/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2014 Intel Corporation */ #ifndef _RTE_ETHER_H_ #define _RTE_ETHER_H_ /** * @file * * Ethernet Helpers in RTE */ #ifdef __cplusplus extern "C" { #endif #include #include #include #include #include #define RTE_ETHER_ADDR_LEN 6 /**< Length of Ethernet address. */ #define RTE_ETHER_TYPE_LEN 2 /**< Length of Ethernet type field. */ #define RTE_ETHER_CRC_LEN 4 /**< Length of Ethernet CRC. */ #define RTE_ETHER_HDR_LEN \ (RTE_ETHER_ADDR_LEN * 2 + \ RTE_ETHER_TYPE_LEN) /**< Length of Ethernet header. */ #define RTE_ETHER_MIN_LEN 64 /**< Minimum frame len, including CRC. */ #define RTE_ETHER_MAX_LEN 1518 /**< Maximum frame len, including CRC. */ #define RTE_ETHER_MTU \ (RTE_ETHER_MAX_LEN - RTE_ETHER_HDR_LEN - \ RTE_ETHER_CRC_LEN) /**< Ethernet MTU. */ #define RTE_VLAN_HLEN 4 /**< VLAN (IEEE 802.1Q) header length. */ /** Maximum VLAN frame length (excluding QinQ), including CRC. */ #define RTE_ETHER_MAX_VLAN_FRAME_LEN \ (RTE_ETHER_MAX_LEN + RTE_VLAN_HLEN) #define RTE_ETHER_MAX_JUMBO_FRAME_LEN \ 0x3F00 /**< Maximum Jumbo frame length, including CRC. */ #define RTE_ETHER_MAX_VLAN_ID 4095 /**< Maximum VLAN ID. */ #define RTE_ETHER_MIN_MTU 68 /**< Minimum MTU for IPv4 packets, see RFC 791. */ /* VLAN header fields */ #define RTE_VLAN_DEI_SHIFT 12 #define RTE_VLAN_PRI_SHIFT 13 #define RTE_VLAN_PRI_MASK 0xe000 /* Priority Code Point */ #define RTE_VLAN_DEI_MASK 0x1000 /* Drop Eligible Indicator */ #define RTE_VLAN_ID_MASK 0x0fff /* VLAN Identifier */ #define RTE_VLAN_TCI_ID(vlan_tci) ((vlan_tci) & RTE_VLAN_ID_MASK) #define RTE_VLAN_TCI_PRI(vlan_tci) (((vlan_tci) & RTE_VLAN_PRI_MASK) >> RTE_VLAN_PRI_SHIFT) #define RTE_VLAN_TCI_DEI(vlan_tci) (((vlan_tci) & RTE_VLAN_DEI_MASK) >> RTE_VLAN_DEI_SHIFT) #define RTE_VLAN_TCI_MAKE(id, pri, dei) ((id) | \ ((pri) << RTE_VLAN_PRI_SHIFT) | \ ((dei) << RTE_VLAN_DEI_SHIFT)) /** * Ethernet address: * A universally administered address is uniquely assigned to a device by its * manufacturer. The first three octets (in transmission order) contain the * Organizationally Unique Identifier (OUI). The following three (MAC-48 and * EUI-48) octets are assigned by that organization with the only constraint * of uniqueness. * A locally administered address is assigned to a device by a network * administrator and does not contain OUIs. * See http://standards.ieee.org/regauth/groupmac/tutorial.html */ struct rte_ether_addr { uint8_t addr_bytes[RTE_ETHER_ADDR_LEN]; /**< Addr bytes in tx order */ } __rte_aligned(2); #define RTE_ETHER_LOCAL_ADMIN_ADDR 0x02 /**< Locally assigned Eth. address. */ #define RTE_ETHER_GROUP_ADDR 0x01 /**< Multicast or broadcast Eth. address. */ /** * Check if two Ethernet addresses are the same. * * @param ea1 * A pointer to the first ether_addr structure containing * the ethernet address. * @param ea2 * A pointer to the second ether_addr structure containing * the ethernet address. * * @return * True (1) if the given two ethernet address are the same; * False (0) otherwise. */ static inline int rte_is_same_ether_addr(const struct rte_ether_addr *ea1, const struct rte_ether_addr *ea2) { const uint16_t *w1 = (const uint16_t *)ea1; const uint16_t *w2 = (const uint16_t *)ea2; return ((w1[0] ^ w2[0]) | (w1[1] ^ w2[1]) | (w1[2] ^ w2[2])) == 0; } /** * Check if an Ethernet address is filled with zeros. * * @param ea * A pointer to a ether_addr structure containing the ethernet address * to check. * @return * True (1) if the given ethernet address is filled with zeros; * false (0) otherwise. */ static inline int rte_is_zero_ether_addr(const struct rte_ether_addr *ea) { const uint16_t *w = (const uint16_t *)ea; return (w[0] | w[1] | w[2]) == 0; } /** * Check if an Ethernet address is a unicast address. * * @param ea * A pointer to a ether_addr structure containing the ethernet address * to check. * @return * True (1) if the given ethernet address is a unicast address; * false (0) otherwise. */ static inline int rte_is_unicast_ether_addr(const struct rte_ether_addr *ea) { return (ea->addr_bytes[0] & RTE_ETHER_GROUP_ADDR) == 0; } /** * Check if an Ethernet address is a multicast address. * * @param ea * A pointer to a ether_addr structure containing the ethernet address * to check. * @return * True (1) if the given ethernet address is a multicast address; * false (0) otherwise. */ static inline int rte_is_multicast_ether_addr(const struct rte_ether_addr *ea) { return ea->addr_bytes[0] & RTE_ETHER_GROUP_ADDR; } /** * Check if an Ethernet address is a broadcast address. * * @param ea * A pointer to a ether_addr structure containing the ethernet address * to check. * @return * True (1) if the given ethernet address is a broadcast address; * false (0) otherwise. */ static inline int rte_is_broadcast_ether_addr(const struct rte_ether_addr *ea) { const uint16_t *w = (const uint16_t *)ea; return (w[0] & w[1] & w[2]) == 0xFFFF; } /** * Check if an Ethernet address is a universally assigned address. * * @param ea * A pointer to a ether_addr structure containing the ethernet address * to check. * @return * True (1) if the given ethernet address is a universally assigned address; * false (0) otherwise. */ static inline int rte_is_universal_ether_addr(const struct rte_ether_addr *ea) { return (ea->addr_bytes[0] & RTE_ETHER_LOCAL_ADMIN_ADDR) == 0; } /** * Check if an Ethernet address is a locally assigned address. * * @param ea * A pointer to a ether_addr structure containing the ethernet address * to check. * @return * True (1) if the given ethernet address is a locally assigned address; * false (0) otherwise. */ static inline int rte_is_local_admin_ether_addr(const struct rte_ether_addr *ea) { return (ea->addr_bytes[0] & RTE_ETHER_LOCAL_ADMIN_ADDR) != 0; } /** * Check if an Ethernet address is a valid address. Checks that the address is a * unicast address and is not filled with zeros. * * @param ea * A pointer to a ether_addr structure containing the ethernet address * to check. * @return * True (1) if the given ethernet address is valid; * false (0) otherwise. */ static inline int rte_is_valid_assigned_ether_addr(const struct rte_ether_addr *ea) { return rte_is_unicast_ether_addr(ea) && (!rte_is_zero_ether_addr(ea)); } /** * Generate a random Ethernet address that is locally administered * and not multicast. * @param addr * A pointer to Ethernet address. */ void rte_eth_random_addr(uint8_t *addr); /** * Copy an Ethernet address. * * @param ea_from * A pointer to a ether_addr structure holding the Ethernet address to copy. * @param ea_to * A pointer to a ether_addr structure where to copy the Ethernet address. */ static inline void rte_ether_addr_copy(const struct rte_ether_addr *__restrict ea_from, struct rte_ether_addr *__restrict ea_to) { *ea_to = *ea_from; } /** * Macro to print six-bytes of MAC address in hex format */ #define RTE_ETHER_ADDR_PRT_FMT "%02X:%02X:%02X:%02X:%02X:%02X" /** * Macro to extract the MAC address bytes from rte_ether_addr struct */ #define RTE_ETHER_ADDR_BYTES(mac_addrs) ((mac_addrs)->addr_bytes[0]), \ ((mac_addrs)->addr_bytes[1]), \ ((mac_addrs)->addr_bytes[2]), \ ((mac_addrs)->addr_bytes[3]), \ ((mac_addrs)->addr_bytes[4]), \ ((mac_addrs)->addr_bytes[5]) #define RTE_ETHER_ADDR_FMT_SIZE 18 /** * Format 48bits Ethernet address in pattern xx:xx:xx:xx:xx:xx. * * @param buf * A pointer to buffer contains the formatted MAC address. * @param size * The format buffer size. * @param eth_addr * A pointer to a ether_addr structure. */ void rte_ether_format_addr(char *buf, uint16_t size, const struct rte_ether_addr *eth_addr); /** * Convert string with Ethernet address to an ether_addr. * * @param str * A pointer to buffer contains the formatted MAC address. * The supported formats are: * XX:XX:XX:XX:XX:XX or XXXX:XXXX:XXXX * where XX is a hex digit: 0-9, a-f, or A-F. * @param eth_addr * A pointer to a ether_addr structure. * @return * 0 if successful * -1 and sets rte_errno if invalid string */ int rte_ether_unformat_addr(const char *str, struct rte_ether_addr *eth_addr); /** * Ethernet header: Contains the destination address, source address * and frame type. */ struct rte_ether_hdr { struct rte_ether_addr dst_addr; /**< Destination address. */ struct rte_ether_addr src_addr; /**< Source address. */ rte_be16_t ether_type; /**< Frame type. */ } __rte_aligned(2); /** * Ethernet VLAN Header. * Contains the 16-bit VLAN Tag Control Identifier and the Ethernet type * of the encapsulated frame. */ struct rte_vlan_hdr { rte_be16_t vlan_tci; /**< Priority (3) + CFI (1) + Identifier Code (12) */ rte_be16_t eth_proto; /**< Ethernet type of encapsulated frame. */ } __rte_packed; /* Ethernet frame types */ #define RTE_ETHER_TYPE_IPV4 0x0800 /**< IPv4 Protocol. */ #define RTE_ETHER_TYPE_IPV6 0x86DD /**< IPv6 Protocol. */ #define RTE_ETHER_TYPE_ARP 0x0806 /**< Arp Protocol. */ #define RTE_ETHER_TYPE_RARP 0x8035 /**< Reverse Arp Protocol. */ #define RTE_ETHER_TYPE_VLAN 0x8100 /**< IEEE 802.1Q VLAN tagging. */ #define RTE_ETHER_TYPE_QINQ 0x88A8 /**< IEEE 802.1ad QinQ tagging. */ #define RTE_ETHER_TYPE_QINQ1 0x9100 /**< Deprecated QinQ VLAN. */ #define RTE_ETHER_TYPE_QINQ2 0x9200 /**< Deprecated QinQ VLAN. */ #define RTE_ETHER_TYPE_QINQ3 0x9300 /**< Deprecated QinQ VLAN. */ #define RTE_ETHER_TYPE_PPPOE_DISCOVERY 0x8863 /**< PPPoE Discovery Stage. */ #define RTE_ETHER_TYPE_PPPOE_SESSION 0x8864 /**< PPPoE Session Stage. */ #define RTE_ETHER_TYPE_ETAG 0x893F /**< IEEE 802.1BR E-Tag. */ #define RTE_ETHER_TYPE_1588 0x88F7 /**< IEEE 802.1AS 1588 Precise Time Protocol. */ #define RTE_ETHER_TYPE_SLOW 0x8809 /**< Slow protocols (LACP and Marker). */ #define RTE_ETHER_TYPE_TEB 0x6558 /**< Transparent Ethernet Bridging. */ #define RTE_ETHER_TYPE_LLDP 0x88CC /**< LLDP Protocol. */ #define RTE_ETHER_TYPE_MPLS 0x8847 /**< MPLS ethertype. */ #define RTE_ETHER_TYPE_MPLSM 0x8848 /**< MPLS multicast ethertype. */ #define RTE_ETHER_TYPE_ECPRI 0xAEFE /**< eCPRI ethertype (.1Q supported). */ /** * Extract VLAN tag information into mbuf * * Software version of VLAN stripping * * @param m * The packet mbuf. * @return * - 0: Success * - 1: not a vlan packet */ static inline int rte_vlan_strip(struct rte_mbuf *m) { struct rte_ether_hdr *eh = rte_pktmbuf_mtod(m, struct rte_ether_hdr *); struct rte_vlan_hdr *vh; if (eh->ether_type != rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN)) return -1; vh = (struct rte_vlan_hdr *)(eh + 1); m->ol_flags |= RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED; m->vlan_tci = rte_be_to_cpu_16(vh->vlan_tci); /* Copy ether header over rather than moving whole packet */ memmove(rte_pktmbuf_adj(m, sizeof(struct rte_vlan_hdr)), eh, 2 * RTE_ETHER_ADDR_LEN); return 0; } /** * Insert VLAN tag into mbuf. * * Software version of VLAN unstripping * * @param m * The packet mbuf. * @return * - 0: On success * -EPERM: mbuf is is shared overwriting would be unsafe * -ENOSPC: not enough headroom in mbuf */ static inline int rte_vlan_insert(struct rte_mbuf **m) { struct rte_ether_hdr *oh, *nh; struct rte_vlan_hdr *vh; /* Can't insert header if mbuf is shared */ if (!RTE_MBUF_DIRECT(*m) || rte_mbuf_refcnt_read(*m) > 1) return -EINVAL; /* Can't insert header if the first segment is too short */ if (rte_pktmbuf_data_len(*m) < 2 * RTE_ETHER_ADDR_LEN) return -EINVAL; oh = rte_pktmbuf_mtod(*m, struct rte_ether_hdr *); nh = (struct rte_ether_hdr *)(void *) rte_pktmbuf_prepend(*m, sizeof(struct rte_vlan_hdr)); if (nh == NULL) return -ENOSPC; memmove(nh, oh, 2 * RTE_ETHER_ADDR_LEN); nh->ether_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN); vh = (struct rte_vlan_hdr *) (nh + 1); vh->vlan_tci = rte_cpu_to_be_16((*m)->vlan_tci); (*m)->ol_flags &= ~(RTE_MBUF_F_RX_VLAN_STRIPPED | RTE_MBUF_F_TX_VLAN); if ((*m)->ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) (*m)->outer_l2_len += sizeof(struct rte_vlan_hdr); else (*m)->l2_len += sizeof(struct rte_vlan_hdr); return 0; } #ifdef __cplusplus } #endif #endif /* _RTE_ETHER_H_ */