/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2014 Intel Corporation */ #ifndef __INCLUDE_RTE_SCHED_H__ #define __INCLUDE_RTE_SCHED_H__ #ifdef __cplusplus extern "C" { #endif /** * @file * RTE Hierarchical Scheduler * * The hierarchical scheduler prioritizes the transmission of packets * from different users and traffic classes according to the Service * Level Agreements (SLAs) defined for the current network node. * * The scheduler supports thousands of packet queues grouped under a * 5-level hierarchy: * 1. Port: * - Typical usage: output Ethernet port; * - Multiple ports are scheduled in round robin order with * equal priority; * 2. Subport: * - Typical usage: group of users; * - Traffic shaping using the token bucket algorithm * (one bucket per subport); * - Upper limit enforced per traffic class at subport level; * - Lower priority traffic classes able to reuse subport * bandwidth currently unused by higher priority traffic * classes of the same subport; * - When any subport traffic class is oversubscribed * (configuration time event), the usage of subport member * pipes with high demand for that traffic class pipes is * truncated to a dynamically adjusted value with no * impact to low demand pipes; * 3. Pipe: * - Typical usage: individual user/subscriber; * - Traffic shaping using the token bucket algorithm * (one bucket per pipe); * 4. Traffic class: * - Traffic classes of the same pipe handled in strict * priority order; * - Upper limit enforced per traffic class at the pipe level; * - Lower priority traffic classes able to reuse pipe * bandwidth currently unused by higher priority traffic * classes of the same pipe; * 5. Queue: * - Typical usage: queue hosting packets from one or * multiple connections of same traffic class belonging to * the same user; * - Weighted Round Robin (WRR) is used to service the * queues within same pipe lowest priority traffic class (best-effort). * */ #include #include #include /** Congestion Management */ #include "rte_red.h" #include "rte_pie.h" /** Maximum number of queues per pipe. * Note that the multiple queues (power of 2) can only be assigned to * lowest priority (best-effort) traffic class. Other higher priority traffic * classes can only have one queue. * Can not change. * * @see struct rte_sched_port_params */ #define RTE_SCHED_QUEUES_PER_PIPE 16 /** Number of WRR queues for best-effort traffic class per pipe. * * @see struct rte_sched_pipe_params */ #define RTE_SCHED_BE_QUEUES_PER_PIPE 4 /** Number of traffic classes per pipe (as well as subport). * @see struct rte_sched_subport_params * @see struct rte_sched_pipe_params */ #define RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE \ (RTE_SCHED_QUEUES_PER_PIPE - RTE_SCHED_BE_QUEUES_PER_PIPE + 1) /** Best-effort traffic class ID * Can not change. */ #define RTE_SCHED_TRAFFIC_CLASS_BE (RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE - 1) /* * Ethernet framing overhead. Overhead fields per Ethernet frame: * 1. Preamble: 7 bytes; * 2. Start of Frame Delimiter (SFD): 1 byte; * 3. Frame Check Sequence (FCS): 4 bytes; * 4. Inter Frame Gap (IFG): 12 bytes. * * The FCS is considered overhead only if not included in the packet * length (field pkt_len of struct rte_mbuf). * * @see struct rte_sched_port_params */ #ifndef RTE_SCHED_FRAME_OVERHEAD_DEFAULT #define RTE_SCHED_FRAME_OVERHEAD_DEFAULT 24 #endif /** * Congestion Management (CMAN) mode * * This is used for controlling the admission of packets into a packet queue or * group of packet queues on congestion. * * The *Random Early Detection (RED)* algorithm works by proactively dropping * more and more input packets as the queue occupancy builds up. When the queue * is full or almost full, RED effectively works as *tail drop*. The *Weighted * RED* algorithm uses a separate set of RED thresholds for each packet color. * * Similar to RED, Proportional Integral Controller Enhanced (PIE) randomly * drops a packet at the onset of the congestion and tries to control the * latency around the target value. The congestion detection, however, is based * on the queueing latency instead of the queue length like RED. For more * information, refer RFC8033. */ enum rte_sched_cman_mode { RTE_SCHED_CMAN_RED, /**< Random Early Detection (RED) */ RTE_SCHED_CMAN_PIE, /**< Proportional Integral Controller Enhanced (PIE) */ }; /* * Pipe configuration parameters. The period and credits_per_period * parameters are measured in bytes, with one byte meaning the time * duration associated with the transmission of one byte on the * physical medium of the output port, with pipe or pipe traffic class * rate (measured as percentage of output port rate) determined as * credits_per_period divided by period. One credit represents one * byte. */ struct rte_sched_pipe_params { /** Token bucket rate (measured in bytes per second) */ uint64_t tb_rate; /** Token bucket size (measured in credits) */ uint64_t tb_size; /** Traffic class rates (measured in bytes per second) */ uint64_t tc_rate[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE]; /** Enforcement period (measured in milliseconds) */ uint64_t tc_period; /** Best-effort traffic class oversubscription weight */ uint8_t tc_ov_weight; /** WRR weights of best-effort traffic class queues */ uint8_t wrr_weights[RTE_SCHED_BE_QUEUES_PER_PIPE]; }; /* * Congestion Management configuration parameters. */ struct rte_sched_cman_params { /** Congestion Management mode */ enum rte_sched_cman_mode cman_mode; union { /** RED parameters */ struct rte_red_params red_params[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE][RTE_COLORS]; /** PIE parameters */ struct rte_pie_params pie_params[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE]; }; }; /* * Subport configuration parameters. The period and credits_per_period * parameters are measured in bytes, with one byte meaning the time * duration associated with the transmission of one byte on the * physical medium of the output port, with pipe or pipe traffic class * rate (measured as percentage of output port rate) determined as * credits_per_period divided by period. One credit represents one * byte. */ struct rte_sched_subport_params { /** Number of subport pipes. * The subport can enable/allocate fewer pipes than the maximum * number set through struct port_params::n_max_pipes_per_subport, * as needed, to avoid memory allocation for the queues of the * pipes that are not really needed. */ uint32_t n_pipes_per_subport_enabled; /** Packet queue size for each traffic class. * All the pipes within the same subport share the similar * configuration for the queues. */ uint16_t qsize[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE]; /** Pipe profile table. * Every pipe is configured using one of the profiles from this table. */ struct rte_sched_pipe_params *pipe_profiles; /** Profiles in the pipe profile table */ uint32_t n_pipe_profiles; /** Max allowed profiles in the pipe profile table */ uint32_t n_max_pipe_profiles; /** Congestion Management parameters * If NULL the congestion management is disabled for the subport, * otherwise proper parameters need to be provided. */ struct rte_sched_cman_params *cman_params; }; struct rte_sched_subport_profile_params { /** Token bucket rate (measured in bytes per second) */ uint64_t tb_rate; /** Token bucket size (measured in credits) */ uint64_t tb_size; /** Traffic class rates (measured in bytes per second) */ uint64_t tc_rate[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE]; /** Enforcement period for rates (measured in milliseconds) */ uint64_t tc_period; }; /** Subport statistics */ struct rte_sched_subport_stats { /** Number of packets successfully written */ uint64_t n_pkts_tc[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE]; /** Number of packets dropped */ uint64_t n_pkts_tc_dropped[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE]; /** Number of bytes successfully written for each traffic class */ uint64_t n_bytes_tc[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE]; /** Number of bytes dropped for each traffic class */ uint64_t n_bytes_tc_dropped[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE]; /** Number of packets dropped by congestion management scheme */ uint64_t n_pkts_cman_dropped[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE]; }; /** Queue statistics */ struct rte_sched_queue_stats { /** Packets successfully written */ uint64_t n_pkts; /** Packets dropped */ uint64_t n_pkts_dropped; /** Packets dropped by congestion management scheme */ uint64_t n_pkts_cman_dropped; /** Bytes successfully written */ uint64_t n_bytes; /** Bytes dropped */ uint64_t n_bytes_dropped; }; /** Port configuration parameters. */ struct rte_sched_port_params { /** Name of the port to be associated */ const char *name; /** CPU socket ID */ int socket; /** Output port rate (measured in bytes per second) */ uint64_t rate; /** Maximum Ethernet frame size (measured in bytes). * Should not include the framing overhead. */ uint32_t mtu; /** Framing overhead per packet (measured in bytes) */ uint32_t frame_overhead; /** Number of subports */ uint32_t n_subports_per_port; /** subport profile table. * Every pipe is configured using one of the profiles from this table. */ struct rte_sched_subport_profile_params *subport_profiles; /** Profiles in the pipe profile table */ uint32_t n_subport_profiles; /** Max allowed profiles in the pipe profile table */ uint32_t n_max_subport_profiles; /** Maximum number of subport pipes. * This parameter is used to reserve a fixed number of bits * in struct rte_mbuf::sched.queue_id for the pipe_id for all * the subports of the same port. */ uint32_t n_pipes_per_subport; }; /* * Configuration * ***/ /** * Hierarchical scheduler port configuration * * @param params * Port scheduler configuration parameter structure * @return * Handle to port scheduler instance upon success or NULL otherwise. */ struct rte_sched_port * rte_sched_port_config(struct rte_sched_port_params *params); /** * Hierarchical scheduler port free * * @param port * Handle to port scheduler instance. * If port is NULL, no operation is performed. */ void rte_sched_port_free(struct rte_sched_port *port); /** * Hierarchical scheduler pipe profile add * * @param port * Handle to port scheduler instance * @param subport_id * Subport ID * @param params * Pipe profile parameters * @param pipe_profile_id * Set to valid profile id when profile is added successfully. * @return * 0 upon success, error code otherwise */ int rte_sched_subport_pipe_profile_add(struct rte_sched_port *port, uint32_t subport_id, struct rte_sched_pipe_params *params, uint32_t *pipe_profile_id); /** * @warning * @b EXPERIMENTAL: this API may change without prior notice. * * Hierarchical scheduler subport bandwidth profile add * Note that this function is safe to use in runtime for adding new * subport bandwidth profile as it doesn't have any impact on hierarchical * structure of the scheduler. * @param port * Handle to port scheduler instance * @param profile * Subport bandwidth profile * @param subport_profile_id * Subport profile id * @return * 0 upon success, error code otherwise */ __rte_experimental int rte_sched_port_subport_profile_add(struct rte_sched_port *port, struct rte_sched_subport_profile_params *profile, uint32_t *subport_profile_id); /** * Hierarchical scheduler subport configuration * Note that this function is safe to use at runtime * to configure subport bandwidth profile. * @param port * Handle to port scheduler instance * @param subport_id * Subport ID * @param params * Subport configuration parameters. Must be non-NULL * for first invocation (i.e initialization) for a given * subport. Ignored (recommended value is NULL) for all * subsequent invocation on the same subport. * @param subport_profile_id * ID of subport bandwidth profile * @return * 0 upon success, error code otherwise */ int rte_sched_subport_config(struct rte_sched_port *port, uint32_t subport_id, struct rte_sched_subport_params *params, uint32_t subport_profile_id); /** * Hierarchical scheduler pipe configuration * * @param port * Handle to port scheduler instance * @param subport_id * Subport ID * @param pipe_id * Pipe ID within subport * @param pipe_profile * ID of subport-level pre-configured pipe profile * @return * 0 upon success, error code otherwise */ int rte_sched_pipe_config(struct rte_sched_port *port, uint32_t subport_id, uint32_t pipe_id, int32_t pipe_profile); /** * Hierarchical scheduler memory footprint size per port * * @param port_params * Port scheduler configuration parameter structure * @param subport_params * Array of subport parameter structures * @return * Memory footprint size in bytes upon success, 0 otherwise */ uint32_t rte_sched_port_get_memory_footprint(struct rte_sched_port_params *port_params, struct rte_sched_subport_params **subport_params); /* * Statistics * ***/ /** * Hierarchical scheduler subport statistics read * * @param port * Handle to port scheduler instance * @param subport_id * Subport ID * @param stats * Pointer to pre-allocated subport statistics structure where the statistics * counters should be stored * @param tc_ov * Pointer to pre-allocated RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE-entry array * where the oversubscription status for each of the subport traffic classes * should be stored. * @return * 0 upon success, error code otherwise */ int rte_sched_subport_read_stats(struct rte_sched_port *port, uint32_t subport_id, struct rte_sched_subport_stats *stats, uint32_t *tc_ov); /** * Hierarchical scheduler queue statistics read * * @param port * Handle to port scheduler instance * @param queue_id * Queue ID within port scheduler * @param stats * Pointer to pre-allocated subport statistics structure where the statistics * counters should be stored * @param qlen * Pointer to pre-allocated variable where the current queue length * should be stored. * @return * 0 upon success, error code otherwise */ int rte_sched_queue_read_stats(struct rte_sched_port *port, uint32_t queue_id, struct rte_sched_queue_stats *stats, uint16_t *qlen); /** * Scheduler hierarchy path write to packet descriptor. Typically * called by the packet classification stage. * * @param port * Handle to port scheduler instance * @param pkt * Packet descriptor handle * @param subport * Subport ID * @param pipe * Pipe ID within subport * @param traffic_class * Traffic class ID within pipe (0 .. RTE_SCHED_TRAFFIC_CLASS_BE) * @param queue * Queue ID within pipe traffic class, 0 for high priority TCs, and * 0 .. (RTE_SCHED_BE_QUEUES_PER_PIPE - 1) for best-effort TC * @param color * Packet color set */ void rte_sched_port_pkt_write(struct rte_sched_port *port, struct rte_mbuf *pkt, uint32_t subport, uint32_t pipe, uint32_t traffic_class, uint32_t queue, enum rte_color color); /** * Scheduler hierarchy path read from packet descriptor (struct * rte_mbuf). Typically called as part of the hierarchical scheduler * enqueue operation. The subport, pipe, traffic class and queue * parameters need to be pre-allocated by the caller. * * @param port * Handle to port scheduler instance * @param pkt * Packet descriptor handle * @param subport * Subport ID * @param pipe * Pipe ID within subport * @param traffic_class * Traffic class ID within pipe (0 .. RTE_SCHED_TRAFFIC_CLASS_BE) * @param queue * Queue ID within pipe traffic class, 0 for high priority TCs, and * 0 .. (RTE_SCHED_BE_QUEUES_PER_PIPE - 1) for best-effort TC */ void rte_sched_port_pkt_read_tree_path(struct rte_sched_port *port, const struct rte_mbuf *pkt, uint32_t *subport, uint32_t *pipe, uint32_t *traffic_class, uint32_t *queue); enum rte_color rte_sched_port_pkt_read_color(const struct rte_mbuf *pkt); /** * Hierarchical scheduler port enqueue. Writes up to n_pkts to port * scheduler and returns the number of packets actually written. For * each packet, the port scheduler queue to write the packet to is * identified by reading the hierarchy path from the packet * descriptor; if the queue is full or congested and the packet is not * written to the queue, then the packet is automatically dropped * without any action required from the caller. * * @param port * Handle to port scheduler instance * @param pkts * Array storing the packet descriptor handles * @param n_pkts * Number of packets to enqueue from the pkts array into the port scheduler * @return * Number of packets successfully enqueued */ int rte_sched_port_enqueue(struct rte_sched_port *port, struct rte_mbuf **pkts, uint32_t n_pkts); /** * Hierarchical scheduler port dequeue. Reads up to n_pkts from the * port scheduler and stores them in the pkts array and returns the * number of packets actually read. The pkts array needs to be * pre-allocated by the caller with at least n_pkts entries. * * @param port * Handle to port scheduler instance * @param pkts * Pre-allocated packet descriptor array where the packets dequeued * from the port * scheduler should be stored * @param n_pkts * Number of packets to dequeue from the port scheduler * @return * Number of packets successfully dequeued and placed in the pkts array */ int rte_sched_port_dequeue(struct rte_sched_port *port, struct rte_mbuf **pkts, uint32_t n_pkts); /** * Hierarchical scheduler subport traffic class * oversubscription enable/disable. * This function should be called at the time of subport initialization. * * @param port * Handle to port scheduler instance * @param subport_id * Subport ID * @param tc_ov_enable * Boolean flag to enable/disable TC OV * @return * 0 upon success, error code otherwise */ __rte_experimental int rte_sched_subport_tc_ov_config(struct rte_sched_port *port, uint32_t subport_id, bool tc_ov_enable); #ifdef __cplusplus } #endif #endif /* __INCLUDE_RTE_SCHED_H__ */