/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2018 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include "rte_power_pmd_mgmt.h" #include "power_pstate_cpufreq.h" #include "power_common.h" /* macros used for rounding frequency to nearest 100000 */ #define FREQ_ROUNDING_DELTA 50000 #define ROUND_FREQ_TO_N_100000 100000 #define BUS_FREQ 100000 #define POWER_GOVERNOR_PERF "performance" #define POWER_SYSFILE_MAX_FREQ \ "/sys/devices/system/cpu/cpu%u/cpufreq/scaling_max_freq" #define POWER_SYSFILE_MIN_FREQ \ "/sys/devices/system/cpu/cpu%u/cpufreq/scaling_min_freq" #define POWER_SYSFILE_CUR_FREQ \ "/sys/devices/system/cpu/cpu%u/cpufreq/scaling_cur_freq" #define POWER_SYSFILE_BASE_MAX_FREQ \ "/sys/devices/system/cpu/cpu%u/cpufreq/cpuinfo_max_freq" #define POWER_SYSFILE_BASE_MIN_FREQ \ "/sys/devices/system/cpu/cpu%u/cpufreq/cpuinfo_min_freq" #define POWER_SYSFILE_BASE_FREQ \ "/sys/devices/system/cpu/cpu%u/cpufreq/base_frequency" #define POWER_SYSFILE_TURBO_PCT \ "/sys/devices/system/cpu/intel_pstate/turbo_pct" #define POWER_PSTATE_DRIVER "intel_pstate" enum power_state { POWER_IDLE = 0, POWER_ONGOING, POWER_USED, POWER_UNKNOWN }; struct pstate_power_info { unsigned int lcore_id; /**< Logical core id */ uint32_t freqs[RTE_MAX_LCORE_FREQS]; /**< Frequency array */ uint32_t nb_freqs; /**< number of available freqs */ FILE *f_cur_min; /**< FD of scaling_min */ FILE *f_cur_max; /**< FD of scaling_max */ char governor_ori[32]; /**< Original governor name */ uint32_t curr_idx; /**< Freq index in freqs array */ uint32_t non_turbo_max_ratio; /**< Non Turbo Max ratio */ uint32_t sys_max_freq; /**< system wide max freq */ uint32_t core_base_freq; /**< core base freq */ uint32_t state; /**< Power in use state */ uint16_t turbo_available; /**< Turbo Boost available */ uint16_t turbo_enable; /**< Turbo Boost enable/disable */ uint16_t priority_core; /**< High Performance core */ } __rte_cache_aligned; static struct pstate_power_info lcore_power_info[RTE_MAX_LCORE]; /** * It is to read the turbo mode percentage from sysfs */ static int32_t power_read_turbo_pct(uint64_t *outVal) { int fd, ret; char val[4] = {0}; char *endptr; fd = open(POWER_SYSFILE_TURBO_PCT, O_RDONLY); if (fd < 0) { RTE_LOG(ERR, POWER, "Error opening '%s': %s\n", POWER_SYSFILE_TURBO_PCT, strerror(errno)); return fd; } ret = read(fd, val, sizeof(val)); if (ret < 0) { RTE_LOG(ERR, POWER, "Error reading '%s': %s\n", POWER_SYSFILE_TURBO_PCT, strerror(errno)); goto out; } errno = 0; *outVal = (uint64_t) strtol(val, &endptr, 10); if (errno != 0 || (*endptr != 0 && *endptr != '\n')) { RTE_LOG(ERR, POWER, "Error converting str to digits, read from %s: %s\n", POWER_SYSFILE_TURBO_PCT, strerror(errno)); ret = -1; goto out; } POWER_DEBUG_TRACE("power turbo pct: %"PRIu64"\n", *outVal); out: close(fd); return ret; } /** * It is to fopen the sys file for the future setting the lcore frequency. */ static int power_init_for_setting_freq(struct pstate_power_info *pi) { FILE *f_base = NULL, *f_base_min = NULL, *f_base_max = NULL, *f_min = NULL, *f_max = NULL; uint32_t base_ratio, base_min_ratio, base_max_ratio; uint64_t max_non_turbo; int ret; /* open all files we expect to have open */ open_core_sysfs_file(&f_base_max, "r", POWER_SYSFILE_BASE_MAX_FREQ, pi->lcore_id); if (f_base_max == NULL) { RTE_LOG(ERR, POWER, "failed to open %s\n", POWER_SYSFILE_BASE_MAX_FREQ); goto err; } open_core_sysfs_file(&f_base_min, "r", POWER_SYSFILE_BASE_MIN_FREQ, pi->lcore_id); if (f_base_min == NULL) { RTE_LOG(ERR, POWER, "failed to open %s\n", POWER_SYSFILE_BASE_MIN_FREQ); goto err; } open_core_sysfs_file(&f_min, "rw+", POWER_SYSFILE_MIN_FREQ, pi->lcore_id); if (f_min == NULL) { RTE_LOG(ERR, POWER, "failed to open %s\n", POWER_SYSFILE_MIN_FREQ); goto err; } open_core_sysfs_file(&f_max, "rw+", POWER_SYSFILE_MAX_FREQ, pi->lcore_id); if (f_max == NULL) { RTE_LOG(ERR, POWER, "failed to open %s\n", POWER_SYSFILE_MAX_FREQ); goto err; } open_core_sysfs_file(&f_base, "r", POWER_SYSFILE_BASE_FREQ, pi->lcore_id); /* base ratio file may not exist in some kernels, so no error check */ /* read base max ratio */ ret = read_core_sysfs_u32(f_base_max, &base_max_ratio); if (ret < 0) { RTE_LOG(ERR, POWER, "Failed to read %s\n", POWER_SYSFILE_BASE_MAX_FREQ); goto err; } /* read base min ratio */ ret = read_core_sysfs_u32(f_base_min, &base_min_ratio); if (ret < 0) { RTE_LOG(ERR, POWER, "Failed to read %s\n", POWER_SYSFILE_BASE_MIN_FREQ); goto err; } /* base ratio may not exist */ if (f_base != NULL) { ret = read_core_sysfs_u32(f_base, &base_ratio); if (ret < 0) { RTE_LOG(ERR, POWER, "Failed to read %s\n", POWER_SYSFILE_BASE_FREQ); goto err; } } else { base_ratio = 0; } /* convert ratios to bins */ base_max_ratio /= BUS_FREQ; base_min_ratio /= BUS_FREQ; base_ratio /= BUS_FREQ; /* assign file handles */ pi->f_cur_min = f_min; pi->f_cur_max = f_max; /* try to get turbo from global sysfs entry for less privileges than from MSR */ if (power_read_turbo_pct(&max_non_turbo) < 0) goto err; /* no errors after this point */ max_non_turbo = base_min_ratio + (100 - max_non_turbo) * (base_max_ratio - base_min_ratio) / 100; POWER_DEBUG_TRACE("no turbo perf %"PRIu64"\n", max_non_turbo); pi->non_turbo_max_ratio = (uint32_t)max_non_turbo; /* * If base_frequency is reported as greater than the maximum * turbo frequency, that's a known issue with some kernels. * Set base_frequency to max_non_turbo as a workaround. */ if (base_ratio > base_max_ratio) { /* base_ratio is greater than max turbo. Kernel bug. */ pi->priority_core = 0; goto out; } /* * If base_frequency is reported as greater than the maximum * non-turbo frequency, then mark it as a high priority core. */ if (base_ratio > max_non_turbo) pi->priority_core = 1; else pi->priority_core = 0; pi->core_base_freq = base_ratio * BUS_FREQ; out: if (f_base != NULL) fclose(f_base); fclose(f_base_max); fclose(f_base_min); /* f_min and f_max are stored, no need to close */ return 0; err: if (f_base != NULL) fclose(f_base); if (f_base_min != NULL) fclose(f_base_min); if (f_base_max != NULL) fclose(f_base_max); if (f_min != NULL) fclose(f_min); if (f_max != NULL) fclose(f_max); return -1; } static int set_freq_internal(struct pstate_power_info *pi, uint32_t idx) { uint32_t target_freq = 0; if (idx >= RTE_MAX_LCORE_FREQS || idx >= pi->nb_freqs) { RTE_LOG(ERR, POWER, "Invalid frequency index %u, which " "should be less than %u\n", idx, pi->nb_freqs); return -1; } /* Check if it is the same as current */ if (idx == pi->curr_idx) return 0; /* Because Intel Pstate Driver only allow user change min/max hint * User need change the min/max as same value. */ if (fseek(pi->f_cur_min, 0, SEEK_SET) < 0) { RTE_LOG(ERR, POWER, "Fail to set file position indicator to 0 " "for setting frequency for lcore %u\n", pi->lcore_id); return -1; } if (fseek(pi->f_cur_max, 0, SEEK_SET) < 0) { RTE_LOG(ERR, POWER, "Fail to set file position indicator to 0 " "for setting frequency for lcore %u\n", pi->lcore_id); return -1; } /* Turbo is available and enabled, first freq bucket is sys max freq */ if (pi->turbo_available && idx == 0) { if (pi->turbo_enable) target_freq = pi->sys_max_freq; else { RTE_LOG(ERR, POWER, "Turbo is off, frequency can't be scaled up more %u\n", pi->lcore_id); return -1; } } else target_freq = pi->freqs[idx]; /* Decrease freq, the min freq should be updated first */ if (idx > pi->curr_idx) { if (fprintf(pi->f_cur_min, "%u", target_freq) < 0) { RTE_LOG(ERR, POWER, "Fail to write new frequency for " "lcore %u\n", pi->lcore_id); return -1; } if (fprintf(pi->f_cur_max, "%u", target_freq) < 0) { RTE_LOG(ERR, POWER, "Fail to write new frequency for " "lcore %u\n", pi->lcore_id); return -1; } POWER_DEBUG_TRACE("Frequency '%u' to be set for lcore %u\n", target_freq, pi->lcore_id); fflush(pi->f_cur_min); fflush(pi->f_cur_max); } /* Increase freq, the max freq should be updated first */ if (idx < pi->curr_idx) { if (fprintf(pi->f_cur_max, "%u", target_freq) < 0) { RTE_LOG(ERR, POWER, "Fail to write new frequency for " "lcore %u\n", pi->lcore_id); return -1; } if (fprintf(pi->f_cur_min, "%u", target_freq) < 0) { RTE_LOG(ERR, POWER, "Fail to write new frequency for " "lcore %u\n", pi->lcore_id); return -1; } POWER_DEBUG_TRACE("Frequency '%u' to be set for lcore %u\n", target_freq, pi->lcore_id); fflush(pi->f_cur_max); fflush(pi->f_cur_min); } pi->curr_idx = idx; return 1; } /** * It is to check the current scaling governor by reading sys file, and then * set it into 'performance' if it is not by writing the sys file. The original * governor will be saved for rolling back. */ static int power_set_governor_performance(struct pstate_power_info *pi) { return power_set_governor(pi->lcore_id, POWER_GOVERNOR_PERF, pi->governor_ori, sizeof(pi->governor_ori)); } /** * It is to check the governor and then set the original governor back if * needed by writing the sys file. */ static int power_set_governor_original(struct pstate_power_info *pi) { return power_set_governor(pi->lcore_id, pi->governor_ori, NULL, 0); } /** * It is to get the available frequencies of the specific lcore by reading the * sys file. */ static int power_get_available_freqs(struct pstate_power_info *pi) { FILE *f_min = NULL, *f_max = NULL; int ret = -1; uint32_t sys_min_freq = 0, sys_max_freq = 0, base_max_freq = 0; int config_min_freq, config_max_freq; uint32_t i, num_freqs = 0; /* open all files */ open_core_sysfs_file(&f_max, "r", POWER_SYSFILE_BASE_MAX_FREQ, pi->lcore_id); if (f_max == NULL) { RTE_LOG(ERR, POWER, "failed to open %s\n", POWER_SYSFILE_BASE_MAX_FREQ); goto out; } open_core_sysfs_file(&f_min, "r", POWER_SYSFILE_BASE_MIN_FREQ, pi->lcore_id); if (f_min == NULL) { RTE_LOG(ERR, POWER, "failed to open %s\n", POWER_SYSFILE_BASE_MIN_FREQ); goto out; } /* read base ratios */ ret = read_core_sysfs_u32(f_max, &sys_max_freq); if (ret < 0) { RTE_LOG(ERR, POWER, "Failed to read %s\n", POWER_SYSFILE_BASE_MAX_FREQ); goto out; } ret = read_core_sysfs_u32(f_min, &sys_min_freq); if (ret < 0) { RTE_LOG(ERR, POWER, "Failed to read %s\n", POWER_SYSFILE_BASE_MIN_FREQ); goto out; } /* check for config set by user or application to limit frequency range */ config_min_freq = rte_power_pmd_mgmt_get_scaling_freq_min(pi->lcore_id); if (config_min_freq < 0) goto out; config_max_freq = rte_power_pmd_mgmt_get_scaling_freq_max(pi->lcore_id); if (config_max_freq < 0) goto out; sys_min_freq = RTE_MAX(sys_min_freq, (uint32_t)config_min_freq); if (config_max_freq > 0) /* Only use config_max_freq if a value has been set */ sys_max_freq = RTE_MIN(sys_max_freq, (uint32_t)config_max_freq); if (sys_max_freq < sys_min_freq) goto out; pi->sys_max_freq = sys_max_freq; if (pi->priority_core == 1) base_max_freq = pi->core_base_freq; else base_max_freq = pi->non_turbo_max_ratio * BUS_FREQ; POWER_DEBUG_TRACE("sys min %u, sys max %u, base_max %u\n", sys_min_freq, sys_max_freq, base_max_freq); if (base_max_freq < sys_max_freq) pi->turbo_available = 1; else pi->turbo_available = 0; /* If turbo is available then there is one extra freq bucket * to store the sys max freq which value is base_max +1 */ num_freqs = (RTE_MIN(base_max_freq, sys_max_freq) - sys_min_freq) / BUS_FREQ + 1 + pi->turbo_available; if (num_freqs >= RTE_MAX_LCORE_FREQS) { RTE_LOG(ERR, POWER, "Too many available frequencies: %d\n", num_freqs); goto out; } /* Generate the freq bucket array. * If turbo is available the freq bucket[0] value is base_max +1 * the bucket[1] is base_max, bucket[2] is base_max - BUS_FREQ * and so on. * If turbo is not available bucket[0] is base_max and so on */ for (i = 0, pi->nb_freqs = 0; i < num_freqs; i++) { if ((i == 0) && pi->turbo_available) pi->freqs[pi->nb_freqs++] = RTE_MIN(base_max_freq, sys_max_freq) + 1; else pi->freqs[pi->nb_freqs++] = RTE_MIN(base_max_freq, sys_max_freq) - (i - pi->turbo_available) * BUS_FREQ; } ret = 0; POWER_DEBUG_TRACE("%d frequency(s) of lcore %u are available\n", num_freqs, pi->lcore_id); out: if (f_min != NULL) fclose(f_min); if (f_max != NULL) fclose(f_max); return ret; } static int power_get_cur_idx(struct pstate_power_info *pi) { FILE *f_cur; int ret = -1; uint32_t sys_cur_freq = 0; unsigned int i; open_core_sysfs_file(&f_cur, "r", POWER_SYSFILE_CUR_FREQ, pi->lcore_id); if (f_cur == NULL) { RTE_LOG(ERR, POWER, "failed to open %s\n", POWER_SYSFILE_CUR_FREQ); goto fail; } ret = read_core_sysfs_u32(f_cur, &sys_cur_freq); if (ret < 0) { RTE_LOG(ERR, POWER, "Failed to read %s\n", POWER_SYSFILE_CUR_FREQ); goto fail; } /* convert the frequency to nearest 100000 value * Ex: if sys_cur_freq=1396789 then freq_conv=1400000 * Ex: if sys_cur_freq=800030 then freq_conv=800000 * Ex: if sys_cur_freq=800030 then freq_conv=800000 */ unsigned int freq_conv = 0; freq_conv = (sys_cur_freq + FREQ_ROUNDING_DELTA) / ROUND_FREQ_TO_N_100000; freq_conv = freq_conv * ROUND_FREQ_TO_N_100000; for (i = 0; i < pi->nb_freqs; i++) { if (freq_conv == pi->freqs[i]) { pi->curr_idx = i; break; } } ret = 0; fail: if (f_cur != NULL) fclose(f_cur); return ret; } int power_pstate_cpufreq_check_supported(void) { return cpufreq_check_scaling_driver(POWER_PSTATE_DRIVER); } int power_pstate_cpufreq_init(unsigned int lcore_id) { struct pstate_power_info *pi; uint32_t exp_state; if (lcore_id >= RTE_MAX_LCORE) { RTE_LOG(ERR, POWER, "Lcore id %u can not exceed %u\n", lcore_id, RTE_MAX_LCORE - 1U); return -1; } pi = &lcore_power_info[lcore_id]; exp_state = POWER_IDLE; /* The power in use state works as a guard variable between * the CPU frequency control initialization and exit process. * The ACQUIRE memory ordering here pairs with the RELEASE * ordering below as lock to make sure the frequency operations * in the critical section are done under the correct state. */ if (!__atomic_compare_exchange_n(&(pi->state), &exp_state, POWER_ONGOING, 0, __ATOMIC_ACQUIRE, __ATOMIC_RELAXED)) { RTE_LOG(INFO, POWER, "Power management of lcore %u is " "in use\n", lcore_id); return -1; } pi->lcore_id = lcore_id; /* Check and set the governor */ if (power_set_governor_performance(pi) < 0) { RTE_LOG(ERR, POWER, "Cannot set governor of lcore %u to " "performance\n", lcore_id); goto fail; } /* Init for setting lcore frequency */ if (power_init_for_setting_freq(pi) < 0) { RTE_LOG(ERR, POWER, "Cannot init for setting frequency for " "lcore %u\n", lcore_id); goto fail; } /* Get the available frequencies */ if (power_get_available_freqs(pi) < 0) { RTE_LOG(ERR, POWER, "Cannot get available frequencies of " "lcore %u\n", lcore_id); goto fail; } if (power_get_cur_idx(pi) < 0) { RTE_LOG(ERR, POWER, "Cannot get current frequency " "index of lcore %u\n", lcore_id); goto fail; } /* Set freq to max by default */ if (power_pstate_cpufreq_freq_max(lcore_id) < 0) { RTE_LOG(ERR, POWER, "Cannot set frequency of lcore %u " "to max\n", lcore_id); goto fail; } RTE_LOG(INFO, POWER, "Initialized successfully for lcore %u " "power management\n", lcore_id); exp_state = POWER_ONGOING; __atomic_compare_exchange_n(&(pi->state), &exp_state, POWER_USED, 0, __ATOMIC_RELEASE, __ATOMIC_RELAXED); return 0; fail: exp_state = POWER_ONGOING; __atomic_compare_exchange_n(&(pi->state), &exp_state, POWER_UNKNOWN, 0, __ATOMIC_RELEASE, __ATOMIC_RELAXED); return -1; } int power_pstate_cpufreq_exit(unsigned int lcore_id) { struct pstate_power_info *pi; uint32_t exp_state; if (lcore_id >= RTE_MAX_LCORE) { RTE_LOG(ERR, POWER, "Lcore id %u can not exceeds %u\n", lcore_id, RTE_MAX_LCORE - 1U); return -1; } pi = &lcore_power_info[lcore_id]; exp_state = POWER_USED; /* The power in use state works as a guard variable between * the CPU frequency control initialization and exit process. * The ACQUIRE memory ordering here pairs with the RELEASE * ordering below as lock to make sure the frequency operations * in the critical section are under done the correct state. */ if (!__atomic_compare_exchange_n(&(pi->state), &exp_state, POWER_ONGOING, 0, __ATOMIC_ACQUIRE, __ATOMIC_RELAXED)) { RTE_LOG(INFO, POWER, "Power management of lcore %u is " "not used\n", lcore_id); return -1; } /* Close FD of setting freq */ fclose(pi->f_cur_min); fclose(pi->f_cur_max); pi->f_cur_min = NULL; pi->f_cur_max = NULL; /* Set the governor back to the original */ if (power_set_governor_original(pi) < 0) { RTE_LOG(ERR, POWER, "Cannot set the governor of %u back " "to the original\n", lcore_id); goto fail; } RTE_LOG(INFO, POWER, "Power management of lcore %u has exited from " "'performance' mode and been set back to the " "original\n", lcore_id); exp_state = POWER_ONGOING; __atomic_compare_exchange_n(&(pi->state), &exp_state, POWER_IDLE, 0, __ATOMIC_RELEASE, __ATOMIC_RELAXED); return 0; fail: exp_state = POWER_ONGOING; __atomic_compare_exchange_n(&(pi->state), &exp_state, POWER_UNKNOWN, 0, __ATOMIC_RELEASE, __ATOMIC_RELAXED); return -1; } uint32_t power_pstate_cpufreq_freqs(unsigned int lcore_id, uint32_t *freqs, uint32_t num) { struct pstate_power_info *pi; if (lcore_id >= RTE_MAX_LCORE) { RTE_LOG(ERR, POWER, "Invalid lcore ID\n"); return 0; } if (freqs == NULL) { RTE_LOG(ERR, POWER, "NULL buffer supplied\n"); return 0; } pi = &lcore_power_info[lcore_id]; if (num < pi->nb_freqs) { RTE_LOG(ERR, POWER, "Buffer size is not enough\n"); return 0; } rte_memcpy(freqs, pi->freqs, pi->nb_freqs * sizeof(uint32_t)); return pi->nb_freqs; } uint32_t power_pstate_cpufreq_get_freq(unsigned int lcore_id) { if (lcore_id >= RTE_MAX_LCORE) { RTE_LOG(ERR, POWER, "Invalid lcore ID\n"); return RTE_POWER_INVALID_FREQ_INDEX; } return lcore_power_info[lcore_id].curr_idx; } int power_pstate_cpufreq_set_freq(unsigned int lcore_id, uint32_t index) { if (lcore_id >= RTE_MAX_LCORE) { RTE_LOG(ERR, POWER, "Invalid lcore ID\n"); return -1; } return set_freq_internal(&(lcore_power_info[lcore_id]), index); } int power_pstate_cpufreq_freq_up(unsigned int lcore_id) { struct pstate_power_info *pi; if (lcore_id >= RTE_MAX_LCORE) { RTE_LOG(ERR, POWER, "Invalid lcore ID\n"); return -1; } pi = &lcore_power_info[lcore_id]; if (pi->curr_idx == 0 || (pi->curr_idx == 1 && pi->turbo_available && !pi->turbo_enable)) return 0; /* Frequencies in the array are from high to low. */ return set_freq_internal(pi, pi->curr_idx - 1); } int power_pstate_cpufreq_freq_down(unsigned int lcore_id) { struct pstate_power_info *pi; if (lcore_id >= RTE_MAX_LCORE) { RTE_LOG(ERR, POWER, "Invalid lcore ID\n"); return -1; } pi = &lcore_power_info[lcore_id]; if (pi->curr_idx + 1 == pi->nb_freqs) return 0; /* Frequencies in the array are from high to low. */ return set_freq_internal(pi, pi->curr_idx + 1); } int power_pstate_cpufreq_freq_max(unsigned int lcore_id) { if (lcore_id >= RTE_MAX_LCORE) { RTE_LOG(ERR, POWER, "Invalid lcore ID\n"); return -1; } /* Frequencies in the array are from high to low. */ if (lcore_power_info[lcore_id].turbo_available) { if (lcore_power_info[lcore_id].turbo_enable) /* Set to Turbo */ return set_freq_internal( &lcore_power_info[lcore_id], 0); else /* Set to max non-turbo */ return set_freq_internal( &lcore_power_info[lcore_id], 1); } else return set_freq_internal(&lcore_power_info[lcore_id], 0); } int power_pstate_cpufreq_freq_min(unsigned int lcore_id) { struct pstate_power_info *pi; if (lcore_id >= RTE_MAX_LCORE) { RTE_LOG(ERR, POWER, "Invalid lcore ID\n"); return -1; } pi = &lcore_power_info[lcore_id]; /* Frequencies in the array are from high to low. */ return set_freq_internal(pi, pi->nb_freqs - 1); } int power_pstate_turbo_status(unsigned int lcore_id) { struct pstate_power_info *pi; if (lcore_id >= RTE_MAX_LCORE) { RTE_LOG(ERR, POWER, "Invalid lcore ID\n"); return -1; } pi = &lcore_power_info[lcore_id]; return pi->turbo_enable; } int power_pstate_enable_turbo(unsigned int lcore_id) { struct pstate_power_info *pi; if (lcore_id >= RTE_MAX_LCORE) { RTE_LOG(ERR, POWER, "Invalid lcore ID\n"); return -1; } pi = &lcore_power_info[lcore_id]; if (pi->turbo_available) pi->turbo_enable = 1; else { pi->turbo_enable = 0; RTE_LOG(ERR, POWER, "Failed to enable turbo on lcore %u\n", lcore_id); return -1; } return 0; } int power_pstate_disable_turbo(unsigned int lcore_id) { struct pstate_power_info *pi; if (lcore_id >= RTE_MAX_LCORE) { RTE_LOG(ERR, POWER, "Invalid lcore ID\n"); return -1; } pi = &lcore_power_info[lcore_id]; pi->turbo_enable = 0; if (pi->turbo_available && pi->curr_idx <= 1) { /* Try to set freq to max by default coming out of turbo */ if (power_pstate_cpufreq_freq_max(lcore_id) < 0) { RTE_LOG(ERR, POWER, "Failed to set frequency of lcore %u to max\n", lcore_id); return -1; } } return 0; } int power_pstate_get_capabilities(unsigned int lcore_id, struct rte_power_core_capabilities *caps) { struct pstate_power_info *pi; if (lcore_id >= RTE_MAX_LCORE) { RTE_LOG(ERR, POWER, "Invalid lcore ID\n"); return -1; } if (caps == NULL) { RTE_LOG(ERR, POWER, "Invalid argument\n"); return -1; } pi = &lcore_power_info[lcore_id]; caps->capabilities = 0; caps->turbo = !!(pi->turbo_available); caps->priority = pi->priority_core; return 0; }