/* SPDX-License-Identifier: BSD-3-Clause * Copyright 2020 Mellanox Technologies, Ltd */ #include #include #include #include #include #include #include #include #include #include #include "mlx5.h" #include "mlx5_rxtx.h" #include "mlx5_common_os.h" static const char * const mlx5_txpp_stat_names[] = { "tx_pp_missed_interrupt_errors", /* Missed service interrupt. */ "tx_pp_rearm_queue_errors", /* Rearm Queue errors. */ "tx_pp_clock_queue_errors", /* Clock Queue errors. */ "tx_pp_timestamp_past_errors", /* Timestamp in the past. */ "tx_pp_timestamp_future_errors", /* Timestamp in the distant future. */ "tx_pp_jitter", /* Timestamp jitter (one Clock Queue completion). */ "tx_pp_wander", /* Timestamp wander (half of Clock Queue CQEs). */ "tx_pp_sync_lost", /* Scheduling synchronization lost. */ }; /* Destroy Event Queue Notification Channel. */ static void mlx5_txpp_destroy_event_channel(struct mlx5_dev_ctx_shared *sh) { if (sh->txpp.echan) { mlx5_glue->devx_destroy_event_channel(sh->txpp.echan); sh->txpp.echan = NULL; } } /* Create Event Queue Notification Channel. */ static int mlx5_txpp_create_event_channel(struct mlx5_dev_ctx_shared *sh) { MLX5_ASSERT(!sh->txpp.echan); sh->txpp.echan = mlx5_glue->devx_create_event_channel(sh->ctx, MLX5DV_DEVX_CREATE_EVENT_CHANNEL_FLAGS_OMIT_EV_DATA); if (!sh->txpp.echan) { rte_errno = errno; DRV_LOG(ERR, "Failed to create event channel %d.", rte_errno); return -rte_errno; } return 0; } static void mlx5_txpp_free_pp_index(struct mlx5_dev_ctx_shared *sh) { #ifdef HAVE_MLX5DV_PP_ALLOC if (sh->txpp.pp) { mlx5_glue->dv_free_pp(sh->txpp.pp); sh->txpp.pp = NULL; sh->txpp.pp_id = 0; } #else RTE_SET_USED(sh); DRV_LOG(ERR, "Freeing pacing index is not supported."); #endif } /* Allocate Packet Pacing index from kernel via mlx5dv call. */ static int mlx5_txpp_alloc_pp_index(struct mlx5_dev_ctx_shared *sh) { #ifdef HAVE_MLX5DV_PP_ALLOC uint32_t pp[MLX5_ST_SZ_DW(set_pp_rate_limit_context)]; uint64_t rate; MLX5_ASSERT(!sh->txpp.pp); memset(&pp, 0, sizeof(pp)); rate = NS_PER_S / sh->txpp.tick; if (rate * sh->txpp.tick != NS_PER_S) DRV_LOG(WARNING, "Packet pacing frequency is not precise."); if (sh->txpp.test) { uint32_t len; len = RTE_MAX(MLX5_TXPP_TEST_PKT_SIZE, (size_t)RTE_ETHER_MIN_LEN); MLX5_SET(set_pp_rate_limit_context, &pp, burst_upper_bound, len); MLX5_SET(set_pp_rate_limit_context, &pp, typical_packet_size, len); /* Convert packets per second into kilobits. */ rate = (rate * len) / (1000ul / CHAR_BIT); DRV_LOG(INFO, "Packet pacing rate set to %" PRIu64, rate); } MLX5_SET(set_pp_rate_limit_context, &pp, rate_limit, rate); MLX5_SET(set_pp_rate_limit_context, &pp, rate_mode, sh->txpp.test ? MLX5_DATA_RATE : MLX5_WQE_RATE); sh->txpp.pp = mlx5_glue->dv_alloc_pp (sh->ctx, sizeof(pp), &pp, MLX5DV_PP_ALLOC_FLAGS_DEDICATED_INDEX); if (sh->txpp.pp == NULL) { DRV_LOG(ERR, "Failed to allocate packet pacing index."); rte_errno = errno; return -errno; } if (!((struct mlx5dv_pp *)sh->txpp.pp)->index) { DRV_LOG(ERR, "Zero packet pacing index allocated."); mlx5_txpp_free_pp_index(sh); rte_errno = ENOTSUP; return -ENOTSUP; } sh->txpp.pp_id = ((struct mlx5dv_pp *)(sh->txpp.pp))->index; return 0; #else RTE_SET_USED(sh); DRV_LOG(ERR, "Allocating pacing index is not supported."); rte_errno = ENOTSUP; return -ENOTSUP; #endif } static void mlx5_txpp_destroy_send_queue(struct mlx5_txpp_wq *wq) { if (wq->sq) claim_zero(mlx5_devx_cmd_destroy(wq->sq)); if (wq->sq_umem) claim_zero(mlx5_glue->devx_umem_dereg(wq->sq_umem)); if (wq->sq_buf) mlx5_free((void *)(uintptr_t)wq->sq_buf); if (wq->cq) claim_zero(mlx5_devx_cmd_destroy(wq->cq)); if (wq->cq_umem) claim_zero(mlx5_glue->devx_umem_dereg(wq->cq_umem)); if (wq->cq_buf) mlx5_free((void *)(uintptr_t)wq->cq_buf); memset(wq, 0, sizeof(*wq)); } static void mlx5_txpp_destroy_rearm_queue(struct mlx5_dev_ctx_shared *sh) { struct mlx5_txpp_wq *wq = &sh->txpp.rearm_queue; mlx5_txpp_destroy_send_queue(wq); } static void mlx5_txpp_destroy_clock_queue(struct mlx5_dev_ctx_shared *sh) { struct mlx5_txpp_wq *wq = &sh->txpp.clock_queue; mlx5_txpp_destroy_send_queue(wq); if (sh->txpp.tsa) { mlx5_free(sh->txpp.tsa); sh->txpp.tsa = NULL; } } static void mlx5_txpp_doorbell_rearm_queue(struct mlx5_dev_ctx_shared *sh, uint16_t ci) { struct mlx5_txpp_wq *wq = &sh->txpp.rearm_queue; union { uint32_t w32[2]; uint64_t w64; } cs; void *reg_addr; wq->sq_ci = ci + 1; cs.w32[0] = rte_cpu_to_be_32(rte_be_to_cpu_32 (wq->wqes[ci & (wq->sq_size - 1)].ctrl[0]) | (ci - 1) << 8); cs.w32[1] = wq->wqes[ci & (wq->sq_size - 1)].ctrl[1]; /* Update SQ doorbell record with new SQ ci. */ rte_compiler_barrier(); *wq->sq_dbrec = rte_cpu_to_be_32(wq->sq_ci); /* Make sure the doorbell record is updated. */ rte_wmb(); /* Write to doorbel register to start processing. */ reg_addr = mlx5_os_get_devx_uar_reg_addr(sh->tx_uar); __mlx5_uar_write64_relaxed(cs.w64, reg_addr, NULL); rte_wmb(); } static void mlx5_txpp_fill_cqe_rearm_queue(struct mlx5_dev_ctx_shared *sh) { struct mlx5_txpp_wq *wq = &sh->txpp.rearm_queue; struct mlx5_cqe *cqe = (struct mlx5_cqe *)(uintptr_t)wq->cqes; uint32_t i; for (i = 0; i < MLX5_TXPP_REARM_CQ_SIZE; i++) { cqe->op_own = (MLX5_CQE_INVALID << 4) | MLX5_CQE_OWNER_MASK; ++cqe; } } static void mlx5_txpp_fill_wqe_rearm_queue(struct mlx5_dev_ctx_shared *sh) { struct mlx5_txpp_wq *wq = &sh->txpp.rearm_queue; struct mlx5_wqe *wqe = (struct mlx5_wqe *)(uintptr_t)wq->wqes; uint32_t i; for (i = 0; i < wq->sq_size; i += 2) { struct mlx5_wqe_cseg *cs; struct mlx5_wqe_qseg *qs; uint32_t index; /* Build SEND_EN request with slave WQE index. */ cs = &wqe[i + 0].cseg; cs->opcode = RTE_BE32(MLX5_OPCODE_SEND_EN | 0); cs->sq_ds = rte_cpu_to_be_32((wq->sq->id << 8) | 2); cs->flags = RTE_BE32(MLX5_COMP_ALWAYS << MLX5_COMP_MODE_OFFSET); cs->misc = RTE_BE32(0); qs = RTE_PTR_ADD(cs, sizeof(struct mlx5_wqe_cseg)); index = (i * MLX5_TXPP_REARM / 2 + MLX5_TXPP_REARM) & ((1 << MLX5_WQ_INDEX_WIDTH) - 1); qs->max_index = rte_cpu_to_be_32(index); qs->qpn_cqn = rte_cpu_to_be_32(sh->txpp.clock_queue.sq->id); /* Build WAIT request with slave CQE index. */ cs = &wqe[i + 1].cseg; cs->opcode = RTE_BE32(MLX5_OPCODE_WAIT | 0); cs->sq_ds = rte_cpu_to_be_32((wq->sq->id << 8) | 2); cs->flags = RTE_BE32(MLX5_COMP_ONLY_ERR << MLX5_COMP_MODE_OFFSET); cs->misc = RTE_BE32(0); qs = RTE_PTR_ADD(cs, sizeof(struct mlx5_wqe_cseg)); index = (i * MLX5_TXPP_REARM / 2 + MLX5_TXPP_REARM / 2) & ((1 << MLX5_CQ_INDEX_WIDTH) - 1); qs->max_index = rte_cpu_to_be_32(index); qs->qpn_cqn = rte_cpu_to_be_32(sh->txpp.clock_queue.cq->id); } } /* Creates the Rearm Queue to fire the requests to Clock Queue in realtime. */ static int mlx5_txpp_create_rearm_queue(struct mlx5_dev_ctx_shared *sh) { struct mlx5_devx_create_sq_attr sq_attr = { 0 }; struct mlx5_devx_modify_sq_attr msq_attr = { 0 }; struct mlx5_devx_cq_attr cq_attr = { 0 }; struct mlx5_txpp_wq *wq = &sh->txpp.rearm_queue; size_t page_size; uint32_t umem_size, umem_dbrec; int ret; page_size = rte_mem_page_size(); if (page_size == (size_t)-1) { DRV_LOG(ERR, "Failed to get mem page size"); return -ENOMEM; } /* Allocate memory buffer for CQEs and doorbell record. */ umem_size = sizeof(struct mlx5_cqe) * MLX5_TXPP_REARM_CQ_SIZE; umem_dbrec = RTE_ALIGN(umem_size, MLX5_DBR_SIZE); umem_size += MLX5_DBR_SIZE; wq->cq_buf = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO, umem_size, page_size, sh->numa_node); if (!wq->cq_buf) { DRV_LOG(ERR, "Failed to allocate memory for Rearm Queue."); return -ENOMEM; } /* Register allocated buffer in user space with DevX. */ wq->cq_umem = mlx5_glue->devx_umem_reg(sh->ctx, (void *)(uintptr_t)wq->cq_buf, umem_size, IBV_ACCESS_LOCAL_WRITE); if (!wq->cq_umem) { rte_errno = errno; DRV_LOG(ERR, "Failed to register umem for Rearm Queue."); goto error; } /* Create completion queue object for Rearm Queue. */ cq_attr.uar_page_id = mlx5_os_get_devx_uar_page_id(sh->tx_uar); cq_attr.eqn = sh->eqn; cq_attr.q_umem_valid = 1; cq_attr.q_umem_offset = 0; cq_attr.q_umem_id = mlx5_os_get_umem_id(wq->cq_umem); cq_attr.db_umem_valid = 1; cq_attr.db_umem_offset = umem_dbrec; cq_attr.db_umem_id = mlx5_os_get_umem_id(wq->cq_umem); cq_attr.log_cq_size = rte_log2_u32(MLX5_TXPP_REARM_CQ_SIZE); cq_attr.log_page_size = rte_log2_u32(page_size); wq->cq = mlx5_devx_cmd_create_cq(sh->ctx, &cq_attr); if (!wq->cq) { rte_errno = errno; DRV_LOG(ERR, "Failed to create CQ for Rearm Queue."); goto error; } wq->cq_dbrec = RTE_PTR_ADD(wq->cq_buf, umem_dbrec); wq->cq_ci = 0; wq->arm_sn = 0; /* Mark all CQEs initially as invalid. */ mlx5_txpp_fill_cqe_rearm_queue(sh); /* * Allocate memory buffer for Send Queue WQEs. * There should be no WQE leftovers in the cyclic queue. */ wq->sq_size = MLX5_TXPP_REARM_SQ_SIZE; MLX5_ASSERT(wq->sq_size == (1 << log2above(wq->sq_size))); umem_size = MLX5_WQE_SIZE * wq->sq_size; umem_dbrec = RTE_ALIGN(umem_size, MLX5_DBR_SIZE); umem_size += MLX5_DBR_SIZE; wq->sq_buf = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO, umem_size, page_size, sh->numa_node); if (!wq->sq_buf) { DRV_LOG(ERR, "Failed to allocate memory for Rearm Queue."); rte_errno = ENOMEM; goto error; } /* Register allocated buffer in user space with DevX. */ wq->sq_umem = mlx5_glue->devx_umem_reg(sh->ctx, (void *)(uintptr_t)wq->sq_buf, umem_size, IBV_ACCESS_LOCAL_WRITE); if (!wq->sq_umem) { rte_errno = errno; DRV_LOG(ERR, "Failed to register umem for Rearm Queue."); goto error; } /* Create send queue object for Rearm Queue. */ sq_attr.state = MLX5_SQC_STATE_RST; sq_attr.tis_lst_sz = 1; sq_attr.tis_num = sh->tis->id; sq_attr.cqn = wq->cq->id; sq_attr.cd_master = 1; sq_attr.ts_format = mlx5_ts_format_conv(sh->sq_ts_format); sq_attr.wq_attr.uar_page = mlx5_os_get_devx_uar_page_id(sh->tx_uar); sq_attr.wq_attr.wq_type = MLX5_WQ_TYPE_CYCLIC; sq_attr.wq_attr.pd = sh->pdn; sq_attr.wq_attr.log_wq_stride = rte_log2_u32(MLX5_WQE_SIZE); sq_attr.wq_attr.log_wq_sz = rte_log2_u32(wq->sq_size); sq_attr.wq_attr.dbr_umem_valid = 1; sq_attr.wq_attr.dbr_addr = umem_dbrec; sq_attr.wq_attr.dbr_umem_id = mlx5_os_get_umem_id(wq->sq_umem); sq_attr.wq_attr.wq_umem_valid = 1; sq_attr.wq_attr.wq_umem_id = mlx5_os_get_umem_id(wq->sq_umem); sq_attr.wq_attr.wq_umem_offset = 0; wq->sq = mlx5_devx_cmd_create_sq(sh->ctx, &sq_attr); if (!wq->sq) { rte_errno = errno; DRV_LOG(ERR, "Failed to create SQ for Rearm Queue."); goto error; } wq->sq_dbrec = RTE_PTR_ADD(wq->sq_buf, umem_dbrec + MLX5_SND_DBR * sizeof(uint32_t)); /* Build the WQEs in the Send Queue before goto Ready state. */ mlx5_txpp_fill_wqe_rearm_queue(sh); /* Change queue state to ready. */ msq_attr.sq_state = MLX5_SQC_STATE_RST; msq_attr.state = MLX5_SQC_STATE_RDY; ret = mlx5_devx_cmd_modify_sq(wq->sq, &msq_attr); if (ret) { DRV_LOG(ERR, "Failed to set SQ ready state Rearm Queue."); goto error; } return 0; error: ret = -rte_errno; mlx5_txpp_destroy_rearm_queue(sh); rte_errno = -ret; return ret; } static void mlx5_txpp_fill_wqe_clock_queue(struct mlx5_dev_ctx_shared *sh) { struct mlx5_txpp_wq *wq = &sh->txpp.clock_queue; struct mlx5_wqe *wqe = (struct mlx5_wqe *)(uintptr_t)wq->wqes; struct mlx5_wqe_cseg *cs = &wqe->cseg; uint32_t wqe_size, opcode, i; uint8_t *dst; /* For test purposes fill the WQ with SEND inline packet. */ if (sh->txpp.test) { wqe_size = RTE_ALIGN(MLX5_TXPP_TEST_PKT_SIZE + MLX5_WQE_CSEG_SIZE + 2 * MLX5_WQE_ESEG_SIZE - MLX5_ESEG_MIN_INLINE_SIZE, MLX5_WSEG_SIZE); opcode = MLX5_OPCODE_SEND; } else { wqe_size = MLX5_WSEG_SIZE; opcode = MLX5_OPCODE_NOP; } cs->opcode = rte_cpu_to_be_32(opcode | 0); /* Index is ignored. */ cs->sq_ds = rte_cpu_to_be_32((wq->sq->id << 8) | (wqe_size / MLX5_WSEG_SIZE)); cs->flags = RTE_BE32(MLX5_COMP_ALWAYS << MLX5_COMP_MODE_OFFSET); cs->misc = RTE_BE32(0); wqe_size = RTE_ALIGN(wqe_size, MLX5_WQE_SIZE); if (sh->txpp.test) { struct mlx5_wqe_eseg *es = &wqe->eseg; struct rte_ether_hdr *eth_hdr; struct rte_ipv4_hdr *ip_hdr; struct rte_udp_hdr *udp_hdr; /* Build the inline test packet pattern. */ MLX5_ASSERT(wqe_size <= MLX5_WQE_SIZE_MAX); MLX5_ASSERT(MLX5_TXPP_TEST_PKT_SIZE >= (sizeof(struct rte_ether_hdr) + sizeof(struct rte_ipv4_hdr))); es->flags = 0; es->cs_flags = MLX5_ETH_WQE_L3_CSUM | MLX5_ETH_WQE_L4_CSUM; es->swp_offs = 0; es->metadata = 0; es->swp_flags = 0; es->mss = 0; es->inline_hdr_sz = RTE_BE16(MLX5_TXPP_TEST_PKT_SIZE); /* Build test packet L2 header (Ethernet). */ dst = (uint8_t *)&es->inline_data; eth_hdr = (struct rte_ether_hdr *)dst; rte_eth_random_addr(ð_hdr->d_addr.addr_bytes[0]); rte_eth_random_addr(ð_hdr->s_addr.addr_bytes[0]); eth_hdr->ether_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4); /* Build test packet L3 header (IP v4). */ dst += sizeof(struct rte_ether_hdr); ip_hdr = (struct rte_ipv4_hdr *)dst; ip_hdr->version_ihl = RTE_IPV4_VHL_DEF; ip_hdr->type_of_service = 0; ip_hdr->fragment_offset = 0; ip_hdr->time_to_live = 64; ip_hdr->next_proto_id = IPPROTO_UDP; ip_hdr->packet_id = 0; ip_hdr->total_length = RTE_BE16(MLX5_TXPP_TEST_PKT_SIZE - sizeof(struct rte_ether_hdr)); /* use RFC5735 / RFC2544 reserved network test addresses */ ip_hdr->src_addr = RTE_BE32((198U << 24) | (18 << 16) | (0 << 8) | 1); ip_hdr->dst_addr = RTE_BE32((198U << 24) | (18 << 16) | (0 << 8) | 2); if (MLX5_TXPP_TEST_PKT_SIZE < (sizeof(struct rte_ether_hdr) + sizeof(struct rte_ipv4_hdr) + sizeof(struct rte_udp_hdr))) goto wcopy; /* Build test packet L4 header (UDP). */ dst += sizeof(struct rte_ipv4_hdr); udp_hdr = (struct rte_udp_hdr *)dst; udp_hdr->src_port = RTE_BE16(9); /* RFC863 Discard. */ udp_hdr->dst_port = RTE_BE16(9); udp_hdr->dgram_len = RTE_BE16(MLX5_TXPP_TEST_PKT_SIZE - sizeof(struct rte_ether_hdr) - sizeof(struct rte_ipv4_hdr)); udp_hdr->dgram_cksum = 0; /* Fill the test packet data. */ dst += sizeof(struct rte_udp_hdr); for (i = sizeof(struct rte_ether_hdr) + sizeof(struct rte_ipv4_hdr) + sizeof(struct rte_udp_hdr); i < MLX5_TXPP_TEST_PKT_SIZE; i++) *dst++ = (uint8_t)(i & 0xFF); } wcopy: /* Duplicate the pattern to the next WQEs. */ dst = (uint8_t *)(uintptr_t)wq->sq_buf; for (i = 1; i < MLX5_TXPP_CLKQ_SIZE; i++) { dst += wqe_size; rte_memcpy(dst, (void *)(uintptr_t)wq->sq_buf, wqe_size); } } /* Creates the Clock Queue for packet pacing, returns zero on success. */ static int mlx5_txpp_create_clock_queue(struct mlx5_dev_ctx_shared *sh) { struct mlx5_devx_create_sq_attr sq_attr = { 0 }; struct mlx5_devx_modify_sq_attr msq_attr = { 0 }; struct mlx5_devx_cq_attr cq_attr = { 0 }; struct mlx5_txpp_wq *wq = &sh->txpp.clock_queue; size_t page_size; uint32_t umem_size, umem_dbrec; int ret; page_size = rte_mem_page_size(); if (page_size == (size_t)-1) { DRV_LOG(ERR, "Failed to get mem page size"); return -ENOMEM; } sh->txpp.tsa = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO, MLX5_TXPP_REARM_SQ_SIZE * sizeof(struct mlx5_txpp_ts), 0, sh->numa_node); if (!sh->txpp.tsa) { DRV_LOG(ERR, "Failed to allocate memory for CQ stats."); return -ENOMEM; } sh->txpp.ts_p = 0; sh->txpp.ts_n = 0; /* Allocate memory buffer for CQEs and doorbell record. */ umem_size = sizeof(struct mlx5_cqe) * MLX5_TXPP_CLKQ_SIZE; umem_dbrec = RTE_ALIGN(umem_size, MLX5_DBR_SIZE); umem_size += MLX5_DBR_SIZE; wq->cq_buf = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO, umem_size, page_size, sh->numa_node); if (!wq->cq_buf) { DRV_LOG(ERR, "Failed to allocate memory for Clock Queue."); return -ENOMEM; } /* Register allocated buffer in user space with DevX. */ wq->cq_umem = mlx5_glue->devx_umem_reg(sh->ctx, (void *)(uintptr_t)wq->cq_buf, umem_size, IBV_ACCESS_LOCAL_WRITE); if (!wq->cq_umem) { rte_errno = errno; DRV_LOG(ERR, "Failed to register umem for Clock Queue."); goto error; } /* Create completion queue object for Clock Queue. */ cq_attr.use_first_only = 1; cq_attr.overrun_ignore = 1; cq_attr.uar_page_id = mlx5_os_get_devx_uar_page_id(sh->tx_uar); cq_attr.eqn = sh->eqn; cq_attr.q_umem_valid = 1; cq_attr.q_umem_offset = 0; cq_attr.q_umem_id = mlx5_os_get_umem_id(wq->cq_umem); cq_attr.db_umem_valid = 1; cq_attr.db_umem_offset = umem_dbrec; cq_attr.db_umem_id = mlx5_os_get_umem_id(wq->cq_umem); cq_attr.log_cq_size = rte_log2_u32(MLX5_TXPP_CLKQ_SIZE); cq_attr.log_page_size = rte_log2_u32(page_size); wq->cq = mlx5_devx_cmd_create_cq(sh->ctx, &cq_attr); if (!wq->cq) { rte_errno = errno; DRV_LOG(ERR, "Failed to create CQ for Clock Queue."); goto error; } wq->cq_dbrec = RTE_PTR_ADD(wq->cq_buf, umem_dbrec); wq->cq_ci = 0; /* Allocate memory buffer for Send Queue WQEs. */ if (sh->txpp.test) { wq->sq_size = RTE_ALIGN(MLX5_TXPP_TEST_PKT_SIZE + MLX5_WQE_CSEG_SIZE + 2 * MLX5_WQE_ESEG_SIZE - MLX5_ESEG_MIN_INLINE_SIZE, MLX5_WQE_SIZE) / MLX5_WQE_SIZE; wq->sq_size *= MLX5_TXPP_CLKQ_SIZE; } else { wq->sq_size = MLX5_TXPP_CLKQ_SIZE; } /* There should not be WQE leftovers in the cyclic queue. */ MLX5_ASSERT(wq->sq_size == (1 << log2above(wq->sq_size))); umem_size = MLX5_WQE_SIZE * wq->sq_size; umem_dbrec = RTE_ALIGN(umem_size, MLX5_DBR_SIZE); umem_size += MLX5_DBR_SIZE; wq->sq_buf = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO, umem_size, page_size, sh->numa_node); if (!wq->sq_buf) { DRV_LOG(ERR, "Failed to allocate memory for Clock Queue."); rte_errno = ENOMEM; goto error; } /* Register allocated buffer in user space with DevX. */ wq->sq_umem = mlx5_glue->devx_umem_reg(sh->ctx, (void *)(uintptr_t)wq->sq_buf, umem_size, IBV_ACCESS_LOCAL_WRITE); if (!wq->sq_umem) { rte_errno = errno; DRV_LOG(ERR, "Failed to register umem for Clock Queue."); goto error; } /* Create send queue object for Clock Queue. */ if (sh->txpp.test) { sq_attr.tis_lst_sz = 1; sq_attr.tis_num = sh->tis->id; sq_attr.non_wire = 0; sq_attr.static_sq_wq = 1; } else { sq_attr.non_wire = 1; sq_attr.static_sq_wq = 1; } sq_attr.state = MLX5_SQC_STATE_RST; sq_attr.cqn = wq->cq->id; sq_attr.packet_pacing_rate_limit_index = sh->txpp.pp_id; sq_attr.ts_format = mlx5_ts_format_conv(sh->sq_ts_format); sq_attr.wq_attr.cd_slave = 1; sq_attr.wq_attr.uar_page = mlx5_os_get_devx_uar_page_id(sh->tx_uar); sq_attr.wq_attr.wq_type = MLX5_WQ_TYPE_CYCLIC; sq_attr.wq_attr.pd = sh->pdn; sq_attr.wq_attr.log_wq_stride = rte_log2_u32(MLX5_WQE_SIZE); sq_attr.wq_attr.log_wq_sz = rte_log2_u32(wq->sq_size); sq_attr.wq_attr.dbr_umem_valid = 1; sq_attr.wq_attr.dbr_addr = umem_dbrec; sq_attr.wq_attr.dbr_umem_id = mlx5_os_get_umem_id(wq->sq_umem); sq_attr.wq_attr.wq_umem_valid = 1; sq_attr.wq_attr.wq_umem_id = mlx5_os_get_umem_id(wq->sq_umem); /* umem_offset must be zero for static_sq_wq queue. */ sq_attr.wq_attr.wq_umem_offset = 0; wq->sq = mlx5_devx_cmd_create_sq(sh->ctx, &sq_attr); if (!wq->sq) { rte_errno = errno; DRV_LOG(ERR, "Failed to create SQ for Clock Queue."); goto error; } wq->sq_dbrec = RTE_PTR_ADD(wq->sq_buf, umem_dbrec + MLX5_SND_DBR * sizeof(uint32_t)); /* Build the WQEs in the Send Queue before goto Ready state. */ mlx5_txpp_fill_wqe_clock_queue(sh); /* Change queue state to ready. */ msq_attr.sq_state = MLX5_SQC_STATE_RST; msq_attr.state = MLX5_SQC_STATE_RDY; wq->sq_ci = 0; ret = mlx5_devx_cmd_modify_sq(wq->sq, &msq_attr); if (ret) { DRV_LOG(ERR, "Failed to set SQ ready state Clock Queue."); goto error; } return 0; error: ret = -rte_errno; mlx5_txpp_destroy_clock_queue(sh); rte_errno = -ret; return ret; } /* Enable notification from the Rearm Queue CQ. */ static inline void mlx5_txpp_cq_arm(struct mlx5_dev_ctx_shared *sh) { void *base_addr; struct mlx5_txpp_wq *aq = &sh->txpp.rearm_queue; uint32_t arm_sn = aq->arm_sn << MLX5_CQ_SQN_OFFSET; uint32_t db_hi = arm_sn | MLX5_CQ_DBR_CMD_ALL | aq->cq_ci; uint64_t db_be = rte_cpu_to_be_64(((uint64_t)db_hi << 32) | aq->cq->id); base_addr = mlx5_os_get_devx_uar_base_addr(sh->tx_uar); uint32_t *addr = RTE_PTR_ADD(base_addr, MLX5_CQ_DOORBELL); rte_compiler_barrier(); aq->cq_dbrec[MLX5_CQ_ARM_DB] = rte_cpu_to_be_32(db_hi); rte_wmb(); #ifdef RTE_ARCH_64 *(uint64_t *)addr = db_be; #else *(uint32_t *)addr = db_be; rte_io_wmb(); *((uint32_t *)addr + 1) = db_be >> 32; #endif aq->arm_sn++; } #if defined(RTE_ARCH_X86_64) static inline int mlx5_atomic128_compare_exchange(rte_int128_t *dst, rte_int128_t *exp, const rte_int128_t *src) { uint8_t res; asm volatile (MPLOCKED "cmpxchg16b %[dst];" " sete %[res]" : [dst] "=m" (dst->val[0]), "=a" (exp->val[0]), "=d" (exp->val[1]), [res] "=r" (res) : "b" (src->val[0]), "c" (src->val[1]), "a" (exp->val[0]), "d" (exp->val[1]), "m" (dst->val[0]) : "memory"); return res; } #endif static inline void mlx5_atomic_read_cqe(rte_int128_t *from, rte_int128_t *ts) { /* * The only CQE of Clock Queue is being continuously * updated by hardware with specified rate. We must * read timestamp and WQE completion index atomically. */ #if defined(RTE_ARCH_X86_64) rte_int128_t src; memset(&src, 0, sizeof(src)); *ts = src; /* if (*from == *ts) *from = *src else *ts = *from; */ mlx5_atomic128_compare_exchange(from, ts, &src); #else uint64_t *cqe = (uint64_t *)from; /* * Power architecture does not support 16B compare-and-swap. * ARM implements it in software, code below is more relevant. */ for (;;) { uint64_t tm, op; uint64_t *ps; rte_compiler_barrier(); tm = __atomic_load_n(cqe + 0, __ATOMIC_RELAXED); op = __atomic_load_n(cqe + 1, __ATOMIC_RELAXED); rte_compiler_barrier(); if (tm != __atomic_load_n(cqe + 0, __ATOMIC_RELAXED)) continue; if (op != __atomic_load_n(cqe + 1, __ATOMIC_RELAXED)) continue; ps = (uint64_t *)ts; ps[0] = tm; ps[1] = op; return; } #endif } /* Stores timestamp in the cache structure to share data with datapath. */ static inline void mlx5_txpp_cache_timestamp(struct mlx5_dev_ctx_shared *sh, uint64_t ts, uint64_t ci) { ci = ci << (64 - MLX5_CQ_INDEX_WIDTH); ci |= (ts << MLX5_CQ_INDEX_WIDTH) >> MLX5_CQ_INDEX_WIDTH; rte_compiler_barrier(); __atomic_store_n(&sh->txpp.ts.ts, ts, __ATOMIC_RELAXED); __atomic_store_n(&sh->txpp.ts.ci_ts, ci, __ATOMIC_RELAXED); rte_wmb(); } /* Reads timestamp from Clock Queue CQE and stores in the cache. */ static inline void mlx5_txpp_update_timestamp(struct mlx5_dev_ctx_shared *sh) { struct mlx5_txpp_wq *wq = &sh->txpp.clock_queue; struct mlx5_cqe *cqe = (struct mlx5_cqe *)(uintptr_t)wq->cqes; union { rte_int128_t u128; struct mlx5_cqe_ts cts; } to; uint64_t ts; uint16_t ci; uint8_t opcode; static_assert(sizeof(struct mlx5_cqe_ts) == sizeof(rte_int128_t), "Wrong timestamp CQE part size"); mlx5_atomic_read_cqe((rte_int128_t *)&cqe->timestamp, &to.u128); opcode = MLX5_CQE_OPCODE(to.cts.op_own); if (opcode) { if (opcode != MLX5_CQE_INVALID) { /* * Commit the error state if and only if * we have got at least one actual completion. */ DRV_LOG(DEBUG, "Clock Queue error sync lost (%X).", opcode); __atomic_fetch_add(&sh->txpp.err_clock_queue, 1, __ATOMIC_RELAXED); sh->txpp.sync_lost = 1; } return; } ci = rte_be_to_cpu_16(to.cts.wqe_counter); ts = rte_be_to_cpu_64(to.cts.timestamp); ts = mlx5_txpp_convert_rx_ts(sh, ts); wq->cq_ci += (ci - wq->sq_ci) & UINT16_MAX; wq->sq_ci = ci; mlx5_txpp_cache_timestamp(sh, ts, wq->cq_ci); } /* Waits for the first completion on Clock Queue to init timestamp. */ static inline void mlx5_txpp_init_timestamp(struct mlx5_dev_ctx_shared *sh) { struct mlx5_txpp_wq *wq = &sh->txpp.clock_queue; uint32_t wait; sh->txpp.ts_p = 0; sh->txpp.ts_n = 0; for (wait = 0; wait < MLX5_TXPP_WAIT_INIT_TS; wait++) { struct timespec onems; mlx5_txpp_update_timestamp(sh); if (wq->sq_ci) return; /* Wait one millisecond and try again. */ onems.tv_sec = 0; onems.tv_nsec = NS_PER_S / MS_PER_S; nanosleep(&onems, 0); } DRV_LOG(ERR, "Unable to initialize timestamp."); sh->txpp.sync_lost = 1; } #ifdef HAVE_IBV_DEVX_EVENT /* Gather statistics for timestamp from Clock Queue CQE. */ static inline void mlx5_txpp_gather_timestamp(struct mlx5_dev_ctx_shared *sh) { /* Check whether we have a valid timestamp. */ if (!sh->txpp.clock_queue.sq_ci && !sh->txpp.ts_n) return; MLX5_ASSERT(sh->txpp.ts_p < MLX5_TXPP_REARM_SQ_SIZE); __atomic_store_n(&sh->txpp.tsa[sh->txpp.ts_p].ts, sh->txpp.ts.ts, __ATOMIC_RELAXED); __atomic_store_n(&sh->txpp.tsa[sh->txpp.ts_p].ci_ts, sh->txpp.ts.ci_ts, __ATOMIC_RELAXED); if (++sh->txpp.ts_p >= MLX5_TXPP_REARM_SQ_SIZE) sh->txpp.ts_p = 0; if (sh->txpp.ts_n < MLX5_TXPP_REARM_SQ_SIZE) ++sh->txpp.ts_n; } /* Handles Rearm Queue completions in periodic service. */ static __rte_always_inline void mlx5_txpp_handle_rearm_queue(struct mlx5_dev_ctx_shared *sh) { struct mlx5_txpp_wq *wq = &sh->txpp.rearm_queue; uint32_t cq_ci = wq->cq_ci; bool error = false; int ret; do { volatile struct mlx5_cqe *cqe; cqe = &wq->cqes[cq_ci & (MLX5_TXPP_REARM_CQ_SIZE - 1)]; ret = check_cqe(cqe, MLX5_TXPP_REARM_CQ_SIZE, cq_ci); switch (ret) { case MLX5_CQE_STATUS_ERR: error = true; ++cq_ci; break; case MLX5_CQE_STATUS_SW_OWN: wq->sq_ci += 2; ++cq_ci; break; case MLX5_CQE_STATUS_HW_OWN: break; default: MLX5_ASSERT(false); break; } } while (ret != MLX5_CQE_STATUS_HW_OWN); if (likely(cq_ci != wq->cq_ci)) { /* Check whether we have missed interrupts. */ if (cq_ci - wq->cq_ci != 1) { DRV_LOG(DEBUG, "Rearm Queue missed interrupt."); __atomic_fetch_add(&sh->txpp.err_miss_int, 1, __ATOMIC_RELAXED); /* Check sync lost on wqe index. */ if (cq_ci - wq->cq_ci >= (((1UL << MLX5_WQ_INDEX_WIDTH) / MLX5_TXPP_REARM) - 1)) error = 1; } /* Update doorbell record to notify hardware. */ rte_compiler_barrier(); *wq->cq_dbrec = rte_cpu_to_be_32(cq_ci); rte_wmb(); wq->cq_ci = cq_ci; /* Fire new requests to Rearm Queue. */ if (error) { DRV_LOG(DEBUG, "Rearm Queue error sync lost."); __atomic_fetch_add(&sh->txpp.err_rearm_queue, 1, __ATOMIC_RELAXED); sh->txpp.sync_lost = 1; } } } /* Handles Clock Queue completions in periodic service. */ static __rte_always_inline void mlx5_txpp_handle_clock_queue(struct mlx5_dev_ctx_shared *sh) { mlx5_txpp_update_timestamp(sh); mlx5_txpp_gather_timestamp(sh); } #endif /* Invoked periodically on Rearm Queue completions. */ void mlx5_txpp_interrupt_handler(void *cb_arg) { #ifndef HAVE_IBV_DEVX_EVENT RTE_SET_USED(cb_arg); return; #else struct mlx5_dev_ctx_shared *sh = cb_arg; union { struct mlx5dv_devx_async_event_hdr event_resp; uint8_t buf[sizeof(struct mlx5dv_devx_async_event_hdr) + 128]; } out; MLX5_ASSERT(rte_eal_process_type() == RTE_PROC_PRIMARY); /* Process events in the loop. Only rearm completions are expected. */ while (mlx5_glue->devx_get_event (sh->txpp.echan, &out.event_resp, sizeof(out.buf)) >= (ssize_t)sizeof(out.event_resp.cookie)) { mlx5_txpp_handle_rearm_queue(sh); mlx5_txpp_handle_clock_queue(sh); mlx5_txpp_cq_arm(sh); mlx5_txpp_doorbell_rearm_queue (sh, sh->txpp.rearm_queue.sq_ci - 1); } #endif /* HAVE_IBV_DEVX_ASYNC */ } static void mlx5_txpp_stop_service(struct mlx5_dev_ctx_shared *sh) { if (!sh->txpp.intr_handle.fd) return; mlx5_intr_callback_unregister(&sh->txpp.intr_handle, mlx5_txpp_interrupt_handler, sh); sh->txpp.intr_handle.fd = 0; } /* Attach interrupt handler and fires first request to Rearm Queue. */ static int mlx5_txpp_start_service(struct mlx5_dev_ctx_shared *sh) { uint16_t event_nums[1] = {0}; int ret; int fd; sh->txpp.err_miss_int = 0; sh->txpp.err_rearm_queue = 0; sh->txpp.err_clock_queue = 0; sh->txpp.err_ts_past = 0; sh->txpp.err_ts_future = 0; /* Attach interrupt handler to process Rearm Queue completions. */ fd = mlx5_os_get_devx_channel_fd(sh->txpp.echan); ret = mlx5_os_set_nonblock_channel_fd(fd); if (ret) { DRV_LOG(ERR, "Failed to change event channel FD."); rte_errno = errno; return -rte_errno; } memset(&sh->txpp.intr_handle, 0, sizeof(sh->txpp.intr_handle)); fd = mlx5_os_get_devx_channel_fd(sh->txpp.echan); sh->txpp.intr_handle.fd = fd; sh->txpp.intr_handle.type = RTE_INTR_HANDLE_EXT; if (rte_intr_callback_register(&sh->txpp.intr_handle, mlx5_txpp_interrupt_handler, sh)) { sh->txpp.intr_handle.fd = 0; DRV_LOG(ERR, "Failed to register CQE interrupt %d.", rte_errno); return -rte_errno; } /* Subscribe CQ event to the event channel controlled by the driver. */ ret = mlx5_glue->devx_subscribe_devx_event(sh->txpp.echan, sh->txpp.rearm_queue.cq->obj, sizeof(event_nums), event_nums, 0); if (ret) { DRV_LOG(ERR, "Failed to subscribe CQE event."); rte_errno = errno; return -errno; } /* Enable interrupts in the CQ. */ mlx5_txpp_cq_arm(sh); /* Fire the first request on Rearm Queue. */ mlx5_txpp_doorbell_rearm_queue(sh, sh->txpp.rearm_queue.sq_size - 1); mlx5_txpp_init_timestamp(sh); return 0; } /* * The routine initializes the packet pacing infrastructure: * - allocates PP context * - Clock CQ/SQ * - Rearm CQ/SQ * - attaches rearm interrupt handler * - starts Clock Queue * * Returns 0 on success, negative otherwise */ static int mlx5_txpp_create(struct mlx5_dev_ctx_shared *sh, struct mlx5_priv *priv) { int tx_pp = priv->config.tx_pp; int ret; /* Store the requested pacing parameters. */ sh->txpp.tick = tx_pp >= 0 ? tx_pp : -tx_pp; sh->txpp.test = !!(tx_pp < 0); sh->txpp.skew = priv->config.tx_skew; sh->txpp.freq = priv->config.hca_attr.dev_freq_khz; ret = mlx5_txpp_create_event_channel(sh); if (ret) goto exit; ret = mlx5_txpp_alloc_pp_index(sh); if (ret) goto exit; ret = mlx5_txpp_create_clock_queue(sh); if (ret) goto exit; ret = mlx5_txpp_create_rearm_queue(sh); if (ret) goto exit; ret = mlx5_txpp_start_service(sh); if (ret) goto exit; exit: if (ret) { mlx5_txpp_stop_service(sh); mlx5_txpp_destroy_rearm_queue(sh); mlx5_txpp_destroy_clock_queue(sh); mlx5_txpp_free_pp_index(sh); mlx5_txpp_destroy_event_channel(sh); sh->txpp.tick = 0; sh->txpp.test = 0; sh->txpp.skew = 0; } return ret; } /* * The routine destroys the packet pacing infrastructure: * - detaches rearm interrupt handler * - Rearm CQ/SQ * - Clock CQ/SQ * - PP context */ static void mlx5_txpp_destroy(struct mlx5_dev_ctx_shared *sh) { mlx5_txpp_stop_service(sh); mlx5_txpp_destroy_rearm_queue(sh); mlx5_txpp_destroy_clock_queue(sh); mlx5_txpp_free_pp_index(sh); mlx5_txpp_destroy_event_channel(sh); sh->txpp.tick = 0; sh->txpp.test = 0; sh->txpp.skew = 0; } /** * Creates and starts packet pacing infrastructure on specified device. * * @param dev * Pointer to Ethernet device structure. * * @return * 0 on success, a negative errno value otherwise and rte_errno is set. */ int mlx5_txpp_start(struct rte_eth_dev *dev) { struct mlx5_priv *priv = dev->data->dev_private; struct mlx5_dev_ctx_shared *sh = priv->sh; int err = 0; if (!priv->config.tx_pp) { /* Packet pacing is not requested for the device. */ MLX5_ASSERT(priv->txpp_en == 0); return 0; } if (priv->txpp_en) { /* Packet pacing is already enabled for the device. */ MLX5_ASSERT(sh->txpp.refcnt); return 0; } if (priv->config.tx_pp > 0) { err = rte_mbuf_dynflag_lookup (RTE_MBUF_DYNFLAG_TX_TIMESTAMP_NAME, NULL); /* No flag registered means no service needed. */ if (err < 0) return 0; err = 0; } claim_zero(pthread_mutex_lock(&sh->txpp.mutex)); if (sh->txpp.refcnt) { priv->txpp_en = 1; ++sh->txpp.refcnt; } else { err = mlx5_txpp_create(sh, priv); if (!err) { MLX5_ASSERT(sh->txpp.tick); priv->txpp_en = 1; sh->txpp.refcnt = 1; } else { rte_errno = -err; } } claim_zero(pthread_mutex_unlock(&sh->txpp.mutex)); return err; } /** * Stops and destroys packet pacing infrastructure on specified device. * * @param dev * Pointer to Ethernet device structure. * * @return * 0 on success, a negative errno value otherwise and rte_errno is set. */ void mlx5_txpp_stop(struct rte_eth_dev *dev) { struct mlx5_priv *priv = dev->data->dev_private; struct mlx5_dev_ctx_shared *sh = priv->sh; if (!priv->txpp_en) { /* Packet pacing is already disabled for the device. */ return; } priv->txpp_en = 0; claim_zero(pthread_mutex_lock(&sh->txpp.mutex)); MLX5_ASSERT(sh->txpp.refcnt); if (!sh->txpp.refcnt || --sh->txpp.refcnt) { claim_zero(pthread_mutex_unlock(&sh->txpp.mutex)); return; } /* No references any more, do actual destroy. */ mlx5_txpp_destroy(sh); claim_zero(pthread_mutex_unlock(&sh->txpp.mutex)); } /* * Read the current clock counter of an Ethernet device * * This returns the current raw clock value of an Ethernet device. It is * a raw amount of ticks, with no given time reference. * The value returned here is from the same clock than the one * filling timestamp field of Rx/Tx packets when using hardware timestamp * offload. Therefore it can be used to compute a precise conversion of * the device clock to the real time. * * @param dev * Pointer to Ethernet device structure. * @param clock * Pointer to the uint64_t that holds the raw clock value. * * @return * - 0: Success. * - -ENOTSUP: The function is not supported in this mode. Requires * packet pacing module configured and started (tx_pp devarg) */ int mlx5_txpp_read_clock(struct rte_eth_dev *dev, uint64_t *timestamp) { struct mlx5_priv *priv = dev->data->dev_private; struct mlx5_dev_ctx_shared *sh = priv->sh; int ret; if (sh->txpp.refcnt) { struct mlx5_txpp_wq *wq = &sh->txpp.clock_queue; struct mlx5_cqe *cqe = (struct mlx5_cqe *)(uintptr_t)wq->cqes; union { rte_int128_t u128; struct mlx5_cqe_ts cts; } to; uint64_t ts; mlx5_atomic_read_cqe((rte_int128_t *)&cqe->timestamp, &to.u128); if (to.cts.op_own >> 4) { DRV_LOG(DEBUG, "Clock Queue error sync lost."); __atomic_fetch_add(&sh->txpp.err_clock_queue, 1, __ATOMIC_RELAXED); sh->txpp.sync_lost = 1; return -EIO; } ts = rte_be_to_cpu_64(to.cts.timestamp); ts = mlx5_txpp_convert_rx_ts(sh, ts); *timestamp = ts; return 0; } /* Not supported in isolated mode - kernel does not see the CQEs. */ if (priv->isolated || rte_eal_process_type() != RTE_PROC_PRIMARY) return -ENOTSUP; ret = mlx5_read_clock(dev, timestamp); return ret; } /** * DPDK callback to clear device extended statistics. * * @param dev * Pointer to Ethernet device structure. * * @return * 0 on success and stats is reset, negative errno value otherwise and * rte_errno is set. */ int mlx5_txpp_xstats_reset(struct rte_eth_dev *dev) { struct mlx5_priv *priv = dev->data->dev_private; struct mlx5_dev_ctx_shared *sh = priv->sh; __atomic_store_n(&sh->txpp.err_miss_int, 0, __ATOMIC_RELAXED); __atomic_store_n(&sh->txpp.err_rearm_queue, 0, __ATOMIC_RELAXED); __atomic_store_n(&sh->txpp.err_clock_queue, 0, __ATOMIC_RELAXED); __atomic_store_n(&sh->txpp.err_ts_past, 0, __ATOMIC_RELAXED); __atomic_store_n(&sh->txpp.err_ts_future, 0, __ATOMIC_RELAXED); return 0; } /** * Routine to retrieve names of extended device statistics * for packet send scheduling. It appends the specific stats names * after the parts filled by preceding modules (eth stats, etc.) * * @param dev * Pointer to Ethernet device structure. * @param[out] xstats_names * Buffer to insert names into. * @param n * Number of names. * @param n_used * Number of names filled by preceding statistics modules. * * @return * Number of xstats names. */ int mlx5_txpp_xstats_get_names(struct rte_eth_dev *dev __rte_unused, struct rte_eth_xstat_name *xstats_names, unsigned int n, unsigned int n_used) { unsigned int n_txpp = RTE_DIM(mlx5_txpp_stat_names); unsigned int i; if (n >= n_used + n_txpp && xstats_names) { for (i = 0; i < n_txpp; ++i) { strncpy(xstats_names[i + n_used].name, mlx5_txpp_stat_names[i], RTE_ETH_XSTATS_NAME_SIZE); xstats_names[i + n_used].name [RTE_ETH_XSTATS_NAME_SIZE - 1] = 0; } } return n_used + n_txpp; } static inline void mlx5_txpp_read_tsa(struct mlx5_dev_txpp *txpp, struct mlx5_txpp_ts *tsa, uint16_t idx) { do { uint64_t ts, ci; ts = __atomic_load_n(&txpp->tsa[idx].ts, __ATOMIC_RELAXED); ci = __atomic_load_n(&txpp->tsa[idx].ci_ts, __ATOMIC_RELAXED); rte_compiler_barrier(); if ((ci ^ ts) << MLX5_CQ_INDEX_WIDTH != 0) continue; if (__atomic_load_n(&txpp->tsa[idx].ts, __ATOMIC_RELAXED) != ts) continue; if (__atomic_load_n(&txpp->tsa[idx].ci_ts, __ATOMIC_RELAXED) != ci) continue; tsa->ts = ts; tsa->ci_ts = ci; return; } while (true); } /* * Jitter reflects the clock change between * neighbours Clock Queue completions. */ static uint64_t mlx5_txpp_xstats_jitter(struct mlx5_dev_txpp *txpp) { struct mlx5_txpp_ts tsa0, tsa1; int64_t dts, dci; uint16_t ts_p; if (txpp->ts_n < 2) { /* No gathered enough reports yet. */ return 0; } do { int ts_0, ts_1; ts_p = txpp->ts_p; rte_compiler_barrier(); ts_0 = ts_p - 2; if (ts_0 < 0) ts_0 += MLX5_TXPP_REARM_SQ_SIZE; ts_1 = ts_p - 1; if (ts_1 < 0) ts_1 += MLX5_TXPP_REARM_SQ_SIZE; mlx5_txpp_read_tsa(txpp, &tsa0, ts_0); mlx5_txpp_read_tsa(txpp, &tsa1, ts_1); rte_compiler_barrier(); } while (ts_p != txpp->ts_p); /* We have two neighbor reports, calculate the jitter. */ dts = tsa1.ts - tsa0.ts; dci = (tsa1.ci_ts >> (64 - MLX5_CQ_INDEX_WIDTH)) - (tsa0.ci_ts >> (64 - MLX5_CQ_INDEX_WIDTH)); if (dci < 0) dci += 1 << MLX5_CQ_INDEX_WIDTH; dci *= txpp->tick; return (dts > dci) ? dts - dci : dci - dts; } /* * Wander reflects the long-term clock change * over the entire length of all Clock Queue completions. */ static uint64_t mlx5_txpp_xstats_wander(struct mlx5_dev_txpp *txpp) { struct mlx5_txpp_ts tsa0, tsa1; int64_t dts, dci; uint16_t ts_p; if (txpp->ts_n < MLX5_TXPP_REARM_SQ_SIZE) { /* No gathered enough reports yet. */ return 0; } do { int ts_0, ts_1; ts_p = txpp->ts_p; rte_compiler_barrier(); ts_0 = ts_p - MLX5_TXPP_REARM_SQ_SIZE / 2 - 1; if (ts_0 < 0) ts_0 += MLX5_TXPP_REARM_SQ_SIZE; ts_1 = ts_p - 1; if (ts_1 < 0) ts_1 += MLX5_TXPP_REARM_SQ_SIZE; mlx5_txpp_read_tsa(txpp, &tsa0, ts_0); mlx5_txpp_read_tsa(txpp, &tsa1, ts_1); rte_compiler_barrier(); } while (ts_p != txpp->ts_p); /* We have two neighbor reports, calculate the jitter. */ dts = tsa1.ts - tsa0.ts; dci = (tsa1.ci_ts >> (64 - MLX5_CQ_INDEX_WIDTH)) - (tsa0.ci_ts >> (64 - MLX5_CQ_INDEX_WIDTH)); dci += 1 << MLX5_CQ_INDEX_WIDTH; dci *= txpp->tick; return (dts > dci) ? dts - dci : dci - dts; } /** * Routine to retrieve extended device statistics * for packet send scheduling. It appends the specific statistics * after the parts filled by preceding modules (eth stats, etc.) * * @param dev * Pointer to Ethernet device. * @param[out] stats * Pointer to rte extended stats table. * @param n * The size of the stats table. * @param n_used * Number of stats filled by preceding statistics modules. * * @return * Number of extended stats on success and stats is filled, * negative on error and rte_errno is set. */ int mlx5_txpp_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *stats, unsigned int n, unsigned int n_used) { unsigned int n_txpp = RTE_DIM(mlx5_txpp_stat_names); if (n >= n_used + n_txpp && stats) { struct mlx5_priv *priv = dev->data->dev_private; struct mlx5_dev_ctx_shared *sh = priv->sh; unsigned int i; for (i = 0; i < n_txpp; ++i) stats[n_used + i].id = n_used + i; stats[n_used + 0].value = __atomic_load_n(&sh->txpp.err_miss_int, __ATOMIC_RELAXED); stats[n_used + 1].value = __atomic_load_n(&sh->txpp.err_rearm_queue, __ATOMIC_RELAXED); stats[n_used + 2].value = __atomic_load_n(&sh->txpp.err_clock_queue, __ATOMIC_RELAXED); stats[n_used + 3].value = __atomic_load_n(&sh->txpp.err_ts_past, __ATOMIC_RELAXED); stats[n_used + 4].value = __atomic_load_n(&sh->txpp.err_ts_future, __ATOMIC_RELAXED); stats[n_used + 5].value = mlx5_txpp_xstats_jitter(&sh->txpp); stats[n_used + 6].value = mlx5_txpp_xstats_wander(&sh->txpp); stats[n_used + 7].value = sh->txpp.sync_lost; } return n_used + n_txpp; }