/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2014 Intel Corporation */ #include #include #include #include #include "acl.h" TAILQ_HEAD(rte_acl_list, rte_tailq_entry); static struct rte_tailq_elem rte_acl_tailq = { .name = "RTE_ACL", }; EAL_REGISTER_TAILQ(rte_acl_tailq) #ifndef CC_AVX512_SUPPORT /* * If the compiler doesn't support AVX512 instructions, * then the dummy one would be used instead for AVX512 classify method. */ int rte_acl_classify_avx512x16(__rte_unused const struct rte_acl_ctx *ctx, __rte_unused const uint8_t **data, __rte_unused uint32_t *results, __rte_unused uint32_t num, __rte_unused uint32_t categories) { return -ENOTSUP; } int rte_acl_classify_avx512x32(__rte_unused const struct rte_acl_ctx *ctx, __rte_unused const uint8_t **data, __rte_unused uint32_t *results, __rte_unused uint32_t num, __rte_unused uint32_t categories) { return -ENOTSUP; } #endif #ifndef CC_AVX2_SUPPORT /* * If the compiler doesn't support AVX2 instructions, * then the dummy one would be used instead for AVX2 classify method. */ int rte_acl_classify_avx2(__rte_unused const struct rte_acl_ctx *ctx, __rte_unused const uint8_t **data, __rte_unused uint32_t *results, __rte_unused uint32_t num, __rte_unused uint32_t categories) { return -ENOTSUP; } #endif #ifndef RTE_ARCH_X86 int rte_acl_classify_sse(__rte_unused const struct rte_acl_ctx *ctx, __rte_unused const uint8_t **data, __rte_unused uint32_t *results, __rte_unused uint32_t num, __rte_unused uint32_t categories) { return -ENOTSUP; } #endif #ifndef RTE_ARCH_ARM int rte_acl_classify_neon(__rte_unused const struct rte_acl_ctx *ctx, __rte_unused const uint8_t **data, __rte_unused uint32_t *results, __rte_unused uint32_t num, __rte_unused uint32_t categories) { return -ENOTSUP; } #endif #ifndef RTE_ARCH_PPC_64 int rte_acl_classify_altivec(__rte_unused const struct rte_acl_ctx *ctx, __rte_unused const uint8_t **data, __rte_unused uint32_t *results, __rte_unused uint32_t num, __rte_unused uint32_t categories) { return -ENOTSUP; } #endif static const rte_acl_classify_t classify_fns[] = { [RTE_ACL_CLASSIFY_DEFAULT] = rte_acl_classify_scalar, [RTE_ACL_CLASSIFY_SCALAR] = rte_acl_classify_scalar, [RTE_ACL_CLASSIFY_SSE] = rte_acl_classify_sse, [RTE_ACL_CLASSIFY_AVX2] = rte_acl_classify_avx2, [RTE_ACL_CLASSIFY_NEON] = rte_acl_classify_neon, [RTE_ACL_CLASSIFY_ALTIVEC] = rte_acl_classify_altivec, [RTE_ACL_CLASSIFY_AVX512X16] = rte_acl_classify_avx512x16, [RTE_ACL_CLASSIFY_AVX512X32] = rte_acl_classify_avx512x32, }; /* * Helper function for acl_check_alg. * Check support for ARM specific classify methods. */ static int acl_check_alg_arm(enum rte_acl_classify_alg alg) { if (alg == RTE_ACL_CLASSIFY_NEON) { #if defined(RTE_ARCH_ARM64) if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) return 0; #elif defined(RTE_ARCH_ARM) if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_NEON) && rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) return 0; #endif return -ENOTSUP; } return -EINVAL; } /* * Helper function for acl_check_alg. * Check support for PPC specific classify methods. */ static int acl_check_alg_ppc(enum rte_acl_classify_alg alg) { if (alg == RTE_ACL_CLASSIFY_ALTIVEC) { #if defined(RTE_ARCH_PPC_64) if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) return 0; #endif return -ENOTSUP; } return -EINVAL; } #ifdef CC_AVX512_SUPPORT static int acl_check_avx512_cpu_flags(void) { return (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) && rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512VL) && rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512CD) && rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW)); } #endif /* * Helper function for acl_check_alg. * Check support for x86 specific classify methods. */ static int acl_check_alg_x86(enum rte_acl_classify_alg alg) { if (alg == RTE_ACL_CLASSIFY_AVX512X32) { #ifdef CC_AVX512_SUPPORT if (acl_check_avx512_cpu_flags() != 0 && rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512) return 0; #endif return -ENOTSUP; } if (alg == RTE_ACL_CLASSIFY_AVX512X16) { #ifdef CC_AVX512_SUPPORT if (acl_check_avx512_cpu_flags() != 0 && rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256) return 0; #endif return -ENOTSUP; } if (alg == RTE_ACL_CLASSIFY_AVX2) { #ifdef CC_AVX2_SUPPORT if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) && rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256) return 0; #endif return -ENOTSUP; } if (alg == RTE_ACL_CLASSIFY_SSE) { #ifdef RTE_ARCH_X86 if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_SSE4_1) && rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) return 0; #endif return -ENOTSUP; } return -EINVAL; } /* * Check if input alg is supported by given platform/binary. * Note that both conditions should be met: * - at build time compiler supports ISA used by given methods * - at run time target cpu supports necessary ISA. */ static int acl_check_alg(enum rte_acl_classify_alg alg) { switch (alg) { case RTE_ACL_CLASSIFY_NEON: return acl_check_alg_arm(alg); case RTE_ACL_CLASSIFY_ALTIVEC: return acl_check_alg_ppc(alg); case RTE_ACL_CLASSIFY_AVX512X32: case RTE_ACL_CLASSIFY_AVX512X16: case RTE_ACL_CLASSIFY_AVX2: case RTE_ACL_CLASSIFY_SSE: return acl_check_alg_x86(alg); /* scalar method is supported on all platforms */ case RTE_ACL_CLASSIFY_SCALAR: return 0; default: return -EINVAL; } } /* * Get preferred alg for given platform. */ static enum rte_acl_classify_alg acl_get_best_alg(void) { /* * array of supported methods for each platform. * Note that order is important - from most to less preferable. */ static const enum rte_acl_classify_alg alg[] = { #if defined(RTE_ARCH_ARM) RTE_ACL_CLASSIFY_NEON, #elif defined(RTE_ARCH_PPC_64) RTE_ACL_CLASSIFY_ALTIVEC, #elif defined(RTE_ARCH_X86) RTE_ACL_CLASSIFY_AVX512X32, RTE_ACL_CLASSIFY_AVX512X16, RTE_ACL_CLASSIFY_AVX2, RTE_ACL_CLASSIFY_SSE, #endif RTE_ACL_CLASSIFY_SCALAR, }; uint32_t i; /* find best possible alg */ for (i = 0; i != RTE_DIM(alg) && acl_check_alg(alg[i]) != 0; i++) ; /* we always have to find something suitable */ RTE_VERIFY(i != RTE_DIM(alg)); return alg[i]; } extern int rte_acl_set_ctx_classify(struct rte_acl_ctx *ctx, enum rte_acl_classify_alg alg) { int32_t rc; /* formal parameters check */ if (ctx == NULL || (uint32_t)alg >= RTE_DIM(classify_fns)) return -EINVAL; /* user asked us to select the *best* one */ if (alg == RTE_ACL_CLASSIFY_DEFAULT) alg = acl_get_best_alg(); /* check that given alg is supported */ rc = acl_check_alg(alg); if (rc != 0) return rc; ctx->alg = alg; return 0; } int rte_acl_classify_alg(const struct rte_acl_ctx *ctx, const uint8_t **data, uint32_t *results, uint32_t num, uint32_t categories, enum rte_acl_classify_alg alg) { if (categories != 1 && ((RTE_ACL_RESULTS_MULTIPLIER - 1) & categories) != 0) return -EINVAL; return classify_fns[alg](ctx, data, results, num, categories); } int rte_acl_classify(const struct rte_acl_ctx *ctx, const uint8_t **data, uint32_t *results, uint32_t num, uint32_t categories) { return rte_acl_classify_alg(ctx, data, results, num, categories, ctx->alg); } struct rte_acl_ctx * rte_acl_find_existing(const char *name) { struct rte_acl_ctx *ctx = NULL; struct rte_acl_list *acl_list; struct rte_tailq_entry *te; acl_list = RTE_TAILQ_CAST(rte_acl_tailq.head, rte_acl_list); rte_mcfg_tailq_read_lock(); TAILQ_FOREACH(te, acl_list, next) { ctx = (struct rte_acl_ctx *) te->data; if (strncmp(name, ctx->name, sizeof(ctx->name)) == 0) break; } rte_mcfg_tailq_read_unlock(); if (te == NULL) { rte_errno = ENOENT; return NULL; } return ctx; } void rte_acl_free(struct rte_acl_ctx *ctx) { struct rte_acl_list *acl_list; struct rte_tailq_entry *te; if (ctx == NULL) return; acl_list = RTE_TAILQ_CAST(rte_acl_tailq.head, rte_acl_list); rte_mcfg_tailq_write_lock(); /* find our tailq entry */ TAILQ_FOREACH(te, acl_list, next) { if (te->data == (void *) ctx) break; } if (te == NULL) { rte_mcfg_tailq_write_unlock(); return; } TAILQ_REMOVE(acl_list, te, next); rte_mcfg_tailq_write_unlock(); rte_free(ctx->mem); rte_free(ctx); rte_free(te); } struct rte_acl_ctx * rte_acl_create(const struct rte_acl_param *param) { size_t sz; struct rte_acl_ctx *ctx; struct rte_acl_list *acl_list; struct rte_tailq_entry *te; char name[sizeof(ctx->name)]; acl_list = RTE_TAILQ_CAST(rte_acl_tailq.head, rte_acl_list); /* check that input parameters are valid. */ if (param == NULL || param->name == NULL) { rte_errno = EINVAL; return NULL; } snprintf(name, sizeof(name), "ACL_%s", param->name); /* calculate amount of memory required for pattern set. */ sz = sizeof(*ctx) + param->max_rule_num * param->rule_size; /* get EAL TAILQ lock. */ rte_mcfg_tailq_write_lock(); /* if we already have one with that name */ TAILQ_FOREACH(te, acl_list, next) { ctx = (struct rte_acl_ctx *) te->data; if (strncmp(param->name, ctx->name, sizeof(ctx->name)) == 0) break; } /* if ACL with such name doesn't exist, then create a new one. */ if (te == NULL) { ctx = NULL; te = rte_zmalloc("ACL_TAILQ_ENTRY", sizeof(*te), 0); if (te == NULL) { RTE_LOG(ERR, ACL, "Cannot allocate tailq entry!\n"); goto exit; } ctx = rte_zmalloc_socket(name, sz, RTE_CACHE_LINE_SIZE, param->socket_id); if (ctx == NULL) { RTE_LOG(ERR, ACL, "allocation of %zu bytes on socket %d for %s failed\n", sz, param->socket_id, name); rte_free(te); goto exit; } /* init new allocated context. */ ctx->rules = ctx + 1; ctx->max_rules = param->max_rule_num; ctx->rule_sz = param->rule_size; ctx->socket_id = param->socket_id; ctx->alg = acl_get_best_alg(); strlcpy(ctx->name, param->name, sizeof(ctx->name)); te->data = (void *) ctx; TAILQ_INSERT_TAIL(acl_list, te, next); } exit: rte_mcfg_tailq_write_unlock(); return ctx; } static int acl_add_rules(struct rte_acl_ctx *ctx, const void *rules, uint32_t num) { uint8_t *pos; if (num + ctx->num_rules > ctx->max_rules) return -ENOMEM; pos = ctx->rules; pos += ctx->rule_sz * ctx->num_rules; memcpy(pos, rules, num * ctx->rule_sz); ctx->num_rules += num; return 0; } static int acl_check_rule(const struct rte_acl_rule_data *rd) { if ((RTE_LEN2MASK(RTE_ACL_MAX_CATEGORIES, typeof(rd->category_mask)) & rd->category_mask) == 0 || rd->priority > RTE_ACL_MAX_PRIORITY || rd->priority < RTE_ACL_MIN_PRIORITY) return -EINVAL; return 0; } int rte_acl_add_rules(struct rte_acl_ctx *ctx, const struct rte_acl_rule *rules, uint32_t num) { const struct rte_acl_rule *rv; uint32_t i; int32_t rc; if (ctx == NULL || rules == NULL || 0 == ctx->rule_sz) return -EINVAL; for (i = 0; i != num; i++) { rv = (const struct rte_acl_rule *) ((uintptr_t)rules + i * ctx->rule_sz); rc = acl_check_rule(&rv->data); if (rc != 0) { RTE_LOG(ERR, ACL, "%s(%s): rule #%u is invalid\n", __func__, ctx->name, i + 1); return rc; } } return acl_add_rules(ctx, rules, num); } /* * Reset all rules. * Note that RT structures are not affected. */ void rte_acl_reset_rules(struct rte_acl_ctx *ctx) { if (ctx != NULL) ctx->num_rules = 0; } /* * Reset all rules and destroys RT structures. */ void rte_acl_reset(struct rte_acl_ctx *ctx) { if (ctx != NULL) { rte_acl_reset_rules(ctx); rte_acl_build(ctx, &ctx->config); } } /* * Dump ACL context to the stdout. */ void rte_acl_dump(const struct rte_acl_ctx *ctx) { if (!ctx) return; printf("acl context <%s>@%p\n", ctx->name, ctx); printf(" socket_id=%"PRId32"\n", ctx->socket_id); printf(" alg=%"PRId32"\n", ctx->alg); printf(" first_load_sz=%"PRIu32"\n", ctx->first_load_sz); printf(" max_rules=%"PRIu32"\n", ctx->max_rules); printf(" rule_size=%"PRIu32"\n", ctx->rule_sz); printf(" num_rules=%"PRIu32"\n", ctx->num_rules); printf(" num_categories=%"PRIu32"\n", ctx->num_categories); printf(" num_tries=%"PRIu32"\n", ctx->num_tries); } /* * Dump all ACL contexts to the stdout. */ void rte_acl_list_dump(void) { struct rte_acl_ctx *ctx; struct rte_acl_list *acl_list; struct rte_tailq_entry *te; acl_list = RTE_TAILQ_CAST(rte_acl_tailq.head, rte_acl_list); rte_mcfg_tailq_read_lock(); TAILQ_FOREACH(te, acl_list, next) { ctx = (struct rte_acl_ctx *) te->data; rte_acl_dump(ctx); } rte_mcfg_tailq_read_unlock(); }