF_ID] = { .name = "id", .help = "VF ID", .next = NEXT(item_vf, NEXT_ENTRY(UNSIGNED), item_param), .args = ARGS(ARGS_ENTRY(struct rte_flow_item_vf, id)), }, [ITEM_PHY_PORT] = { .name = "phy_port", .help = "match traffic from/to a specific physical port", .priv = PRIV_ITEM(PHY_PORT, sizeof(struct rte_flow_item_phy_port)), .next = NEXT(item_phy_port), .call = parse_vc, }, [ITEM_PHY_PORT_INDEX] = { .name = "index", .help = "physical port index", .next = NEXT(item_phy_port, NEXT_ENTRY(UNSIGNED), item_param), .args = ARGS(ARGS_ENTRY(struct rte_flow_item_phy_port, index)), }, [ITEM_PORT_ID] = { .name = "port_id", .help = "match traffic from/to a given DPDK port ID", .priv = PRIV_ITEM(PORT_ID, sizeof(struct rte_flow_item_port_id)), .next = NEXT(item_port_id), .call = parse_vc, }, [ITEM_PORT_ID_ID] = { .name = "id", .help = "DPDK port ID", .next = NEXT(item_port_id, NEXT_ENTRY(UNSIGNED), item_param), .args = ARGS(ARGS_ENTRY(struct rte_flow_item_port_id, id)), }, [ITEM_MARK] = { .name = "mark", .help = "match traffic against value set in previously matched rule", .priv = PRIV_ITEM(MARK, sizeof(struct rte_flow_item_mark)), .next = NEXT(item_mark), .call = parse_vc, }, [ITEM_MARK_ID] = { .name = "id", .help = "Integer value to match against", .next = NEXT(item_mark, NEXT_ENTRY(UNSIGNED), item_param), .args = ARGS(ARGS_ENTRY(struct rte_flow_item_mark, id)), }, [ITEM_RAW] = { .name = "raw", .help = "match an arbitrary byte string", .priv = PRIV_ITEM(RAW, ITEM_RAW_SIZE), .next = NEXT(item_raw), .call = parse_vc, }, [ITEM_RAW_RELATIVE] = { .name = "relative", .help = "look for pattern after the previous item", .next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param), .args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw, relative, 1)), }, [ITEM_RAW_SEARCH] = { .name = "search", .help = "search pattern from offset (see also limit)", .next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param), .args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw, search, 1)), }, [ITEM_RAW_OFFSET] = { .name = "offset", .help = "absolute or relative offset for pattern", .next = NEXT(item_raw, NEXT_ENTRY(INTEGER), item_param), .args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, offset)), }, [ITEM_RAW_LIMIT] = { .name = "limit", .help = "search area limit for start of pattern", .next = NEXT(item_raw, NEXT_ENTRY(UNSIGNED), item_param), .args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, limit)), }, [ITEM_RAW_PATTERN] = { .name = "pattern", .help = "byte string to look for", .next = NEXT(item_raw, NEXT_ENTRY(STRING), NEXT_ENTRY(ITEM_PARAM_IS, ITEM_PARAM_SPEC, ITEM_PARAM_MASK)), .args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, pattern), ARGS_ENTRY(struct rte_flow_item_raw, length), ARGS_ENTRY_ARB(sizeof(struct rte_flow_item_raw), ITEM_RAW_PATTERN_SIZE)), }, [ITEM_ETH] = { .name = "eth", .help = "match Ethernet header", .priv = PRIV_ITEM(ETH, sizeof(struct rte_flow_item_eth)), .next = NEXT(item_eth), .call = parse_vc, }, [ITEM_ETH_DST] = { .name = "dst", .help = "destination MAC", .next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param), .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, dst)), }, [ITEM_ETH_SRC] = { .name = "src", .help = "source MAC", .next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param), .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, src)), }, [ITEM_ETH_TYPE] = { .name = "type", .help = "EtherType", .next = NEXT(item_eth, NEXT_ENTRY(UNSIGNED), item_param), .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, type)), }, [ITEM_VLAN] = { .name = "vlan", .help = "match 802.1Q/ad VLAN tag", .priv = PRIV_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)), .next = NEXT(item_vlan), .call = parse_vc, }, [ITEM_VLAN_TCI] = { .name = "tci", .help = "tag control information", .next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param), .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan, tci)), }, [ITEM_VLAN_PCP] = { .name = "pcp", .help = "priority code point", .next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param), .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan, tci, "\xe0\x00")), }, [ITEM_VLAN_DEI] = { .name = "dei", .help = "drop eligible indicator", .next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param), .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan, tci, "\x10\x00")), }, [ITEM_VLAN_VID] = { .name = "vid", .help = "VLAN identifier", .next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param), .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan, tci, "\x0f\xff")), }, [ITEM_VLAN_INNER_TYPE] = { .name = "inner_type", .help = "inner EtherType", .next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param), .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan, inner_type)), }, [ITEM_IPV4] = { .name = "ipv4", .help = "match IPv4 header", .priv = PRIV_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)), .next = NEXT(item_ipv4), .call = parse_vc, }, [ITEM_IPV4_TOS] = { .name = "tos", .help = "type of service", .next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param), .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4, hdr.type_of_service)), }, [ITEM_IPV4_TTL] = { .name = "ttl", .help = "time to live", .next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param), .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4, hdr.time_to_live)), }, [ITEM_IPV4_PROTO] = { .name = "proto", .help = "next protocol ID", .next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param), .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4, hdr.next_proto_id)), }, [ITEM_IPV4_SRC] = { .name = "src", .help = "source address", .next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param), .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4, hdr.src_addr)), }, [ITEM_IPV4_DST] = { .name = "dst", .help = "destination address", .next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param), .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4, hdr.dst_addr)), }, [ITEM_IPV6] = { .name = "ipv6", .help = "match IPv6 header", .priv = PRIV_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)), .next = NEXT(item_ipv6), .call = parse_vc, }, [ITEM_IPV6_TC] = { .name = "tc", .help = "traffic class", .next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param), .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6, hdr.vtc_flow, "\x0f\xf0\x00\x00")), }, [ITEM_IPV6_FLOW] = { .name = "flow", .help = "flow label", .next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param), .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6, hdr.vtc_flow, "\x00\x0f\xff\xff")), }, [ITEM_IPV6_PROTO] = { .name = "proto", .help = "protocol (next header)", .next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param), .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6, hdr.proto)), }, [ITEM_IPV6_HOP] = { .name = "hop", .help = "hop limit", .next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param), .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6, hdr.hop_limits)), }, [ITEM_IPV6_SRC] = { .name = "src", .help = "source address", .next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param), .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6, hdr.src_addr)), }, [ITEM_IPV6_DST] = { .name = "dst", .help = "destination address", .next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param), .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6, hdr.dst_addr)), }, [ITEM_ICMP] = { .name = "icmp", .help = "match ICMP header", .priv = PRIV_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)), .next = NEXT(item_icmp), .call = parse_vc, }, [ITEM_ICMP_TYPE] = { .name = "type", .help = "ICMP packet type", .next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param), .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp, hdr.icmp_type)), }, [ITEM_ICMP_CODE] = { .name = "code", .help = "ICMP packet code", .next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param), .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp, hdr.icmp_code)), }, [ITEM_UDP] = { .name = "udp", .help = "match UDP header", .priv = PRIV_ITEM(UDP, sizeof(struct rte_flow_item_udp)), .next = NEXT(item_udp), .call = parse_vc, }, [ITEM_UDP_SRC] = { .name = "src", .help = "UDP source port", .next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param), .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp, hdr.src_port)), }, [ITEM_UDP_DST] = { .name = "dst", .help = "UDP destination port", .next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param), .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp, hdr.dst_port)), }, [ITEM_TCP] = { .name = "tcp", .help = "match TCP header", .priv = PRIV_ITEM(TCP, sizeof(struct rte_flow_item_tcp)), .next = NEXT(item_tcp), .call = parse_vc, }, [ITEM_TCP_SRC] = { .name = "src", .help = "TCP source port", .next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param), .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp, hdr.src_port)), }, [ITEM_TCP_DST] = { .name = "dst", .help = "TCP destination port", .next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param), .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp, hdr.dst_port)), }, [ITEM_TCP_FLAGS] = { .name = "flags", .help = "TCP flags", .next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param), .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp, hdr.tcp_flags)), }, [ITEM_SCTP] = { .name = "sctp", .help = "match SCTP header", .priv = PRIV_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)), .next = NEXT(item_sctp), .call = parse_vc, }, [ITEM_SCTP_SRC] = { .name = "src", .help = "SCTP source port", .next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param), .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp, hdr.src_port)), }, [ITEM_SCTP_DST] = { .name = "dst", .help = "SCTP destination port", .next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param), .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp, hdr.dst_port)), }, [ITEM_SCTP_TAG] = { .name = "tag", .help = "validation tag", .next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param), .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp, hdr.tag)), }, [ITEM_SCTP_CKSUM] = { .name = "cksum", .help = "checksum", .next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param), .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp, hdr.cksum)), }, [ITEM_VXLAN] = { .name = "vxlan", .help = "match VXLAN header", .priv = PRIV_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)), .next = NEXT(item_vxlan), .call = parse_vc, }, [ITEM_VXLAN_VNI] = { .name = "vni", .help = "VXLAN identifier", .next = NEXT(item_vxlan, NEXT_ENTRY(UNSIGNED), item_param), .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vxlan, vni)), }, [ITEM_E_TAG] = { .name = "e_tag", .help = "match E-Tag header", .priv = PRIV_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)), .next = NEXT(item_e_tag), .call = parse_vc, }, [ITEM_E_TAG_GRP_ECID_B] = { .name = "grp_ecid_b", .help = "GRP and E-CID base", .next = NEXT(item_e_tag, NEXT_ENTRY(UNSIGNED), item_param), .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_e_tag, rsvd_grp_ecid_b, "\x3f\xff")), }, [ITEM_NVGRE] = { .name = "nvgre", .help = "match NVGRE header", .priv = PRIV_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)), .next = NEXT(item_nvgre), .call = parse_vc, }, [ITEM_NVGRE_TNI] = { .name = "tni", .help = "virtual subnet ID", .next = NEXT(item_nvgre, NEXT_ENTRY(UNSIGNED), item_param), .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_nvgre, tni)), }, [ITEM_MPLS] = { .name = "mpls", .help = "match MPLS header", .priv = PRIV_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)), .next = NEXT(item_mpls), .call = parse_vc, }, [ITEM_MPLS_LABEL] = { .name = "label", .help = "MPLS label", .next = NEXT(item_mpls, NEXT_ENTRY(UNSIGNED), item_param), .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_mpls, label_tc_s, "\xff\xff\xf0")), }, [ITEM_GRE] = { .name = "gre", .help = "match GRE header", .priv = PRIV_ITEM(GRE, sizeof(struct rte_flow_item_gre)), .next = NEXT(item_gre), .call = parse_vc, }, [ITEM_GRE_PROTO] = { .name = "protocol", .help = "GRE protocol type", .next = NEXT(item_gre, NEXT_ENTRY(UNSIGNED), item_param), .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gre, protocol)), }, [ITEM_FUZZY] = { .name = "fuzzy", .help = "fuzzy pattern match, expect faster than default", .priv = PRIV_ITEM(FUZZY, sizeof(struct rte_flow_item_fuzzy)), .next = NEXT(item_fuzzy), .call = parse_vc, }, [ITEM_FUZZY_THRESH] = { .name = "thresh", .help = "match accuracy threshold", .next = NEXT(item_fuzzy, NEXT_ENTRY(UNSIGNED), item_param), .args = ARGS(ARGS_ENTRY(struct rte_flow_item_fuzzy, thresh)), }, [ITEM_GTP] = { .name = "gtp", .help = "match GTP header", .priv = PRIV_ITEM(GTP, sizeof(struct rte_flow_item_gtp)), .next = NEXT(item_gtp), .call = parse_vc, }, [ITEM_GTP_TEID] = { .name = "teid", .help = "tunnel endpoint identifier", .next = NEXT(item_gtp, NEXT_ENTRY(UNSIGNED), item_param), .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gtp, teid)), }, [ITEM_GTPC] = { .name = "gtpc", .help = "match GTP header", .priv = PRIV_ITEM(GTPC, sizeof(struct rte_flow_item_gtp)), .next = NEXT(item_gtp), .call = parse_vc, }, [ITEM_GTPU] = { .name = "gtpu", .help = "match GTP header", .priv = PRIV_ITEM(GTPU, sizeof(struct rte_flow_item_gtp)), .next = NEXT(item_gtp), .call = parse_vc, }, [ITEM_GENEVE] = { .name = "geneve", .help = "match GENEVE header", .priv = PRIV_ITEM(GENEVE, sizeof(struct rte_flow_item_geneve)), .next = NEXT(item_geneve), .call = parse_vc, }, [ITEM_GENEVE_VNI] = { .name = "vni", .help = "virtual network identifier", .next = NEXT(item_geneve, NEXT_ENTRY(UNSIGNED), item_param), .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_geneve, vni)), }, [ITEM_GENEVE_PROTO] = { .name = "protocol", .help = "GENEVE protocol type", .next = NEXT(item_geneve, NEXT_ENTRY(UNSIGNED), item_param), .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_geneve, protocol)), }, [ITEM_VXLAN_GPE] = { .name = "vxlan-gpe", .help = "match VXLAN-GPE header", .priv = PRIV_ITEM(VXLAN_GPE, sizeof(struct rte_flow_item_vxlan_gpe)), .next = NEXT(item_vxlan_gpe), .call = parse_vc, }, [ITEM_VXLAN_GPE_VNI] = { .name = "vni", .help = "VXLAN-GPE identifier", .next = NEXT(item_vxlan_gpe, NEXT_ENTRY(UNSIGNED), item_param), .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vxlan_gpe, vni)), }, [ITEM_ARP_ETH_IPV4] = { .name = "arp_eth_ipv4", .help = "match ARP header for Ethernet/IPv4", .priv = PRIV_ITEM(ARP_ETH_IPV4, sizeof(struct rte_flow_item_arp_eth_ipv4)), .next = NEXT(item_arp_eth_ipv4), .call = parse_vc, }, [ITEM_ARP_ETH_IPV4_SHA] = { .name = "sha", .help = "sender hardware address", .next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(MAC_ADDR), item_param), .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4, sha)), }, [ITEM_ARP_ETH_IPV4_SPA] = { .name = "spa", .help = "sender IPv4 address", .next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param), .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4, spa)), }, [ITEM_ARP_ETH_IPV4_THA] = { .name = "tha", .help = "target hardware address", .next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(MAC_ADDR), item_param), .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4, tha)), }, [ITEM_ARP_ETH_IPV4_TPA] = { .name = "tpa", .help = "target IPv4 address", .next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param), .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4, tpa)), }, [ITEM_IPV6_EXT] = { .name = "ipv6_ext", .help = "match presence of any IPv6 extension header", .priv = PRIV_ITEM(IPV6_EXT, sizeof(struct rte_flow_item_ipv6_ext)), .next = NEXT(item_ipv6_ext), .call = parse_vc, }, [ITEM_IPV6_EXT_NEXT_HDR] = { .name = "next_hdr", .help = "next header", .next = NEXT(item_ipv6_ext, NEXT_ENTRY(UNSIGNED), item_param), .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6_ext, next_hdr)), }, [ITEM_ICMP6] = { .name = "icmp6", .help = "match any ICMPv6 header", .priv = PRIV_ITEM(ICMP6, sizeof(struct rte_flow_item_icmp6)), .next = NEXT(item_icmp6), .call = parse_vc, }, [ITEM_ICMP6_TYPE] = { .name = "type", .help = "ICMPv6 type", .next = NEXT(item_icmp6, NEXT_ENTRY(UNSIGNED), item_param), .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6, type)), }, [ITEM_ICMP6_CODE] = { .name = "code", .help = "ICMPv6 code", .next = NEXT(item_icmp6, NEXT_ENTRY(UNSIGNED), item_param), .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6, code)), }, [ITEM_ICMP6_ND_NS] = { .name = "icmp6_nd_ns", .help = "match ICMPv6 neighbor discovery solicitation", .priv = PRIV_ITEM(ICMP6_ND_NS, sizeof(struct rte_flow_item_icmp6_nd_ns)), .next = NEXT(item_icmp6_nd_ns), .call = parse_vc, }, [ITEM_ICMP6_ND_NS_TARGET_ADDR] = { .name = "target_addr", .help = "target address", .next = NEXT(item_icmp6_nd_ns, NEXT_ENTRY(IPV6_ADDR), item_param), .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_ns, target_addr)), }, [ITEM_ICMP6_ND_NA] = { .name = "icmp6_nd_na", .help = "match ICMPv6 neighbor discovery advertisement", .priv = PRIV_ITEM(ICMP6_ND_NA, sizeof(struct rte_flow_item_icmp6_nd_na)), .next = NEXT(item_icmp6_nd_na), .call = parse_vc, }, [ITEM_ICMP6_ND_NA_TARGET_ADDR] = { .name = "target_addr", .help = "target address", .next = NEXT(item_icmp6_nd_na, NEXT_ENTRY(IPV6_ADDR), item_param), .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_na, target_addr)), }, [ITEM_ICMP6_ND_OPT] = { .name = "icmp6_nd_opt", .help = "match presence of any ICMPv6 neighbor discovery" " option", .priv = PRIV_ITEM(ICMP6_ND_OPT, sizeof(struct rte_flow_item_icmp6_nd_opt)), .next = NEXT(item_icmp6_nd_opt), .call = parse_vc, }, [ITEM_ICMP6_ND_OPT_TYPE] = { .name = "type", .help = "ND option type", .next = NEXT(item_icmp6_nd_opt, NEXT_ENTRY(UNSIGNED), item_param), .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_opt, type)), }, [ITEM_ICMP6_ND_OPT_SLA_ETH] = { .name = "icmp6_nd_opt_sla_eth", .help = "match ICMPv6 neighbor discovery source Ethernet" " link-layer address option", .priv = PRIV_ITEM (ICMP6_ND_OPT_SLA_ETH, sizeof(struct rte_flow_item_icmp6_nd_opt_sla_eth)), .next = NEXT(item_icmp6_nd_opt_sla_eth), .call = parse_vc, }, [ITEM_ICMP6_ND_OPT_SLA_ETH_SLA] = { .name = "sla", .help = "source Ethernet LLA", .next = NEXT(item_icmp6_nd_opt_sla_eth, NEXT_ENTRY(MAC_ADDR), item_param), .args = ARGS(ARGS_ENTRY_HTON (struct rte_flow_item_icmp6_nd_opt_sla_eth, sla)), }, [ITEM_ICMP6_ND_OPT_TLA_ETH] = { .name = "icmp6_nd_opt_tla_eth", .help = "match ICMPv6 neighbor discovery target Ethernet" " link-layer address option", .priv = PRIV_ITEM (ICMP6_ND_OPT_TLA_ETH, sizeof(struct rte_flow_item_icmp6_nd_opt_tla_eth)), .next = NEXT(item_icmp6_nd_opt_tla_eth), .call = parse_vc, }, [ITEM_ICMP6_ND_OPT_TLA_ETH_TLA] = { .name = "tla", .help = "target Ethernet LLA", .next = NEXT(item_icmp6_nd_opt_tla_eth, NEXT_ENTRY(MAC_ADDR), item_param), .args = ARGS(ARGS_ENTRY_HTON (struct rte_flow_item_icmp6_nd_opt_tla_eth, tla)), }, [ITEM_META] = { .name = "meta", .help = "match metadata header", .priv = PRIV_ITEM(META, sizeof(struct rte_flow_item_meta)), .next = NEXT(item_meta), .call = parse_vc, }, [ITEM_META_DATA] = { .name = "data", .help = "metadata value", .next = NEXT(item_meta, NEXT_ENTRY(UNSIGNED), item_param), .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_meta, data, "\xff\xff\xff\xff")), }, /* Validate/create actions. */ [ACTIONS] = { .name = "actions", .help = "submit a list of associated actions", .next = NEXT(next_action), .call = parse_vc, }, [ACTION_NEXT] = { .name = "/", .help = "specify next action", .next = NEXT(next_action), }, [ACTION_END] = { .name = "end", .help = "end list of actions", .priv = PRIV_ACTION(END, 0), .call = parse_vc, }, [ACTION_VOID] = { .name = "void", .help = "no-op action", .priv = PRIV_ACTION(VOID, 0), .next = NEXT(NEXT_ENTRY(ACTION_NEXT)), .call = parse_vc, }, [ACTION_PASSTHRU] = { .name = "passthru", .help = "let subsequent rule process matched packets", .priv = PRIV_ACTION(PASSTHRU, 0), .next = NEXT(NEXT_ENTRY(ACTION_NEXT)), .call = parse_vc, }, [ACTION_JUMP] = { .name = "jump", .help = "redirect traffic to a given group", .priv = PRIV_ACTION(JUMP, sizeof(struct rte_flow_action_jump)), .next = NEXT(action_jump), .call = parse_vc, }, [ACTION_JUMP_GROUP] = { .name = "group", .help = "group to redirect traffic to", .next = NEXT(action_jump, NEXT_ENTRY(UNSIGNED)), .args = ARGS(ARGS_ENTRY(struct rte_flow_action_jump, group)), .call = parse_vc_conf, }, [ACTION_MARK] = { .name = "mark", .help = "attach 32 bit value to packets", .priv = PRIV_ACTION(MARK, sizeof(struct rte_flow_action_mark)), .next = NEXT(action_mark), .call = parse_vc, }, [ACTION_MARK_ID] = { .name = "id", .help = "32 bit value to return with packets", .next = NEXT(action_mark, NEXT_ENTRY(UNSIGNED)), .args = ARGS(ARGS_ENTRY(struct rte_flow_action_mark, id)), .call = parse_vc_conf, }, [ACTION_FLAG] = { .name = "flag", .help = "flag packets", .priv = PRIV_ACTION(FLAG, 0), .next = NEXT(NEXT_ENTRY(ACTION_NEXT)), .call = parse_vc, }, [ACTION_QUEUE] = { .name = "queue", .help = "assign packets to a given queue index", .priv = PRIV_ACTION(QUEUE, sizeof(struct rte_flow_action_queue)), .next = NEXT(action_queue), .call = parse_vc, }, [ACTION_QUEUE_INDEX] = { .name = "index", .help = "queue index to use", .next = NEXT(action_queue, NEXT_ENTRY(UNSIGNED)), .args = ARGS(ARGS_ENTRY(struct rte_flow_action_queue, index)), .call = parse_vc_conf, }, [ACTION_DROP] = { .name = "drop", .help = "drop packets (note: passthru has priority)", .priv = PRIV_ACTION(DROP, 0), .next = NEXT(NEXT_ENTRY(ACTION_NEXT)), .call = parse_vc, }, [ACTION_COUNT] = { .name = "count", .help = "enable counters for this rule", .priv = PRIV_ACTION(COUNT, sizeof(struct rte_flow_action_count)), .next = NEXT(action_count), .call = parse_vc, }, [ACTION_COUNT_ID] = { .name = "identifier", .help = "counter identifier to use", .next = NEXT(action_count, NEXT_ENTRY(UNSIGNED)), .args = ARGS(ARGS_ENTRY(struct rte_flow_action_count, id)), .call = parse_vc_conf, }, [ACTION_COUNT_SHARED] = { .name = "shared", .help = "shared counter", .next = NEXT(action_count, NEXT_ENTRY(BOOLEAN)), .args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_count, shared, 1)), .call = parse_vc_conf, }, [ACTION_RSS] = { .name = "rss", .help = "spread packets among several queues", .priv = PRIV_ACTION(RSS, sizeof(struct action_rss_data)), .next = NEXT(action_rss), .call = parse_vc_action_rss, }, [ACTION_RSS_FUNC] = { .name = "func", .help = "RSS hash function to apply", .next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_FUNC_DEFAULT, ACTION_RSS_FUNC_TOEPLITZ, ACTION_RSS_FUNC_SIMPLE_XOR)), }, [ACTION_RSS_FUNC_DEFAULT] = { .name = "default", .help = "default hash function", .call = parse_vc_action_rss_func, }, [ACTION_RSS_FUNC_TOEPLITZ] = { .name = "toeplitz", .help = "Toeplitz hash function", .call = parse_vc_action_rss_func, }, [ACTION_RSS_FUNC_SIMPLE_XOR] = { .name = "simple_xor", .help = "simple XOR hash function", .call = parse_vc_action_rss_func, }, [ACTION_RSS_LEVEL] = { .name = "level", .help = "encapsulation level for \"types\"", .next = NEXT(action_rss, NEXT_ENTRY(UNSIGNED)), .args = ARGS(ARGS_ENTRY_ARB (offsetof(struct action_rss_data, conf) + offsetof(struct rte_flow_action_rss, level), sizeof(((struct rte_flow_action_rss *)0)-> level))), }, [ACTION_RSS_TYPES] = { .name = "types", .help = "specific RSS hash types", .next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_TYPE)), }, [ACTION_RSS_TYPE] = { .name = "{type}", .help = "RSS hash type", .call = parse_vc_action_rss_type, .comp = comp_vc_action_rss_type, }, [ACTION_RSS_KEY] = { .name = "key", .help = "RSS hash key", .next = NEXT(action_rss, NEXT_ENTRY(HEX)), .args = ARGS(ARGS_ENTRY_ARB(0, 0), ARGS_ENTRY_ARB (offsetof(struct action_rss_data, conf) + offsetof(struct rte_flow_action_rss, key_len), sizeof(((struct rte_flow_action_rss *)0)-> key_len)), ARGS_ENTRY(struct action_rss_data, key)), }, [ACTION_RSS_KEY_LEN] = { .name = "key_len", .help = "RSS hash key length in bytes", .next = NEXT(action_rss, NEXT_ENTRY(UNSIGNED)), .args = ARGS(ARGS_ENTRY_ARB_BOUNDED (offsetof(struct action_rss_data, conf) + offsetof(struct rte_flow_action_rss, key_len), sizeof(((struct rte_flow_action_rss *)0)-> key_len), 0, RSS_HASH_KEY_LENGTH)), }, [ACTION_RSS_QUEUES] = { .name = "queues", .help = "queue indices to use", .next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_QUEUE)), .call = parse_vc_conf, }, [ACTION_RSS_QUEUE] = { .name = "{queue}", .help = "queue index", .call = parse_vc_action_rss_queue, .comp = comp_vc_action_rss_queue, }, [ACTION_PF] = { .name = "pf", .help = "direct traffic to physical function", .priv = PRIV_ACTION(PF, 0), .next = NEXT(NEXT_ENTRY(ACTION_NEXT)), .call = parse_vc, }, [ACTION_VF] = { .name = "vf", .help = "direct traffic to a virtual function ID", .priv = PRIV_ACTION(VF, sizeof(struct rte_flow_action_vf)), .next = NEXT(action_vf), .call = parse_vc, }, [ACTION_VF_ORIGINAL] = { .name = "original", .help = "use original VF ID if possible", .next = NEXT(action_vf, NEXT_ENTRY(BOOLEAN)), .args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_vf, original, 1)), .call = parse_vc_conf, }, [ACTION_VF_ID] = { .name = "id", .help = "VF ID", .next = NEXT(action_vf, NEXT_ENTRY(UNSIGNED)), .args = ARGS(ARGS_ENTRY(struct rte_flow_action_vf, id)), .call = parse_vc_conf, }, [ACTION_PHY_PORT] = { .name = "phy_port", .help = "direct packets to physical port index", .priv = PRIV_ACTION(PHY_PORT, sizeof(struct rte_flow_action_phy_port)), .next = NEXT(action_phy_port), .call = parse_vc, }, [ACTION_PHY_PORT_ORIGINAL] = { .name = "original", .help = "use original port index if possible", .next = NEXT(action_phy_port, NEXT_ENTRY(BOOLEAN)), .args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_phy_port, original, 1)), .call = parse_vc_conf, }, [ACTION_PHY_PORT_INDEX] = { .name = "index", .help = "physical port index", .next = NEXT(action_phy_port, NEXT_ENTRY(UNSIGNED)), .args = ARGS(ARGS_ENTRY(struct rte_flow_action_phy_port, index)), .call = parse_vc_conf, }, [ACTION_PORT_ID] = { .name = "port_id", .help = "direct matching traffic to a given DPDK port ID", .priv = PRIV_ACTION(PORT_ID, sizeof(struct rte_flow_action_port_id)), .next = NEXT(action_port_id), .call = parse_vc, }, [ACTION_PORT_ID_ORIGINAL] = { .name = "original", .help = "use original DPDK port ID if possible", .next = NEXT(action_port_id, NEXT_ENTRY(BOOLEAN)), .args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_port_id, original, 1)), .call = parse_vc_conf, }, [ACTION_PORT_ID_ID] = { .name = "id", .help = "DPDK port ID", .next = NEXT(action_port_id, NEXT_ENTRY(UNSIGNED)), .args = ARGS(ARGS_ENTRY(struct rte_flow_action_port_id, id)), .call = parse_vc_conf, }, [ACTION_METER] = { .name = "meter", .help = "meter the directed packets at given id", .priv = PRIV_ACTION(METER, sizeof(struct rte_flow_action_meter)), .next = NEXT(action_meter), .call = parse_vc, }, [ACTION_METER_ID] = { .name = "mtr_id", .help = "meter id to use", .next = NEXT(action_meter, NEXT_ENTRY(UNSIGNED)), .args = ARGS(ARGS_ENTRY(struct rte_flow_action_meter, mtr_id)), .call = parse_vc_conf, }, [ACTION_OF_SET_MPLS_TTL] = { .name = "of_set_mpls_ttl", .help = "OpenFlow's OFPAT_SET_MPLS_TTL", .priv = PRIV_ACTION (OF_SET_MPLS_TTL, sizeof(struct rte_flow_action_of_set_mpls_ttl)), .next = NEXT(action_of_set_mpls_ttl), .call = parse_vc, }, [ACTION_OF_SET_MPLS_TTL_MPLS_TTL] = { .name = "mpls_ttl", .help = "MPLS TTL", .next = NEXT(action_of_set_mpls_ttl, NEXT_ENTRY(UNSIGNED)), .args = ARGS(ARGS_ENTRY(struct rte_flow_action_of_set_mpls_ttl, mpls_ttl)), .call = parse_vc_conf, }, [ACTION_OF_DEC_MPLS_TTL] = { .name = "of_dec_mpls_ttl", .help = "OpenFlow's OFPAT_DEC_MPLS_TTL", .priv = PRIV_ACTION(OF_DEC_MPLS_TTL, 0), .next = NEXT(NEXT_ENTRY(ACTION_NEXT)), .call = parse_vc, }, [ACTION_OF_SET_NW_TTL] = { .name = "of_set_nw_ttl", .help = "OpenFlow's OFPAT_SET_NW_TTL", .priv = PRIV_ACTION (OF_SET_NW_TTL, sizeof(struct rte_flow_action_of_set_nw_ttl)), .next = NEXT(action_of_set_nw_ttl), .call = parse_vc, }, [ACTION_OF_SET_NW_TTL_NW_TTL] = { .name = "nw_ttl", .help = "IP TTL", .next = NEXT(action_of_set_nw_ttl, NEXT_ENTRY(UNSIGNED)), .args = ARGS(ARGS_ENTRY(struct rte_flow_action_of_set_nw_ttl, nw_ttl)), .call = parse_vc_conf, }, [ACTION_OF_DEC_NW_TTL] = { .name = "of_dec_nw_ttl", .help = "OpenFlow's OFPAT_DEC_NW_TTL", .priv = PRIV_ACTION(OF_DEC_NW_TTL, 0), .next = NEXT(NEXT_ENTRY(ACTION_NEXT)), .call = parse_vc, }, [ACTION_OF_COPY_TTL_OUT] = { .name = "of_copy_ttl_out", .help = "OpenFlow's OFPAT_COPY_TTL_OUT", .priv = PRIV_ACTION(OF_COPY_TTL_OUT, 0), .next = NEXT(NEXT_ENTRY(ACTION_NEXT)), .call = parse_vc, }, [ACTION_OF_COPY_TTL_IN] = { .name = "of_copy_ttl_in", .help = "OpenFlow's OFPAT_COPY_TTL_IN", .priv = PRIV_ACTION(OF_COPY_TTL_IN, 0), .next = NEXT(NEXT_ENTRY(ACTION_NEXT)), .call = parse_vc, }, [ACTION_OF_POP_VLAN] = { .name = "of_pop_vlan", .help = "OpenFlow's OFPAT_POP_VLAN", .priv = PRIV_ACTION(OF_POP_VLAN, 0), .next = NEXT(NEXT_ENTRY(ACTION_NEXT)), .call = parse_vc, }, [ACTION_OF_PUSH_VLAN] = { .name = "of_push_vlan", .help = "OpenFlow's OFPAT_PUSH_VLAN", .priv = PRIV_ACTION (OF_PUSH_VLAN, sizeof(struct rte_flow_action_of_push_vlan)), .next = NEXT(action_of_push_vlan), .call = parse_vc, }, [ACTION_OF_PUSH_VLAN_ETHERTYPE] = { .name = "ethertype", .help = "EtherType", .next = NEXT(action_of_push_vlan, NEXT_ENTRY(UNSIGNED)), .args = ARGS(ARGS_ENTRY_HTON (struct rte_flow_action_of_push_vlan, ethertype)), .call = parse_vc_conf, }, [ACTION_OF_SET_VLAN_VID] = { .name = "of_set_vlan_vid", .help = "OpenFlow's OFPAT_SET_VLAN_VID", .priv = PRIV_ACTION (OF_SET_VLAN_VID, sizeof(struct rte_flow_action_of_set_vlan_vid)), .next = NEXT(action_of_set_vlan_vid), .call = parse_vc, }, [ACTION_OF_SET_VLAN_VID_VLAN_VID] = { .name = "vlan_vid", .help = "VLAN id", .next = NEXT(action_of_set_vlan_vid, NEXT_ENTRY(UNSIGNED)), .args = ARGS(ARGS_ENTRY_HTON (struct rte_flow_action_of_set_vlan_vid, vlan_vid)), .call = parse_vc_conf, }, [ACTION_OF_SET_VLAN_PCP] = { .name = "of_set_vlan_pcp", .help = "OpenFlow's OFPAT_SET_VLAN_PCP", .priv = PRIV_ACTION (OF_SET_VLAN_PCP, sizeof(struct rte_flow_action_of_set_vlan_pcp)), .next = NEXT(action_of_set_vlan_pcp), .call = parse_vc, }, [ACTION_OF_SET_VLAN_PCP_VLAN_PCP] = { .name = "vlan_pcp", .help = "VLAN priority", .next = NEXT(action_of_set_vlan_pcp, NEXT_ENTRY(UNSIGNED)), .args = ARGS(ARGS_ENTRY_HTON (struct rte_flow_action_of_set_vlan_pcp, vlan_pcp)), .call = parse_vc_conf, }, [ACTION_OF_POP_MPLS] = { .name = "of_pop_mpls", .help = "OpenFlow's OFPAT_POP_MPLS", .priv = PRIV_ACTION(OF_POP_MPLS, sizeof(struct rte_flow_action_of_pop_mpls)), .next = NEXT(action_of_pop_mpls), .call = parse_vc, }, [ACTION_OF_POP_MPLS_ETHERTYPE] = { .name = "ethertype", .help = "EtherType", .next = NEXT(action_of_pop_mpls, NEXT_ENTRY(UNSIGNED)), .args = ARGS(ARGS_ENTRY_HTON (struct rte_flow_action_of_pop_mpls, ethertype)), .call = parse_vc_conf, }, [ACTION_OF_PUSH_MPLS] = { .name = "of_push_mpls", .help = "OpenFlow's OFPAT_PUSH_MPLS", .priv = PRIV_ACTION (OF_PUSH_MPLS, sizeof(struct rte_flow_action_of_push_mpls)), .next = NEXT(action_of_push_mpls), .call = parse_vc, }, [ACTION_OF_PUSH_MPLS_ETHERTYPE] = { .name = "ethertype", .help = "EtherType", .next = NEXT(action_of_push_mpls, NEXT_ENTRY(UNSIGNED)), .args = ARGS(ARGS_ENTRY_HTON (struct rte_flow_action_of_push_mpls, ethertype)), .call = parse_vc_conf, }, [ACTION_VXLAN_ENCAP] = { .name = "vxlan_encap", .help = "VXLAN encapsulation, uses configuration set by \"set" " vxlan\"", .priv = PRIV_ACTION(VXLAN_ENCAP, sizeof(struct action_vxlan_encap_data)), .next = NEXT(NEXT_ENTRY(ACTION_NEXT)), .call = parse_vc_action_vxlan_encap, }, [ACTION_VXLAN_DECAP] = { .name = "vxlan_decap", .help = "Performs a decapsulation action by stripping all" " headers of the VXLAN tunnel network overlay from the" " matched flow.", .priv = PRIV_ACTION(VXLAN_DECAP, 0), .next = NEXT(NEXT_ENTRY(ACTION_NEXT)), .call = parse_vc, }, [ACTION_NVGRE_ENCAP] = { .name = "nvgre_encap", .help = "NVGRE encapsulation, uses configuration set by \"set" " nvgre\"", .priv = PRIV_ACTION(NVGRE_ENCAP, sizeof(struct action_nvgre_encap_data)), .next = NEXT(NEXT_ENTRY(ACTION_NEXT)), .call = parse_vc_action_nvgre_encap, }, [ACTION_NVGRE_DECAP] = { .name = "nvgre_decap", .help = "Performs a decapsulation action by stripping all" " headers of the NVGRE tunnel network overlay from the" " matched flow.", .priv = PRIV_ACTION(NVGRE_DECAP, 0), .next = NEXT(NEXT_ENTRY(ACTION_NEXT)), .call = parse_vc, }, [ACTION_L2_ENCAP] = { .name = "l2_encap", .help = "l2 encap, uses configuration set by" " \"set l2_encap\"", .priv = PRIV_ACTION(RAW_ENCAP, sizeof(struct action_raw_encap_data)), .next = NEXT(NEXT_ENTRY(ACTION_NEXT)), .call = parse_vc_action_l2_encap, }, [ACTION_L2_DECAP] = { .name = "l2_decap", .help = "l2 decap, uses configuration set by" " \"set l2_decap\"", .priv = PRIV_ACTION(RAW_DECAP, sizeof(struct action_raw_decap_data)), .next = NEXT(NEXT_ENTRY(ACTION_NEXT)), .call = parse_vc_action_l2_decap, }, [ACTION_MPLSOGRE_ENCAP] = { .name = "mplsogre_encap", .help = "mplsogre encapsulation, uses configuration set by" " \"set mplsogre_encap\"", .priv = PRIV_ACTION(RAW_ENCAP, sizeof(struct action_raw_encap_data)), .next = NEXT(NEXT_ENTRY(ACTION_NEXT)), .call = parse_vc_action_mplsogre_encap, }, [ACTION_MPLSOGRE_DECAP] = { .name = "mplsogre_decap", .help = "mplsogre decapsulation, uses configuration set by" " \"set mplsogre_decap\"", .priv = PRIV_ACTION(RAW_DECAP, sizeof(struct action_raw_decap_data)), .next = NEXT(NEXT_ENTRY(ACTION_NEXT)), .call = parse_vc_action_mplsogre_decap, }, [ACTION_MPLSOUDP_ENCAP] = { .name = "mplsoudp_encap", .help = "mplsoudp encapsulation, uses configuration set by" " \"set mplsoudp_encap\"", .priv = PRIV_ACTION(RAW_ENCAP, sizeof(struct action_raw_encap_data)), .next = NEXT(NEXT_ENTRY(ACTION_NEXT)), .call = parse_vc_action_mplsoudp_encap, }, [ACTION_MPLSOUDP_DECAP] = { .name = "mplsoudp_decap", .help = "mplsoudp decapsulation, uses configuration set by" " \"set mplsoudp_decap\"", .priv = PRIV_ACTION(RAW_DECAP, sizeof(struct action_raw_decap_data)), .next = NEXT(NEXT_ENTRY(ACTION_NEXT)), .call = parse_vc_action_mplsoudp_decap, }, [ACTION_SET_IPV4_SRC] = { .name = "set_ipv4_src", .help = "Set a new IPv4 source address in the outermost" " IPv4 header", .priv = PRIV_ACTION(SET_IPV4_SRC, sizeof(struct rte_flow_action_set_ipv4)), .next = NEXT(action_set_ipv4_src), .call = parse_vc, }, [ACTION_SET_IPV4_SRC_IPV4_SRC] = { .name = "ipv4_addr", .help = "new IPv4 source address to set", .next = NEXT(action_set_ipv4_src, NEXT_ENTRY(IPV4_ADDR)), .args = ARGS(ARGS_ENTRY_HTON (struct rte_flow_action_set_ipv4, ipv4_addr)), .call = parse_vc_conf, }, [ACTION_SET_IPV4_DST] = { .name = "set_ipv4_dst", .help = "Set a new IPv4 destination address in the outermost" " IPv4 header", .priv = PRIV_ACTION(SET_IPV4_DST, sizeof(struct rte_flow_action_set_ipv4)), .next = NEXT(action_set_ipv4_dst), .call = parse_vc, }, [ACTION_SET_IPV4_DST_IPV4_DST] = { .name = "ipv4_addr", .help = "new IPv4 destination address to set", .next = NEXT(action_set_ipv4_dst, NEXT_ENTRY(IPV4_ADDR)), .args = ARGS(ARGS_ENTRY_HTON (struct rte_flow_action_set_ipv4, ipv4_addr)), .call = parse_vc_conf, }, [ACTION_SET_IPV6_SRC] = { .name = "set_ipv6_src", .help = "Set a new IPv6 source address in the outermost" " IPv6 header", .priv = PRIV_ACTION(SET_IPV6_SRC, sizeof(struct rte_flow_action_set_ipv6)), .next = NEXT(action_set_ipv6_src), .call = parse_vc, }, [ACTION_SET_IPV6_SRC_IPV6_SRC] = { .name = "ipv6_addr", .help = "new IPv6 source address to set", .next = NEXT(action_set_ipv6_src, NEXT_ENTRY(IPV6_ADDR)), .args = ARGS(ARGS_ENTRY_HTON (struct rte_flow_action_set_ipv6, ipv6_addr)), .call = parse_vc_conf, }, [ACTION_SET_IPV6_DST] = { .name = "set_ipv6_dst", .help = "Set a new IPv6 destination address in the outermost" " IPv6 header", .priv = PRIV_ACTION(SET_IPV6_DST, sizeof(struct rte_flow_action_set_ipv6)), .next = NEXT(action_set_ipv6_dst), .call = parse_vc, }, [ACTION_SET_IPV6_DST_IPV6_DST] = { .name = "ipv6_addr", .help = "new IPv6 destination address to set", .next = NEXT(action_set_ipv6_dst, NEXT_ENTRY(IPV6_ADDR)), .args = ARGS(ARGS_ENTRY_HTON (struct rte_flow_action_set_ipv6, ipv6_addr)), .call = parse_vc_conf, }, [ACTION_SET_TP_SRC] = { .name = "set_tp_src", .help = "set a new source port number in the outermost" " TCP/UDP header", .priv = PRIV_ACTION(SET_TP_SRC, sizeof(struct rte_flow_action_set_tp)), .next = NEXT(action_set_tp_src), .call = parse_vc, }, [ACTION_SET_TP_SRC_TP_SRC] = { .name = "port", .help = "new source port number to set", .next = NEXT(action_set_tp_src, NEXT_ENTRY(UNSIGNED)), .args = ARGS(ARGS_ENTRY_HTON (struct rte_flow_action_set_tp, port)), .call = parse_vc_conf, }, [ACTION_SET_TP_DST] = { .name = "set_tp_dst", .help = "set a new destination port number in the outermost" " TCP/UDP header", .priv = PRIV_ACTION(SET_TP_DST, sizeof(struct rte_flow_action_set_tp)), .next = NEXT(action_set_tp_dst), .call = parse_vc, }, [ACTION_SET_TP_DST_TP_DST] = { .name = "port", .help = "new destination port number to set", .next = NEXT(action_set_tp_dst, NEXT_ENTRY(UNSIGNED)), .args = ARGS(ARGS_ENTRY_HTON (struct rte_flow_action_set_tp, port)), .call = parse_vc_conf, }, [ACTION_MAC_SWAP] = { .name = "mac_swap", .help = "Swap the source and destination MAC addresses" " in the outermost Ethernet header", .priv = PRIV_ACTION(MAC_SWAP, 0), .next = NEXT(NEXT_ENTRY(ACTION_NEXT)), .call = parse_vc, }, [ACTION_DEC_TTL] = { .name = "dec_ttl", .help = "decrease network TTL if available", .priv = PRIV_ACTION(DEC_TTL, 0), .next = NEXT(NEXT_ENTRY(ACTION_NEXT)), .call = parse_vc, }, [ACTION_SET_TTL] = { .name = "set_ttl", .help = "set ttl value", .priv = PRIV_ACTION(SET_TTL, sizeof(struct rte_flow_action_set_ttl)), .next = NEXT(action_set_ttl), .call = parse_vc, }, [ACTION_SET_TTL_TTL] = { .name = "ttl_value", .help = "new ttl value to set", .next = NEXT(action_set_ttl, NEXT_ENTRY(UNSIGNED)), .args = ARGS(ARGS_ENTRY_HTON (struct rte_flow_action_set_ttl, ttl_value)), .call = parse_vc_conf, }, [ACTION_SET_MAC_SRC] = { .name = "set_mac_src", .help = "set source mac address", .priv = PRIV_ACTION(SET_MAC_SRC, sizeof(struct rte_flow_action_set_mac)), .next = NEXT(action_set_mac_src), .call = parse_vc, }, [ACTION_SET_MAC_SRC_MAC_SRC] = { .name = "mac_addr", .help = "new source mac address", .next = NEXT(action_set_mac_src, NEXT_ENTRY(MAC_ADDR)), .args = ARGS(ARGS_ENTRY_HTON (struct rte_flow_action_set_mac, mac_addr)), .call = parse_vc_conf, }, [ACTION_SET_MAC_DST] = { .name = "set_mac_dst", .help = "set destination mac address", .priv = PRIV_ACTION(SET_MAC_DST, sizeof(struct rte_flow_action_set_mac)), .next = NEXT(action_set_mac_dst), .call = parse_vc, }, [ACTION_SET_MAC_DST_MAC_DST] = { .name = "mac_addr", .help = "new destination mac address to set", .next = NEXT(action_set_mac_dst, NEXT_ENTRY(MAC_ADDR)), .args = ARGS(ARGS_ENTRY_HTON (struct rte_flow_action_set_mac, mac_addr)), .call = parse_vc_conf, }, }; /** Remove and return last entry from argument stack. */ static const struct arg * pop_args(struct context *ctx) { return ctx->args_num ? ctx->args[--ctx->args_num] : NULL; } /** Add entry on top of the argument stack. */ static int push_args(struct context *ctx, const struct arg *arg) { if (ctx->args_num == CTX_STACK_SIZE) return -1; ctx->args[ctx->args_num++] = arg; return 0; } /** Spread value into buffer according to bit-mask. */ static size_t arg_entry_bf_fill(void *dst, uintmax_t val, const struct arg *arg) { uint32_t i = arg->size; uint32_t end = 0; int sub = 1; int add = 0; size_t len = 0; if (!arg->mask) return 0; #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN if (!arg->hton) { i = 0; end = arg->size; sub = 0; add = 1; } #endif while (i != end) { unsigned int shift = 0; uint8_t *buf = (uint8_t *)dst + arg->offset + (i -= sub); for (shift = 0; arg->mask[i] >> shift; ++shift) { if (!(arg->mask[i] & (1 << shift))) continue; ++len; if (!dst) continue; *buf &= ~(1 << shift); *buf |= (val & 1) << shift; val >>= 1; } i += add; } return len; } /** Compare a string with a partial one of a given length. */ static int strcmp_partial(const char *full, const char *partial, size_t partial_len) { int r = strncmp(full, partial, partial_len); if (r) return r; if (strlen(full) <= partial_len) return 0; return full[partial_len]; } /** * Parse a prefix length and generate a bit-mask. * * Last argument (ctx->args) is retrieved to determine mask size, storage * location and whether the result must use network byte ordering. */ static int parse_prefix(struct context *ctx, const struct token *token, const char *str, unsigned int len, void *buf, unsigned int size) { const struct arg *arg = pop_args(ctx); static const uint8_t conv[] = "\x00\x80\xc0\xe0\xf0\xf8\xfc\xfe\xff"; char *end; uintmax_t u; unsigned int bytes; unsigned int extra; (void)token; /* Argument is expected. */ if (!arg) return -1; errno = 0; u = strtoumax(str, &end, 0); if (errno || (size_t)(end - str) != len) goto error; if (arg->mask) { uintmax_t v = 0; extra = arg_entry_bf_fill(NULL, 0, arg); if (u > extra) goto error; if (!ctx->object) return len; extra -= u; while (u--) (v <<= 1, v |= 1); v <<= extra; if (!arg_entry_bf_fill(ctx->object, v, arg) || !arg_entry_bf_fill(ctx->objmask, -1, arg)) goto error; return len; } bytes = u / 8; extra = u % 8; size = arg->size; if (bytes > size || bytes + !!extra > size) goto error; if (!ctx->object) return len; buf = (uint8_t *)ctx->object + arg->offset; #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN if (!arg->hton) { memset((uint8_t *)buf + size - bytes, 0xff, bytes); memset(buf, 0x00, size - bytes); if (extra) ((uint8_t *)buf)[size - bytes - 1] = conv[extra]; } else #endif { memset(buf, 0xff, bytes); memset((uint8_t *)buf + bytes, 0x00, size - bytes); if (extra) ((uint8_t *)buf)[bytes] = conv[extra]; } if (ctx->objmask) memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size); return len; error: push_args(ctx, arg); return -1; } /** Default parsing function for token name matching. */ static int parse_default(struct context *ctx, const struct token *token, const char *str, unsigned int len, void *buf, unsigned int size) { (void)ctx; (void)buf; (void)size; if (strcmp_partial(token->name, str, len)) return -1; return len; } /** Parse flow command, initialize output buffer for subsequent tokens. */ static int parse_init(struct context *ctx, const struct token *token, const char *str, unsigned int len, void *buf, unsigned int size) { struct buffer *out = buf; /* Token name must match. */ if (parse_default(ctx, token, str, len, NULL, 0) < 0) return -1; /* Nothing else to do if there is no buffer. */ if (!out) return len; /* Make sure buffer is large enough. */ if (size < sizeof(*out)) return -1; /* Initialize buffer. */ memset(out, 0x00, sizeof(*out)); memset((uint8_t *)out + sizeof(*out), 0x22, size - sizeof(*out)); ctx->objdata = 0; ctx->object = out; ctx->objmask = NULL; return len; } /** Parse tokens for validate/create commands. */ static int parse_vc(struct context *ctx, const struct token *token, const char *str, unsigned int len, void *buf, unsigned int size) { struct buffer *out = buf; uint8_t *data; uint32_t data_size; /* Token name must match. */ if (parse_default(ctx, token, str, len, NULL, 0) < 0) return -1; /* Nothing else to do if there is no buffer. */ if (!out) return len; if (!out->command) { if (ctx->curr != VALIDATE && ctx->curr != CREATE) return -1; if (sizeof(*out) > size) return -1; out->command = ctx->curr; ctx->objdata = 0; ctx->object = out; ctx->objmask = NULL; out->args.vc.data = (uint8_t *)out + size; return len; } ctx->objdata = 0; ctx->object = &out->args.vc.attr; ctx->objmask = NULL; switch (ctx->curr) { case GROUP: case PRIORITY: return len; case INGRESS: out->args.vc.attr.ingress = 1; return len; case EGRESS: out->args.vc.attr.egress = 1; return len; case TRANSFER: out->args.vc.attr.transfer = 1; return len; case PATTERN: out->args.vc.pattern = (void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1), sizeof(double)); ctx->object = out->args.vc.pattern; ctx->objmask = NULL; return len; case ACTIONS: out->args.vc.actions = (void *)RTE_ALIGN_CEIL((uintptr_t) (out->args.vc.pattern + out->args.vc.pattern_n), sizeof(double)); ctx->object = out->args.vc.actions; ctx->objmask = NULL; return len; default: if (!token->priv) return -1; break; } if (!out->args.vc.actions) { const struct parse_item_priv *priv = token->priv; struct rte_flow_item *item = out->args.vc.pattern + out->args.vc.pattern_n; data_size = priv->size * 3; /* spec, last, mask */ data = (void *)RTE_ALIGN_FLOOR((uintptr_t) (out->args.vc.data - data_size), sizeof(double)); if ((uint8_t *)item + sizeof(*item) > data) return -1; *item = (struct rte_flow_item){ .type = priv->type, }; ++out->args.vc.pattern_n; ctx->object = item; ctx->objmask = NULL; } else { const struct parse_action_priv *priv = token->priv; struct rte_flow_action *action = out->args.vc.actions + out->args.vc.actions_n; data_size = priv->size; /* configuration */ data = (void *)RTE_ALIGN_FLOOR((uintptr_t) (out->args.vc.data - data_size), sizeof(double)); if ((uint8_t *)action + sizeof(*action) > data) return -1; *action = (struct rte_flow_action){ .type = priv->type, .conf = data_size ? data : NULL, }; ++out->args.vc.actions_n; ctx->object = action; ctx->objmask = NULL; } memset(data, 0, data_size); out->args.vc.data = data; ctx->objdata = data_size; return len; } /** Parse pattern item parameter type. */ static int parse_vc_spec(struct context *ctx, const struct token *token, const char *str, unsigned int len, void *buf, unsigned int size) { struct buffer *out = buf; struct rte_flow_item *item; uint32_t data_size; int index; int objmask = 0; (void)size; /* Token name must match. */ if (parse_default(ctx, token, str, len, NULL, 0) < 0) return -1; /* Parse parameter types. */ switch (ctx->curr) { static const enum index prefix[] = NEXT_ENTRY(PREFIX); case ITEM_PARAM_IS: index = 0; objmask = 1; break; case ITEM_PARAM_SPEC: index = 0; break; case ITEM_PARAM_LAST: index = 1; break; case ITEM_PARAM_PREFIX: /* Modify next token to expect a prefix. */ if (ctx->next_num < 2) return -1; ctx->next[ctx->next_num - 2] = prefix; /* Fall through. */ case ITEM_PARAM_MASK: index = 2; break; default: return -1; } /* Nothing else to do if there is no buffer. */ if (!out) return len; if (!out->args.vc.pattern_n) return -1; item = &out->args.vc.pattern[out->args.vc.pattern_n - 1]; data_size = ctx->objdata / 3; /* spec, last, mask */ /* Point to selected object. */ ctx->object = out->args.vc.data + (data_size * index); if (objmask) { ctx->objmask = out->args.vc.data + (data_size * 2); /* mask */ item->mask = ctx->objmask; } else ctx->objmask = NULL; /* Update relevant item pointer. */ *((const void **[]){ &item->spec, &item->last, &item->mask })[index] = ctx->object; return len; } /** Parse action configuration field. */ static int parse_vc_conf(struct context *ctx, const struct token *token, const char *str, unsigned int len, void *buf, unsigned int size) { struct buffer *out = buf; (void)size; /* Token name must match. */ if (parse_default(ctx, token, str, len, NULL, 0) < 0) return -1; /* Nothing else to do if there is no buffer. */ if (!out) return len; /* Point to selected object. */ ctx->object = out->args.vc.data; ctx->objmask = NULL; return len; } /** Parse RSS action. */ static int parse_vc_action_rss(struct context *ctx, const struct token *token, const char *str, unsigned int len, void *buf, unsigned int size) { struct buffer *out = buf; struct rte_flow_action *action; struct action_rss_data *action_rss_data; unsigned int i; int ret; ret = parse_vc(ctx, token, str, len, buf, size); if (ret < 0) return ret; /* Nothing else to do if there is no buffer. */ if (!out) return ret; if (!out->args.vc.actions_n) return -1; action = &out->args.vc.actions[out->args.vc.actions_n - 1]; /* Point to selected object. */ ctx->object = out->args.vc.data; ctx->objmask = NULL; /* Set up default configuration. */ action_rss_data = ctx->object; *action_rss_data = (struct action_rss_data){ .conf = (struct rte_flow_action_rss){ .func = RTE_ETH_HASH_FUNCTION_DEFAULT, .level = 0, .types = rss_hf, .key_len = sizeof(action_rss_data->key), .queue_num = RTE_MIN(nb_rxq, ACTION_RSS_QUEUE_NUM), .key = action_rss_data->key, .queue = action_rss_data->queue, }, .key = "testpmd's default RSS hash key, " "override it for better balancing", .queue = { 0 }, }; for (i = 0; i < action_rss_data->conf.queue_num; ++i) action_rss_data->queue[i] = i; if (!port_id_is_invalid(ctx->port, DISABLED_WARN) && ctx->port != (portid_t)RTE_PORT_ALL) { struct rte_eth_dev_info info; rte_eth_dev_info_get(ctx->port, &info); action_rss_data->conf.key_len = RTE_MIN(sizeof(action_rss_data->key), info.hash_key_size); } action->conf = &action_rss_data->conf; return ret; } /** * Parse func field for RSS action. * * The RTE_ETH_HASH_FUNCTION_* value to assign is derived from the * ACTION_RSS_FUNC_* index that called this function. */ static int parse_vc_action_rss_func(struct context *ctx, const struct token *token, const char *str, unsigned int len, void *buf, unsigned int size) { struct action_rss_data *action_rss_data; enum rte_eth_hash_function func; (void)buf; (void)size; /* Token name must match. */ if (parse_default(ctx, token, str, len, NULL, 0) < 0) return -1; switch (ctx->curr) { case ACTION_RSS_FUNC_DEFAULT: func = RTE_ETH_HASH_FUNCTION_DEFAULT; break; case ACTION_RSS_FUNC_TOEPLITZ: func = RTE_ETH_HASH_FUNCTION_TOEPLITZ; break; case ACTION_RSS_FUNC_SIMPLE_XOR: func = RTE_ETH_HASH_FUNCTION_SIMPLE_XOR; break; default: return -1; } if (!ctx->object) return len; action_rss_data = ctx->object; action_rss_data->conf.func = func; return len; } /** * Parse type field for RSS action. * * Valid tokens are type field names and the "end" token. */ static int parse_vc_action_rss_type(struct context *ctx, const struct token *token, const char *str, unsigned int len, void *buf, unsigned int size) { static const enum index next[] = NEXT_ENTRY(ACTION_RSS_TYPE); struct action_rss_data *action_rss_data; unsigned int i; (void)token; (void)buf; (void)size; if (ctx->curr != ACTION_RSS_TYPE) return -1; if (!(ctx->objdata >> 16) && ctx->object) { action_rss_data = ctx->object; action_rss_data->conf.types = 0; } if (!strcmp_partial("end", str, len)) { ctx->objdata &= 0xffff; return len; } for (i = 0; rss_type_table[i].str; ++i) if (!strcmp_partial(rss_type_table[i].str, str, len)) break; if (!rss_type_table[i].str) return -1; ctx->objdata = 1 << 16 | (ctx->objdata & 0xffff); /* Repeat token. */ if (ctx->next_num == RTE_DIM(ctx->next)) return -1; ctx->next[ctx->next_num++] = next; if (!ctx->object) return len; action_rss_data = ctx->object; action_rss_data->conf.types |= rss_type_table[i].rss_type; return len; } /** * Parse queue field for RSS action. * * Valid tokens are queue indices and the "end" token. */ static int parse_vc_action_rss_queue(struct context *ctx, const struct token *token, const char *str, unsigned int len, void *buf, unsigned int size) { static const enum index next[] = NEXT_ENTRY(ACTION_RSS_QUEUE); struct action_rss_data *action_rss_data; const struct arg *arg; int ret; int i; (void)token; (void)buf; (void)size; if (ctx->curr != ACTION_RSS_QUEUE) return -1; i = ctx->objdata >> 16; if (!strcmp_partial("end", str, len)) { ctx->objdata &= 0xffff; goto end; } if (i >= ACTION_RSS_QUEUE_NUM) return -1; arg = ARGS_ENTRY_ARB(offsetof(struct action_rss_data, queue) + i * sizeof(action_rss_data->queue[i]), sizeof(action_rss_data->queue[i])); if (push_args(ctx, arg)) return -1; ret = parse_int(ctx, token, str, len, NULL, 0); if (ret < 0) { pop_args(ctx); return -1; } ++i; ctx->objdata = i << 16 | (ctx->objdata & 0xffff); /* Repeat token. */ if (ctx->next_num == RTE_DIM(ctx->next)) return -1; ctx->next[ctx->next_num++] = next; end: if (!ctx->object) return len; action_rss_data = ctx->object; action_rss_data->conf.queue_num = i; action_rss_data->conf.queue = i ? action_rss_data->queue : NULL; return len; } /** Parse VXLAN encap action. */ static int parse_vc_action_vxlan_encap(struct context *ctx, const struct token *token, const char *str, unsigned int len, void *buf, unsigned int size) { struct buffer *out = buf; struct rte_flow_action *action; struct action_vxlan_encap_data *action_vxlan_encap_data; int ret; ret = parse_vc(ctx, token, str, len, buf, size); if (ret < 0) return ret; /* Nothing else to do if there is no buffer. */ if (!out) return ret; if (!out->args.vc.actions_n) return -1; action = &out->args.vc.actions[out->args.vc.actions_n - 1]; /* Point to selected object. */ ctx->object = out->args.vc.data; ctx->objmask = NULL; /* Set up default configuration. */ action_vxlan_encap_data = ctx->object; *action_vxlan_encap_data = (struct action_vxlan_encap_data){ .conf = (struct rte_flow_action_vxlan_encap){ .definition = action_vxlan_encap_data->items, }, .items = { { .type = RTE_FLOW_ITEM_TYPE_ETH, .spec = &action_vxlan_encap_data->item_eth, .mask = &rte_flow_item_eth_mask, }, { .type = RTE_FLOW_ITEM_TYPE_VLAN, .spec = &action_vxlan_encap_data->item_vlan, .mask = &rte_flow_item_vlan_mask, }, { .type = RTE_FLOW_ITEM_TYPE_IPV4, .spec = &action_vxlan_encap_data->item_ipv4, .mask = &rte_flow_item_ipv4_mask, }, { .type = RTE_FLOW_ITEM_TYPE_UDP, .spec = &action_vxlan_encap_data->item_udp, .mask = &rte_flow_item_udp_mask, }, { .type = RTE_FLOW_ITEM_TYPE_VXLAN, .spec = &action_vxlan_encap_data->item_vxlan, .mask = &rte_flow_item_vxlan_mask, }, { .type = RTE_FLOW_ITEM_TYPE_END, }, }, .item_eth.type = 0, .item_vlan = { .tci = vxlan_encap_conf.vlan_tci, .inner_type = 0, }, .item_ipv4.hdr = { .src_addr = vxlan_encap_conf.ipv4_src, .dst_addr = vxlan_encap_conf.ipv4_dst, }, .item_udp.hdr = { .src_port = vxlan_encap_conf.udp_src, .dst_port = vxlan_encap_conf.udp_dst, }, .item_vxlan.flags = 0, }; memcpy(action_vxlan_encap_data->item_eth.dst.addr_bytes, vxlan_encap_conf.eth_dst, ETHER_ADDR_LEN); memcpy(action_vxlan_encap_data->item_eth.src.addr_bytes, vxlan_encap_conf.eth_src, ETHER_ADDR_LEN); if (!vxlan_encap_conf.select_ipv4) { memcpy(&action_vxlan_encap_data->item_ipv6.hdr.src_addr, &vxlan_encap_conf.ipv6_src, sizeof(vxlan_encap_conf.ipv6_src)); memcpy(&action_vxlan_encap_data->item_ipv6.hdr.dst_addr, &vxlan_encap_conf.ipv6_dst, sizeof(vxlan_encap_conf.ipv6_dst)); action_vxlan_encap_data->items[2] = (struct rte_flow_item){ .type = RTE_FLOW_ITEM_TYPE_IPV6, .spec = &action_vxlan_encap_data->item_ipv6, .mask = &rte_flow_item_ipv6_mask, }; } if (!vxlan_encap_conf.select_vlan) action_vxlan_encap_data->items[1].type = RTE_FLOW_ITEM_TYPE_VOID; memcpy(action_vxlan_encap_data->item_vxlan.vni, vxlan_encap_conf.vni, RTE_DIM(vxlan_encap_conf.vni)); action->conf = &action_vxlan_encap_data->conf; return ret; } /** Parse NVGRE encap action. */ static int parse_vc_action_nvgre_encap(struct context *ctx, const struct token *token, const char *str, unsigned int len, void *buf, unsigned int size) { struct buffer *out = buf; struct rte_flow_action *action; struct action_nvgre_encap_data *action_nvgre_encap_data; int ret; ret = parse_vc(ctx, token, str, len, buf, size); if (ret < 0) return ret; /* Nothing else to do if there is no buffer. */ if (!out) return ret; if (!out->args.vc.actions_n) return -1; action = &out->args.vc.actions[out->args.vc.actions_n - 1]; /* Point to selected object. */ ctx->object = out->args.vc.data; ctx->objmask = NULL; /* Set up default configuration. */ action_nvgre_encap_data = ctx->object; *action_nvgre_encap_data = (struct action_nvgre_encap_data){ .conf = (struct rte_flow_action_nvgre_encap){ .definition = action_nvgre_encap_data->items, }, .items = { { .type = RTE_FLOW_ITEM_TYPE_ETH, .spec = &action_nvgre_encap_data->item_eth, .mask = &rte_flow_item_eth_mask, }, { .type = RTE_FLOW_ITEM_TYPE_VLAN, .spec = &action_nvgre_encap_data->item_vlan, .mask = &rte_flow_item_vlan_mask, }, { .type = RTE_FLOW_ITEM_TYPE_IPV4, .spec = &action_nvgre_encap_data->item_ipv4, .mask = &rte_flow_item_ipv4_mask, }, { .type = RTE_FLOW_ITEM_TYPE_NVGRE, .spec = &action_nvgre_encap_data->item_nvgre, .mask = &rte_flow_item_nvgre_mask, }, { .type = RTE_FLOW_ITEM_TYPE_END, }, }, .item_eth.type = 0, .item_vlan = { .tci = nvgre_encap_conf.vlan_tci, .inner_type = 0, }, .item_ipv4.hdr = { .src_addr = nvgre_encap_conf.ipv4_src, .dst_addr = nvgre_encap_conf.ipv4_dst, }, .item_nvgre.flow_id = 0, }; memcpy(action_nvgre_encap_data->item_eth.dst.addr_bytes, nvgre_encap_conf.eth_dst, ETHER_ADDR_LEN); memcpy(action_nvgre_encap_data->item_eth.src.addr_bytes, nvgre_encap_conf.eth_src, ETHER_ADDR_LEN); if (!nvgre_encap_conf.select_ipv4) { memcpy(&action_nvgre_encap_data->item_ipv6.hdr.src_addr, &nvgre_encap_conf.ipv6_src, sizeof(nvgre_encap_conf.ipv6_src)); memcpy(&action_nvgre_encap_data->item_ipv6.hdr.dst_addr, &nvgre_encap_conf.ipv6_dst, sizeof(nvgre_encap_conf.ipv6_dst)); action_nvgre_encap_data->items[2] = (struct rte_flow_item){ .type = RTE_FLOW_ITEM_TYPE_IPV6, .spec = &action_nvgre_encap_data->item_ipv6, .mask = &rte_flow_item_ipv6_mask, }; } if (!nvgre_encap_conf.select_vlan) action_nvgre_encap_data->items[1].type = RTE_FLOW_ITEM_TYPE_VOID; memcpy(action_nvgre_encap_data->item_nvgre.tni, nvgre_encap_conf.tni, RTE_DIM(nvgre_encap_conf.tni)); action->conf = &action_nvgre_encap_data->conf; return ret; } /** Parse l2 encap action. */ static int parse_vc_action_l2_encap(struct context *ctx, const struct token *token, const char *str, unsigned int len, void *buf, unsigned int size) { struct buffer *out = buf; struct rte_flow_action *action; struct action_raw_encap_data *action_encap_data; struct rte_flow_item_eth eth = { .type = 0, }; struct rte_flow_item_vlan vlan = { .tci = mplsoudp_encap_conf.vlan_tci, .inner_type = 0, }; uint8_t *header; int ret; ret = parse_vc(ctx, token, str, len, buf, size); if (ret < 0) return ret; /* Nothing else to do if there is no buffer. */ if (!out) return ret; if (!out->args.vc.actions_n) return -1; action = &out->args.vc.actions[out->args.vc.actions_n - 1]; /* Point to selected object. */ ctx->object = out->args.vc.data; ctx->objmask = NULL; /* Copy the headers to the buffer. */ action_encap_data = ctx->object; *action_encap_data = (struct action_raw_encap_data) { .conf = (struct rte_flow_action_raw_encap){ .data = action_encap_data->data, }, .data = {}, }; header = action_encap_data->data; if (l2_encap_conf.select_vlan) eth.type = rte_cpu_to_be_16(ETHER_TYPE_VLAN); else if (l2_encap_conf.select_ipv4) eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv4); else eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv6); memcpy(eth.dst.addr_bytes, l2_encap_conf.eth_dst, ETHER_ADDR_LEN); memcpy(eth.src.addr_bytes, l2_encap_conf.eth_src, ETHER_ADDR_LEN); memcpy(header, ð, sizeof(eth)); header += sizeof(eth); if (l2_encap_conf.select_vlan) { if (l2_encap_conf.select_ipv4) vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv4); else vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv6); memcpy(header, &vlan, sizeof(vlan)); header += sizeof(vlan); } action_encap_data->conf.size = header - action_encap_data->data; action->conf = &action_encap_data->conf; return ret; } /** Parse l2 decap action. */ static int parse_vc_action_l2_decap(struct context *ctx, const struct token *token, const char *str, unsigned int len, void *buf, unsigned int size) { struct buffer *out = buf; struct rte_flow_action *action; struct action_raw_decap_data *action_decap_data; struct rte_flow_item_eth eth = { .type = 0, }; struct rte_flow_item_vlan vlan = { .tci = mplsoudp_encap_conf.vlan_tci, .inner_type = 0, }; uint8_t *header; int ret; ret = parse_vc(ctx, token, str, len, buf, size); if (ret < 0) return ret; /* Nothing else to do if there is no buffer. */ if (!out) return ret; if (!out->args.vc.actions_n) return -1; action = &out->args.vc.actions[out->args.vc.actions_n - 1]; /* Point to selected object. */ ctx->object = out->args.vc.data; ctx->objmask = NULL; /* Copy the headers to the buffer. */ action_decap_data = ctx->object; *action_decap_data = (struct action_raw_decap_data) { .conf = (struct rte_flow_action_raw_decap){ .data = action_decap_data->data, }, .data = {}, }; header = action_decap_data->data; if (l2_decap_conf.select_vlan) eth.type = rte_cpu_to_be_16(ETHER_TYPE_VLAN); memcpy(header, ð, sizeof(eth)); header += sizeof(eth); if (l2_decap_conf.select_vlan) { memcpy(header, &vlan, sizeof(vlan)); header += sizeof(vlan); } action_decap_data->conf.size = header - action_decap_data->data; action->conf = &action_decap_data->conf; return ret; } #define ETHER_TYPE_MPLS_UNICAST 0x8847 /** Parse MPLSOGRE encap action. */ static int parse_vc_action_mplsogre_encap(struct context *ctx, const struct token *token, const char *str, unsigned int len, void *buf, unsigned int size) { struct buffer *out = buf; struct rte_flow_action *action; struct action_raw_encap_data *action_encap_data; struct rte_flow_item_eth eth = { .type = 0, }; struct rte_flow_item_vlan vlan = { .tci = mplsogre_encap_conf.vlan_tci, .inner_type = 0, }; struct rte_flow_item_ipv4 ipv4 = { .hdr = { .src_addr = mplsogre_encap_conf.ipv4_src, .dst_addr = mplsogre_encap_conf.ipv4_dst, .next_proto_id = IPPROTO_GRE, .version_ihl = IPV4_VHL_DEF, .time_to_live = IPDEFTTL, }, }; struct rte_flow_item_ipv6 ipv6 = { .hdr = { .proto = IPPROTO_GRE, }, }; struct rte_flow_item_gre gre = { .protocol = rte_cpu_to_be_16(ETHER_TYPE_MPLS_UNICAST), }; struct rte_flow_item_mpls mpls; uint8_t *header; int ret; ret = parse_vc(ctx, token, str, len, buf, size); if (ret < 0) return ret; /* Nothing else to do if there is no buffer. */ if (!out) return ret; if (!out->args.vc.actions_n) return -1; action = &out->args.vc.actions[out->args.vc.actions_n - 1]; /* Point to selected object. */ ctx->object = out->args.vc.data; ctx->objmask = NULL; /* Copy the headers to the buffer. */ action_encap_data = ctx->object; *action_encap_data = (struct action_raw_encap_data) { .conf = (struct rte_flow_action_raw_encap){ .data = action_encap_data->data, }, .data = {}, .preserve = {}, }; header = action_encap_data->data; if (mplsogre_encap_conf.select_vlan) eth.type = rte_cpu_to_be_16(ETHER_TYPE_VLAN); else if (mplsogre_encap_conf.select_ipv4) eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv4); else eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv6); memcpy(eth.dst.addr_bytes, mplsogre_encap_conf.eth_dst, ETHER_ADDR_LEN); memcpy(eth.src.addr_bytes, mplsogre_encap_conf.eth_src, ETHER_ADDR_LEN); memcpy(header, ð, sizeof(eth)); header += sizeof(eth); if (mplsogre_encap_conf.select_vlan) { if (mplsogre_encap_conf.select_ipv4) vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv4); else vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv6); memcpy(header, &vlan, sizeof(vlan)); header += sizeof(vlan); } if (mplsogre_encap_conf.select_ipv4) { memcpy(header, &ipv4, sizeof(ipv4)); header += sizeof(ipv4); } else { memcpy(&ipv6.hdr.src_addr, &mplsogre_encap_conf.ipv6_src, sizeof(mplsogre_encap_conf.ipv6_src)); memcpy(&ipv6.hdr.dst_addr, &mplsogre_encap_conf.ipv6_dst, sizeof(mplsogre_encap_conf.ipv6_dst)); memcpy(header, &ipv6, sizeof(ipv6)); header += sizeof(ipv6); } memcpy(header, &gre, sizeof(gre)); header += sizeof(gre); memcpy(mpls.label_tc_s, mplsogre_encap_conf.label, RTE_DIM(mplsogre_encap_conf.label)); mpls.label_tc_s[2] |= 0x1; memcpy(header, &mpls, sizeof(mpls)); header += sizeof(mpls); action_encap_data->conf.size = header - action_encap_data->data; action->conf = &action_encap_data->conf; return ret; } /** Parse MPLSOGRE decap action. */ static int parse_vc_action_mplsogre_decap(struct context *ctx, const struct token *token, const char *str, unsigned int len, void *buf, unsigned int size) { struct buffer *out = buf; struct rte_flow_action *action; struct action_raw_decap_data *action_decap_data; struct rte_flow_item_eth eth = { .type = 0, }; struct rte_flow_item_vlan vlan = {.tci = 0}; struct rte_flow_item_ipv4 ipv4 = { .hdr = { .next_proto_id = IPPROTO_GRE, }, }; struct rte_flow_item_ipv6 ipv6 = { .hdr = { .proto = IPPROTO_GRE, .hop_limits = IPDEFTTL, }, }; struct rte_flow_item_gre gre = { .protocol = rte_cpu_to_be_16(ETHER_TYPE_MPLS_UNICAST), }; struct rte_flow_item_mpls mpls; uint8_t *header; int ret; ret = parse_vc(ctx, token, str, len, buf, size); if (ret < 0) return ret; /* Nothing else to do if there is no buffer. */ if (!out) return ret; if (!out->args.vc.actions_n) return -1; action = &out->args.vc.actions[out->args.vc.actions_n - 1]; /* Point to selected object. */ ctx->object = out->args.vc.data; ctx->objmask = NULL; /* Copy the headers to the buffer. */ action_decap_data = ctx->object; *action_decap_data = (struct action_raw_decap_data) { .conf = (struct rte_flow_action_raw_decap){ .data = action_decap_data->data, }, .data = {}, }; header = action_decap_data->data; if (mplsogre_decap_conf.select_vlan) eth.type = rte_cpu_to_be_16(ETHER_TYPE_VLAN); else if (mplsogre_encap_conf.select_ipv4) eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv4); else eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv6); memcpy(eth.dst.addr_bytes, mplsogre_encap_conf.eth_dst, ETHER_ADDR_LEN); memcpy(eth.src.addr_bytes, mplsogre_encap_conf.eth_src, ETHER_ADDR_LEN); memcpy(header, ð, sizeof(eth)); header += sizeof(eth); if (mplsogre_encap_conf.select_vlan) { if (mplsogre_encap_conf.select_ipv4) vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv4); else vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv6); memcpy(header, &vlan, sizeof(vlan)); header += sizeof(vlan); } if (mplsogre_encap_conf.select_ipv4) { memcpy(header, &ipv4, sizeof(ipv4)); header += sizeof(ipv4); } else { memcpy(header, &ipv6, sizeof(ipv6)); header += sizeof(ipv6); } memcpy(header, &gre, sizeof(gre)); header += sizeof(gre); memset(&mpls, 0, sizeof(mpls)); memcpy(header, &mpls, sizeof(mpls)); header += sizeof(mpls); action_decap_data->conf.size = header - action_decap_data->data; action->conf = &action_decap_data->conf; return ret; } /** Parse MPLSOUDP encap action. */ static int parse_vc_action_mplsoudp_encap(struct context *ctx, const struct token *token, const char *str, unsigned int len, void *buf, unsigned int size) { struct buffer *out = buf; struct rte_flow_action *action; struct action_raw_encap_data *action_encap_data; struct rte_flow_item_eth eth = { .type = 0, }; struct rte_flow_item_vlan vlan = { .tci = mplsoudp_encap_conf.vlan_tci, .inner_type = 0, }; struct rte_flow_item_ipv4 ipv4 = { .hdr = { .src_addr = mplsoudp_encap_conf.ipv4_src, .dst_addr = mplsoudp_encap_conf.ipv4_dst, .next_proto_id = IPPROTO_UDP, .version_ihl = IPV4_VHL_DEF, .time_to_live = IPDEFTTL, }, }; struct rte_flow_item_ipv6 ipv6 = { .hdr = { .proto = IPPROTO_UDP, }, }; struct rte_flow_item_udp udp = { .hdr = { .src_port = mplsoudp_encap_conf.udp_src, .dst_port = mplsoudp_encap_conf.udp_dst, }, }; struct rte_flow_item_mpls mpls; uint8_t *header; int ret; ret = parse_vc(ctx, token, str, len, buf, size); if (ret < 0) return ret; /* Nothing else to do if there is no buffer. */ if (!out) return ret; if (!out->args.vc.actions_n) return -1; action = &out->args.vc.actions[out->args.vc.actions_n - 1]; /* Point to selected object. */ ctx->object = out->args.vc.data; ctx->objmask = NULL; /* Copy the headers to the buffer. */ action_encap_data = ctx->object; *action_encap_data = (struct action_raw_encap_data) { .conf = (struct rte_flow_action_raw_encap){ .data = action_encap_data->data, }, .data = {}, .preserve = {}, }; header = action_encap_data->data; if (mplsoudp_encap_conf.select_vlan) eth.type = rte_cpu_to_be_16(ETHER_TYPE_VLAN); else if (mplsoudp_encap_conf.select_ipv4) eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv4); else eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv6); memcpy(eth.dst.addr_bytes, mplsoudp_encap_conf.eth_dst, ETHER_ADDR_LEN); memcpy(eth.src.addr_bytes, mplsoudp_encap_conf.eth_src, ETHER_ADDR_LEN); memcpy(header, ð, sizeof(eth)); header += sizeof(eth); if (mplsoudp_encap_conf.select_vlan) { if (mplsoudp_encap_conf.select_ipv4) vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv4); else vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv6); memcpy(header, &vlan, sizeof(vlan)); header += sizeof(vlan); } if (mplsoudp_encap_conf.select_ipv4) { memcpy(header, &ipv4, sizeof(ipv4)); header += sizeof(ipv4); } else { memcpy(&ipv6.hdr.src_addr, &mplsoudp_encap_conf.ipv6_src, sizeof(mplsoudp_encap_conf.ipv6_src)); memcpy(&ipv6.hdr.dst_addr, &mplsoudp_encap_conf.ipv6_dst, sizeof(mplsoudp_encap_conf.ipv6_dst)); memcpy(header, &ipv6, sizeof(ipv6)); header += sizeof(ipv6); } memcpy(header, &udp, sizeof(udp)); header += sizeof(udp); memcpy(mpls.label_tc_s, mplsoudp_encap_conf.label, RTE_DIM(mplsoudp_encap_conf.label)); mpls.label_tc_s[2] |= 0x1; memcpy(header, &mpls, sizeof(mpls)); header += sizeof(mpls); action_encap_data->conf.size = header - action_encap_data->data; action->conf = &action_encap_data->conf; return ret; } /** Parse MPLSOUDP decap action. */ static int parse_vc_action_mplsoudp_decap(struct context *ctx, const struct token *token, const char *str, unsigned int len, void *buf, unsigned int size) { struct buffer *out = buf; struct rte_flow_action *action; struct action_raw_decap_data *action_decap_data; struct rte_flow_item_eth eth = { .type = 0, }; struct rte_flow_item_vlan vlan = {.tci = 0}; struct rte_flow_item_ipv4 ipv4 = { .hdr = { .next_proto_id = IPPROTO_UDP, }, }; struct rte_flow_item_ipv6 ipv6 = { .hdr = { .proto = IPPROTO_UDP, .hop_limits = IPDEFTTL, }, }; struct rte_flow_item_udp udp = { .hdr = { .dst_port = rte_cpu_to_be_16(6635), }, }; struct rte_flow_item_mpls mpls; uint8_t *header; int ret; ret = parse_vc(ctx, token, str, len, buf, size); if (ret < 0) return ret; /* Nothing else to do if there is no buffer. */ if (!out) return ret; if (!out->args.vc.actions_n) return -1; action = &out->args.vc.actions[out->args.vc.actions_n - 1]; /* Point to selected object. */ ctx->object = out->args.vc.data; ctx->objmask = NULL; /* Copy the headers to the buffer. */ action_decap_data = ctx->object; *action_decap_data = (struct action_raw_decap_data) { .conf = (struct rte_flow_action_raw_decap){ .data = action_decap_data->data, }, .data = {}, }; header = action_decap_data->data; if (mplsoudp_decap_conf.select_vlan) eth.type = rte_cpu_to_be_16(ETHER_TYPE_VLAN); else if (mplsoudp_encap_conf.select_ipv4) eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv4); else eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv6); memcpy(eth.dst.addr_bytes, mplsoudp_encap_conf.eth_dst, ETHER_ADDR_LEN); memcpy(eth.src.addr_bytes, mplsoudp_encap_conf.eth_src, ETHER_ADDR_LEN); memcpy(header, ð, sizeof(eth)); header += sizeof(eth); if (mplsoudp_encap_conf.select_vlan) { if (mplsoudp_encap_conf.select_ipv4) vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv4); else vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv6); memcpy(header, &vlan, sizeof(vlan)); header += sizeof(vlan); } if (mplsoudp_encap_conf.select_ipv4) { memcpy(header, &ipv4, sizeof(ipv4)); header += sizeof(ipv4); } else { memcpy(header, &ipv6, sizeof(ipv6)); header += sizeof(ipv6); } memcpy(header, &udp, sizeof(udp)); header += sizeof(udp); memset(&mpls, 0, sizeof(mpls)); memcpy(header, &mpls, sizeof(mpls)); header += sizeof(mpls); action_decap_data->conf.size = header - action_decap_data->data; action->conf = &action_decap_data->conf; return ret; } /** Parse tokens for destroy command. */ static int parse_destroy(struct context *ctx, const struct token *token, const char *str, unsigned int len, void *buf, unsigned int size) { struct buffer *out = buf; /* Token name must match. */ if (parse_default(ctx, token, str, len, NULL, 0) < 0) return -1; /* Nothing else to do if there is no buffer. */ if (!out) return len; if (!out->command) { if (ctx->curr != DESTROY) return -1; if (sizeof(*out) > size) return -1; out->command = ctx->curr; ctx->objdata = 0; ctx->object = out; ctx->objmask = NULL; out->args.destroy.rule = (void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1), sizeof(double)); return len; } if (((uint8_t *)(out->args.destroy.rule + out->args.destroy.rule_n) + sizeof(*out->args.destroy.rule)) > (uint8_t *)out + size) return -1; ctx->objdata = 0; ctx->object = out->args.destroy.rule + out->args.destroy.rule_n++; ctx->objmask = NULL; return len; } /** Parse tokens for flush command. */ static int parse_flush(struct context *ctx, const struct token *token, const char *str, unsigned int len, void *buf, unsigned int size) { struct buffer *out = buf; /* Token name must match. */ if (parse_default(ctx, token, str, len, NULL, 0) < 0) return -1; /* Nothing else to do if there is no buffer. */ if (!out) return len; if (!out->command) { if (ctx->curr != FLUSH) return -1; if (sizeof(*out) > size) return -1; out->command = ctx->curr; ctx->objdata = 0; ctx->object = out; ctx->objmask = NULL; } return len; } /** Parse tokens for query command. */ static int parse_query(struct context *ctx, const struct token *token, const char *str, unsigned int len, void *buf, unsigned int size) { struct buffer *out = buf; /* Token name must match. */ if (parse_default(ctx, token, str, len, NULL, 0) < 0) return -1; /* Nothing else to do if there is no buffer. */ if (!out) return len; if (!out->command) { if (ctx->curr != QUERY) return -1; if (sizeof(*out) > size) return -1; out->command = ctx->curr; ctx->objdata = 0; ctx->object = out; ctx->objmask = NULL; } return len; } /** Parse action names. */ static int parse_action(struct context *ctx, const struct token *token, const char *str, unsigned int len, void *buf, unsigned int size) { struct buffer *out = buf; const struct arg *arg = pop_args(ctx); unsigned int i; (void)size; /* Argument is expected. */ if (!arg) return -1; /* Parse action name. */ for (i = 0; next_action[i]; ++i) { const struct parse_action_priv *priv; token = &token_list[next_action[i]]; if (strcmp_partial(token->name, str, len)) continue; priv = token->priv; if (!priv) goto error; if (out) memcpy((uint8_t *)ctx->object + arg->offset, &priv->type, arg->size); return len; } error: push_args(ctx, arg); return -1; } /** Parse tokens for list command. */ static int parse_list(struct context *ctx, const struct token *token, const char *str, unsigned int len, void *buf, unsigned int size) { struct buffer *out = buf; /* Token name must match. */ if (parse_default(ctx, token, str, len, NULL, 0) < 0) return -1; /* Nothing else to do if there is no buffer. */ if (!out) return len; if (!out->command) { if (ctx->curr != LIST) return -1; if (sizeof(*out) > size) return -1; out->command = ctx->curr; ctx->objdata = 0; ctx->object = out; ctx->objmask = NULL; out->args.list.group = (void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1), sizeof(double)); return len; } if (((uint8_t *)(out->args.list.group + out->args.list.group_n) + sizeof(*out->args.list.group)) > (uint8_t *)out + size) return -1; ctx->objdata = 0; ctx->object = out->args.list.group + out->args.list.group_n++; ctx->objmask = NULL; return len; } /** Parse tokens for isolate command. */ static int parse_isolate(struct context *ctx, const struct token *token, const char *str, unsigned int len, void *buf, unsigned int size) { struct buffer *out = buf; /* Token name must match. */ if (parse_default(ctx, token, str, len, NULL, 0) < 0) return -1; /* Nothing else to do if there is no buffer. */ if (!out) return len; if (!out->command) { if (ctx->curr != ISOLATE) return -1; if (sizeof(*out) > size) return -1; out->command = ctx->curr; ctx->objdata = 0; ctx->object = out; ctx->objmask = NULL; } return len; } /** * Parse signed/unsigned integers 8 to 64-bit long. * * Last argument (ctx->args) is retrieved to determine integer type and * storage location. */ static int parse_int(struct context *ctx, const struct token *token, const char *str, unsigned int len, void *buf, unsigned int size) { const struct arg *arg = pop_args(ctx); uintmax_t u; char *end; (void)token; /* Argument is expected. */ if (!arg) return -1; errno = 0; u = arg->sign ? (uintmax_t)strtoimax(str, &end, 0) : strtoumax(str, &end, 0); if (errno || (size_t)(end - str) != len) goto error; if (arg->bounded && ((arg->sign && ((intmax_t)u < (intmax_t)arg->min || (intmax_t)u > (intmax_t)arg->max)) || (!arg->sign && (u < arg->min || u > arg->max)))) goto error; if (!ctx->object) return len; if (arg->mask) { if (!arg_entry_bf_fill(ctx->object, u, arg) || !arg_entry_bf_fill(ctx->objmask, -1, arg)) goto error; return len; } buf = (uint8_t *)ctx->object + arg->offset; size = arg->size; objmask: switch (size) { case sizeof(uint8_t): *(uint8_t *)buf = u; break; case sizeof(uint16_t): *(uint16_t *)buf = arg->hton ? rte_cpu_to_be_16(u) : u; break; case sizeof(uint8_t [3]): #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN if (!arg->hton) { ((uint8_t *)buf)[0] = u; ((uint8_t *)buf)[1] = u >> 8; ((uint8_t *)buf)[2] = u >> 16; break; } #endif ((uint8_t *)buf)[0] = u >> 16; ((uint8_t *)buf)[1] = u >> 8; ((uint8_t *)buf)[2] = u; break; case sizeof(uint32_t): *(uint32_t *)buf = arg->hton ? rte_cpu_to_be_32(u) : u; break; case sizeof(uint64_t): *(uint64_t *)buf = arg->hton ? rte_cpu_to_be_64(u) : u; break; default: goto error; } if (ctx->objmask && buf != (uint8_t *)ctx->objmask + arg->offset) { u = -1; buf = (uint8_t *)ctx->objmask + arg->offset; goto objmask; } return len; error: push_args(ctx, arg); return -1; } /** * Parse a string. * * Three arguments (ctx->args) are retrieved from the stack to store data, * its actual length and address (in that order). */ static int parse_string(struct context *ctx, const struct token *token, const char *str, unsigned int len, void *buf, unsigned int size) { const struct arg *arg_data = pop_args(ctx); const struct arg *arg_len = pop_args(ctx); const struct arg *arg_addr = pop_args(ctx); char tmp[16]; /* Ought to be enough. */ int ret; /* Arguments are expected. */ if (!arg_data) return -1; if (!arg_len) { push_args(ctx, arg_data); return -1; } if (!arg_addr) { push_args(ctx, arg_len); push_args(ctx, arg_data); return -1; } size = arg_data->size; /* Bit-mask fill is not supported. */ if (arg_data->mask || size < len) goto error; if (!ctx->object) return len; /* Let parse_int() fill length information first. */ ret = snprintf(tmp, sizeof(tmp), "%u", len); if (ret < 0) goto error; push_args(ctx, arg_len); ret = parse_int(ctx, token, tmp, ret, NULL, 0); if (ret < 0) { pop_args(ctx); goto error; } buf = (uint8_t *)ctx->object + arg_data->offset; /* Output buffer is not necessarily NUL-terminated. */ memcpy(buf, str, len); memset((uint8_t *)buf + len, 0x00, size - len); if (ctx->objmask) memset((uint8_t *)ctx->objmask + arg_data->offset, 0xff, len); /* Save address if requested. */ if (arg_addr->size) { memcpy((uint8_t *)ctx->object + arg_addr->offset, (void *[]){ (uint8_t *)ctx->object + arg_data->offset }, arg_addr->size); if (ctx->objmask) memcpy((uint8_t *)ctx->objmask + arg_addr->offset, (void *[]){ (uint8_t *)ctx->objmask + arg_data->offset }, arg_addr->size); } return len; error: push_args(ctx, arg_addr); push_args(ctx, arg_len); push_args(ctx, arg_data); return -1; } static int parse_hex_string(const char *src, uint8_t *dst, uint32_t *size) { char *c = NULL; uint32_t i, len; char tmp[3]; /* Check input parameters */ if ((src == NULL) || (dst == NULL) || (size == NULL) || (*size == 0)) return -1; /* Convert chars to bytes */ for (i = 0, len = 0; i < *size; i += 2) { snprintf(tmp, 3, "%s", src + i); dst[len++] = strtoul(tmp, &c, 16); if (*c != 0) { len--; dst[len] = 0; *size = len; return -1; } } dst[len] = 0; *size = len; return 0; } static int parse_hex(struct context *ctx, const struct token *token, const char *str, unsigned int len, void *buf, unsigned int size) { const struct arg *arg_data = pop_args(ctx); const struct arg *arg_len = pop_args(ctx); const struct arg *arg_addr = pop_args(ctx); char tmp[16]; /* Ought to be enough. */ int ret; unsigned int hexlen = len; unsigned int length = 256; uint8_t hex_tmp[length]; /* Arguments are expected. */ if (!arg_data) return -1; if (!arg_len) { push_args(ctx, arg_data); return -1; } if (!arg_addr) { push_args(ctx, arg_len); push_args(ctx, arg_data); return -1; } size = arg_data->size; /* Bit-mask fill is not supported. */ if (arg_data->mask) goto error; if (!ctx->object) return len; /* translate bytes string to array. */ if (str[0] == '0' && ((str[1] == 'x') || (str[1] == 'X'))) { str += 2; hexlen -= 2; } if (hexlen > length) return -1; ret = parse_hex_string(str, hex_tmp, &hexlen); if (ret < 0) goto error; /* Let parse_int() fill length information first. */ ret = snprintf(tmp, sizeof(tmp), "%u", hexlen); if (ret < 0) goto error; push_args(ctx, arg_len); ret = parse_int(ctx, token, tmp, ret, NULL, 0); if (ret < 0) { pop_args(ctx); goto error; } buf = (uint8_t *)ctx->object + arg_data->offset; /* Output buffer is not necessarily NUL-terminated. */ memcpy(buf, hex_tmp, hexlen); memset((uint8_t *)buf + hexlen, 0x00, size - hexlen); if (ctx->objmask) memset((uint8_t *)ctx->objmask + arg_data->offset, 0xff, hexlen); /* Save address if requested. */ if (arg_addr->size) { memcpy((uint8_t *)ctx->object + arg_addr->offset, (void *[]){ (uint8_t *)ctx->object + arg_data->offset }, arg_addr->size); if (ctx->objmask) memcpy((uint8_t *)ctx->objmask + arg_addr->offset, (void *[]){ (uint8_t *)ctx->objmask + arg_data->offset }, arg_addr->size); } return len; error: push_args(ctx, arg_addr); push_args(ctx, arg_len); push_args(ctx, arg_data); return -1; } /** * Parse a MAC address. * * Last argument (ctx->args) is retrieved to determine storage size and * location. */ static int parse_mac_addr(struct context *ctx, const struct token *token, const char *str, unsigned int len, void *buf, unsigned int size) { const struct arg *arg = pop_args(ctx); struct ether_addr tmp; int ret; (void)token; /* Argument is expected. */ if (!arg) return -1; size = arg->size; /* Bit-mask fill is not supported. */ if (arg->mask || size != sizeof(tmp)) goto error; /* Only network endian is supported. */ if (!arg->hton) goto error; ret = cmdline_parse_etheraddr(NULL, str, &tmp, size); if (ret < 0 || (unsigned int)ret != len) goto error; if (!ctx->object) return len; buf = (uint8_t *)ctx->object + arg->offset; memcpy(buf, &tmp, size); if (ctx->objmask) memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size); return len; error: push_args(ctx, arg); return -1; } /** * Parse an IPv4 address. * * Last argument (ctx->args) is retrieved to determine storage size and * location. */ static int parse_ipv4_addr(struct context *ctx, const struct token *token, const char *str, unsigned int len, void *buf, unsigned int size) { const struct arg *arg = pop_args(ctx); char str2[len + 1]; struct in_addr tmp; int ret; /* Argument is expected. */ if (!arg) return -1; size = arg->size; /* Bit-mask fill is not supported. */ if (arg->mask || size != sizeof(tmp)) goto error; /* Only network endian is supported. */ if (!arg->hton) goto error; memcpy(str2, str, len); str2[len] = '\0'; ret = inet_pton(AF_INET, str2, &tmp); if (ret != 1) { /* Attempt integer parsing. */ push_args(ctx, arg); return parse_int(ctx, token, str, len, buf, size); } if (!ctx->object) return len; buf = (uint8_t *)ctx->object + arg->offset; memcpy(buf, &tmp, size); if (ctx->objmask) memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size); return len; error: push_args(ctx, arg); return -1; } /** * Parse an IPv6 address. * * Last argument (ctx->args) is retrieved to determine storage size and * location. */ static int parse_ipv6_addr(struct context *ctx, const struct token *token, const char *str, unsigned int len, void *buf, unsigned int size) { const struct arg *arg = pop_args(ctx); char str2[len + 1]; struct in6_addr tmp; int ret; (void)token; /* Argument is expected. */ if (!arg) return -1; size = arg->size; /* Bit-mask fill is not supported. */ if (arg->mask || size != sizeof(tmp)) goto error; /* Only network endian is supported. */ if (!arg->hton) goto error; memcpy(str2, str, len); str2[len] = '\0'; ret = inet_pton(AF_INET6, str2, &tmp); if (ret != 1) goto error; if (!ctx->object) return len; buf = (uint8_t *)ctx->object + arg->offset; memcpy(buf, &tmp, size); if (ctx->objmask) memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size); return len; error: push_args(ctx, arg); return -1; } /** Boolean values (even indices stand for false). */ static const char *const boolean_name[] = { "0", "1", "false", "true", "no", "yes", "N", "Y", "off", "on", NULL, }; /** * Parse a boolean value. * * Last argument (ctx->args) is retrieved to determine storage size and * location. */ static int parse_boolean(struct context *ctx, const struct token *token, const char *str, unsigned int len, void *buf, unsigned int size) { const struct arg *arg = pop_args(ctx); unsigned int i; int ret; /* Argument is expected. */ if (!arg) return -1; for (i = 0; boolean_name[i]; ++i) if (!strcmp_partial(boolean_name[i], str, len)) break; /* Process token as integer. */ if (boolean_name[i]) str = i & 1 ? "1" : "0"; push_args(ctx, arg); ret = parse_int(ctx, token, str, strlen(str), buf, size); return ret > 0 ? (int)len : ret; } /** Parse port and update context. */ static int parse_port(struct context *ctx, const struct token *token, const char *str, unsigned int len, void *buf, unsigned int size) { struct buffer *out = &(struct buffer){ .port = 0 }; int ret; if (buf) out = buf; else { ctx->objdata = 0; ctx->object = out; ctx->objmask = NULL; size = sizeof(*out); } ret = parse_int(ctx, token, str, len, out, size); if (ret >= 0) ctx->port = out->port; if (!buf) ctx->object = NULL; return ret; } /** No completion. */ static int comp_none(struct context *ctx, const struct token *token, unsigned int ent, char *buf, unsigned int size) { (void)ctx; (void)token; (void)ent; (void)buf; (void)size; return 0; } /** Complete boolean values. */ static int comp_boolean(struct context *ctx, const struct token *token, unsigned int ent, char *buf, unsigned int size) { unsigned int i; (void)ctx; (void)token; for (i = 0; boolean_name[i]; ++i) if (buf && i == ent) return snprintf(buf, size, "%s", boolean_name[i]); if (buf) return -1; return i; } /** Complete action names. */ static int comp_action(struct context *ctx, const struct token *token, unsigned int ent, char *buf, unsigned int size) { unsigned int i; (void)ctx; (void)token; for (i = 0; next_action[i]; ++i) if (buf && i == ent) return snprintf(buf, size, "%s", token_list[next_action[i]].name); if (buf) return -1; return i; } /** Complete available ports. */ static int comp_port(struct context *ctx, const struct token *token, unsigned int ent, char *buf, unsigned int size) { unsigned int i = 0; portid_t p; (void)ctx; (void)token; RTE_ETH_FOREACH_DEV(p) { if (buf && i == ent) return snprintf(buf, size, "%u", p); ++i; } if (buf) return -1; return i; } /** Complete available rule IDs. */ static int comp_rule_id(struct context *ctx, const struct token *token, unsigned int ent, char *buf, unsigned int size) { unsigned int i = 0; struct rte_port *port; struct port_flow *pf; (void)token; if (port_id_is_invalid(ctx->port, DISABLED_WARN) || ctx->port == (portid_t)RTE_PORT_ALL) return -1; port = &ports[ctx->port]; for (pf = port->flow_list; pf != NULL; pf = pf->next) { if (buf && i == ent) return snprintf(buf, size, "%u", pf->id); ++i; } if (buf) return -1; return i; } /** Complete type field for RSS action. */ static int comp_vc_action_rss_type(struct context *ctx, const struct token *token, unsigned int ent, char *buf, unsigned int size) { unsigned int i; (void)ctx; (void)token; for (i = 0; rss_type_table[i].str; ++i) ; if (!buf) return i + 1; if (ent < i) return snprintf(buf, size, "%s", rss_type_table[ent].str); if (ent == i) return snprintf(buf, size, "end"); return -1; } /** Complete queue field for RSS action. */ static int comp_vc_action_rss_queue(struct context *ctx, const struct token *token, unsigned int ent, char *buf, unsigned int size) { (void)ctx; (void)token; if (!buf) return nb_rxq + 1; if (ent < nb_rxq) return snprintf(buf, size, "%u", ent); if (ent == nb_rxq) return snprintf(buf, size, "end"); return -1; } /** Internal context. */ static struct context cmd_flow_context; /** Global parser instance (cmdline API). */ cmdline_parse_inst_t cmd_flow; /** Initialize context. */ static void cmd_flow_context_init(struct context *ctx) { /* A full memset() is not necessary. */ ctx->curr = ZERO; ctx->prev = ZERO; ctx->next_num = 0; ctx->args_num = 0; ctx->eol = 0; ctx->last = 0; ctx->port = 0; ctx->objdata = 0; ctx->object = NULL; ctx->objmask = NULL; } /** Parse a token (cmdline API). */ static int cmd_flow_parse(cmdline_parse_token_hdr_t *hdr, const char *src, void *result, unsigned int size) { struct context *ctx = &cmd_flow_context; const struct token *token; const enum index *list; int len; int i; (void)hdr; token = &token_list[ctx->curr]; /* Check argument length. */ ctx->eol = 0; ctx->last = 1; for (len = 0; src[len]; ++len) if (src[len] == '#' || isspace(src[len])) break; if (!len) return -1; /* Last argument and EOL detection. */ for (i = len; src[i]; ++i) if (src[i] == '#' || src[i] == '\r' || src[i] == '\n') break; else if (!isspace(src[i])) { ctx->last = 0; break; } for (; src[i]; ++i) if (src[i] == '\r' || src[i] == '\n') { ctx->eol = 1; break; } /* Initialize context if necessary. */ if (!ctx->next_num) { if (!token->next) return 0; ctx->next[ctx->next_num++] = token->next[0]; } /* Process argument through candidates. */ ctx->prev = ctx->curr; list = ctx->next[ctx->next_num - 1]; for (i = 0; list[i]; ++i) { const struct token *next = &token_list[list[i]]; int tmp; ctx->curr = list[i]; if (next->call) tmp = next->call(ctx, next, src, len, result, size); else tmp = parse_default(ctx, next, src, len, result, size); if (tmp == -1 || tmp != len) continue; token = next; break; } if (!list[i]) return -1; --ctx->next_num; /* Push subsequent tokens if any. */ if (token->next) for (i = 0; token->next[i]; ++i) { if (ctx->next_num == RTE_DIM(ctx->next)) return -1; ctx->next[ctx->next_num++] = token->next[i]; } /* Push arguments if any. */ if (token->args) for (i = 0; token->args[i]; ++i) { if (ctx->args_num == RTE_DIM(ctx->args)) return -1; ctx->args[ctx->args_num++] = token->args[i]; } return len; } /** Return number of completion entries (cmdline API). */ static int cmd_flow_complete_get_nb(cmdline_parse_token_hdr_t *hdr) { struct context *ctx = &cmd_flow_context; const struct token *token = &token_list[ctx->curr]; const enum index *list; int i; (void)hdr; /* Count number of tokens in current list. */ if (ctx->next_num) list = ctx->next[ctx->next_num - 1]; else list = token->next[0]; for (i = 0; list[i]; ++i) ; if (!i) return 0; /* * If there is a single token, use its completion callback, otherwise * return the number of entries. */ token = &token_list[list[0]]; if (i == 1 && token->comp) { /* Save index for cmd_flow_get_help(). */ ctx->prev = list[0]; return token->comp(ctx, token, 0, NULL, 0); } return i; } /** Return a completion entry (cmdline API). */ static int cmd_flow_complete_get_elt(cmdline_parse_token_hdr_t *hdr, int index, char *dst, unsigned int size) { struct context *ctx = &cmd_flow_context; const struct token *token = &token_list[ctx->curr]; const enum index *list; int i; (void)hdr; /* Count number of tokens in current list. */ if (ctx->next_num) list = ctx->next[ctx->next_num - 1]; else list = token->next[0]; for (i = 0; list[i]; ++i) ; if (!i) return -1; /* If there is a single token, use its completion callback. */ token = &token_list[list[0]]; if (i == 1 && token->comp) { /* Save index for cmd_flow_get_help(). */ ctx->prev = list[0]; return token->comp(ctx, token, index, dst, size) < 0 ? -1 : 0; } /* Otherwise make sure the index is valid and use defaults. */ if (index >= i) return -1; token = &token_list[list[index]]; snprintf(dst, size, "%s", token->name); /* Save index for cmd_flow_get_help(). */ ctx->prev = list[index]; return 0; } /** Populate help strings for current token (cmdline API). */ static int cmd_flow_get_help(cmdline_parse_token_hdr_t *hdr, char *dst, unsigned int size) { struct context *ctx = &cmd_flow_context; const struct token *token = &token_list[ctx->prev]; (void)hdr; if (!size) return -1; /* Set token type and update global help with details. */ snprintf(dst, size, "%s", (token->type ? token->type : "TOKEN")); if (token->help) cmd_flow.help_str = token->help; else cmd_flow.help_str = token->name; return 0; } /** Token definition template (cmdline API). */ static struct cmdline_token_hdr cmd_flow_token_hdr = { .ops = &(struct cmdline_token_ops){ .parse = cmd_flow_parse, .complete_get_nb = cmd_flow_complete_get_nb, .complete_get_elt = cmd_flow_complete_get_elt, .get_help = cmd_flow_get_help, }, .offset = 0, }; /** Populate the next dynamic token. */ static void cmd_flow_tok(cmdline_parse_token_hdr_t **hdr, cmdline_parse_token_hdr_t **hdr_inst) { struct context *ctx = &cmd_flow_context; /* Always reinitialize context before requesting the first token. */ if (!(hdr_inst - cmd_flow.tokens)) cmd_flow_context_init(ctx); /* Return NULL when no more tokens are expected. */ if (!ctx->next_num && ctx->curr) { *hdr = NULL; return; } /* Determine if command should end here. */ if (ctx->eol && ctx->last && ctx->next_num) { const enum index *list = ctx->next[ctx->next_num - 1]; int i; for (i = 0; list[i]; ++i) { if (list[i] != END) continue; *hdr = NULL; return; } } *hdr = &cmd_flow_token_hdr; } /** Dispatch parsed buffer to function calls. */ static void cmd_flow_parsed(const struct buffer *in) { switch (in->command) { case VALIDATE: port_flow_validate(in->port, &in->args.vc.attr, in->args.vc.pattern, in->args.vc.actions); break; case CREATE: port_flow_create(in->port, &in->args.vc.attr, in->args.vc.pattern, in->args.vc.actions); break; case DESTROY: port_flow_destroy(in->port, in->args.destroy.rule_n, in->args.destroy.rule); break; case FLUSH: port_flow_flush(in->port); break; case QUERY: port_flow_query(in->port, in->args.query.rule, &in->args.query.action); break; case LIST: port_flow_list(in->port, in->args.list.group_n, in->args.list.group); break; case ISOLATE: port_flow_isolate(in->port, in->args.isolate.set); break; default: break; } } /** Token generator and output processing callback (cmdline API). */ static void cmd_flow_cb(void *arg0, struct cmdline *cl, void *arg2) { if (cl == NULL) cmd_flow_tok(arg0, arg2); else cmd_flow_parsed(arg0); } /** Global parser instance (cmdline API). */ cmdline_parse_inst_t cmd_flow = { .f = cmd_flow_cb, .data = NULL, /**< Unused. */ .help_str = NULL, /**< Updated by cmd_flow_get_help(). */ .tokens = { NULL, }, /**< Tokens are returned by cmd_flow_tok(). */ };