/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2017 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include #include /* allow application scheduling of the services */ #include /* Allow application registration of its own services. An application does not * have to register services, but it can be useful if it wishes to run a * function on a core that is otherwise in use as a service core. In this * example, all services are dummy services registered by the sample app itself. */ #include #define PROFILE_CORES_MAX 8 #define PROFILE_SERVICE_PER_CORE 5 /* dummy function to do "work" */ static int32_t service_func(void *args) { RTE_SET_USED(args); rte_delay_us(2000); return 0; } static struct rte_service_spec services[] = { {"service_1", service_func, NULL, 0, 0}, {"service_2", service_func, NULL, 0, 0}, {"service_3", service_func, NULL, 0, 0}, {"service_4", service_func, NULL, 0, 0}, {"service_5", service_func, NULL, 0, 0}, }; #define NUM_SERVICES RTE_DIM(services) /* this struct holds the mapping of a particular core to all services */ struct profile_for_core { uint32_t mapped_services[PROFILE_SERVICE_PER_CORE]; }; /* struct that can be applied as the service core mapping. Items in this * struct will be passed to the ordinary rte_service_* APIs to configure the * service cores at runtime, based on the requirements. * * These profiles can be considered a "configuration" for the service cores, * where switching profile just changes the number of cores and the mappings * for each of them. As a result, the core requirements and performance of the * application scales. */ struct profile { char name[64]; uint32_t num_cores; struct profile_for_core cores[PROFILE_CORES_MAX]; }; static struct profile profiles[] = { /* profile 0: high performance */ { .name = "High Performance", .num_cores = 5, .cores[0] = {.mapped_services = {1, 0, 0, 0, 0} }, .cores[1] = {.mapped_services = {0, 1, 0, 0, 0} }, .cores[2] = {.mapped_services = {0, 0, 1, 0, 0} }, .cores[3] = {.mapped_services = {0, 0, 0, 1, 0} }, .cores[4] = {.mapped_services = {0, 0, 0, 0, 1} }, }, /* profile 1: mid performance with single service priority */ { .name = "Mid-High Performance", .num_cores = 3, .cores[0] = {.mapped_services = {1, 1, 0, 0, 0} }, .cores[1] = {.mapped_services = {0, 0, 1, 1, 0} }, .cores[2] = {.mapped_services = {0, 0, 0, 0, 1} }, .cores[3] = {.mapped_services = {0, 0, 0, 0, 0} }, .cores[4] = {.mapped_services = {0, 0, 0, 0, 0} }, }, /* profile 2: mid performance with single service priority */ { .name = "Mid-Low Performance", .num_cores = 2, .cores[0] = {.mapped_services = {1, 1, 1, 0, 0} }, .cores[1] = {.mapped_services = {1, 1, 0, 1, 1} }, .cores[2] = {.mapped_services = {0, 0, 0, 0, 0} }, .cores[3] = {.mapped_services = {0, 0, 0, 0, 0} }, .cores[4] = {.mapped_services = {0, 0, 0, 0, 0} }, }, /* profile 3: scale down performance on single core */ { .name = "Scale down performance", .num_cores = 1, .cores[0] = {.mapped_services = {1, 1, 1, 1, 1} }, .cores[1] = {.mapped_services = {0, 0, 0, 0, 0} }, .cores[2] = {.mapped_services = {0, 0, 0, 0, 0} }, .cores[3] = {.mapped_services = {0, 0, 0, 0, 0} }, .cores[4] = {.mapped_services = {0, 0, 0, 0, 0} }, }, }; #define NUM_PROFILES RTE_DIM(profiles) static void apply_profile(int profile_id) { uint32_t i; uint32_t s; int ret; struct profile *p = &profiles[profile_id]; const uint8_t core_off = 1; if (p->num_cores > rte_lcore_count() - 1) { printf("insufficent cores to run (%s)", p->name); return; } for (i = 0; i < p->num_cores; i++) { uint32_t core = i + core_off; ret = rte_service_lcore_add(core); if (ret && ret != -EALREADY) printf("core %d added ret %d\n", core, ret); ret = rte_service_lcore_start(core); if (ret && ret != -EALREADY) printf("core %d start ret %d\n", core, ret); for (s = 0; s < NUM_SERVICES; s++) { if (rte_service_map_lcore_set(s, core, p->cores[i].mapped_services[s])) printf("failed to map lcore %d\n", core); } } for ( ; i < PROFILE_CORES_MAX; i++) { uint32_t core = i + core_off; for (s = 0; s < NUM_SERVICES; s++) { ret = rte_service_map_lcore_set(s, core, 0); if (ret && ret != -EINVAL) { printf("%s %d: map lcore set = %d\n", __func__, __LINE__, ret); } } ret = rte_service_lcore_stop(core); if (ret && ret != -EALREADY) { printf("%s %d: lcore stop = %d\n", __func__, __LINE__, ret); } ret = rte_service_lcore_del(core); if (ret && ret != -EINVAL) { printf("%s %d: lcore del = %d\n", __func__, __LINE__, ret); } } } int main(int argc, char **argv) { int ret; ret = rte_eal_init(argc, argv); if (ret < 0) rte_panic("Cannot init EAL\n"); uint32_t i; for (i = 0; i < NUM_SERVICES; i++) { services[i].callback_userdata = 0; uint32_t id; ret = rte_service_component_register(&services[i], &id); if (ret) rte_exit(-1, "service register() failed"); /* set the service itself to be ready to run. In the case of * ethdev, eventdev etc PMDs, this will be set when the * appropriate configure or setup function is called. */ rte_service_component_runstate_set(id, 1); /* Collect statistics for the service */ rte_service_set_stats_enable(id, 1); /* the application sets the service to be active. Note that the * previous component_runstate_set() is the PMD indicating * ready, while this function is the application setting the * service to run. Applications can choose to not run a service * by setting runstate to 0 at any time. */ ret = rte_service_runstate_set(id, 1); if (ret) return -ENOEXEC; } i = 0; while (1) { const char clr[] = { 27, '[', '2', 'J', '\0' }; const char topLeft[] = { 27, '[', '1', ';', '1', 'H', '\0' }; printf("%s%s", clr, topLeft); apply_profile(i); printf("\n==> Profile: %s\n\n", profiles[i].name); sleep(1); rte_service_dump(stdout, UINT32_MAX); sleep(5); rte_service_dump(stdout, UINT32_MAX); i++; if (i >= NUM_PROFILES) i = 0; } /* clean up the EAL */ rte_eal_cleanup(); return 0; }