/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2017 Intel Corporation */ #ifndef _IAVF_RXTX_VEC_COMMON_H_ #define _IAVF_RXTX_VEC_COMMON_H_ #include #include #include #include "iavf.h" #include "iavf_rxtx.h" #ifndef __INTEL_COMPILER #pragma GCC diagnostic ignored "-Wcast-qual" #endif static inline uint16_t reassemble_packets(struct iavf_rx_queue *rxq, struct rte_mbuf **rx_bufs, uint16_t nb_bufs, uint8_t *split_flags) { struct rte_mbuf *pkts[IAVF_VPMD_RX_MAX_BURST]; struct rte_mbuf *start = rxq->pkt_first_seg; struct rte_mbuf *end = rxq->pkt_last_seg; unsigned int pkt_idx, buf_idx; for (buf_idx = 0, pkt_idx = 0; buf_idx < nb_bufs; buf_idx++) { if (end) { /* processing a split packet */ end->next = rx_bufs[buf_idx]; rx_bufs[buf_idx]->data_len += rxq->crc_len; start->nb_segs++; start->pkt_len += rx_bufs[buf_idx]->data_len; end = end->next; if (!split_flags[buf_idx]) { /* it's the last packet of the set */ start->hash = end->hash; start->vlan_tci = end->vlan_tci; start->ol_flags = end->ol_flags; /* we need to strip crc for the whole packet */ start->pkt_len -= rxq->crc_len; if (end->data_len > rxq->crc_len) { end->data_len -= rxq->crc_len; } else { /* free up last mbuf */ struct rte_mbuf *secondlast = start; start->nb_segs--; while (secondlast->next != end) secondlast = secondlast->next; secondlast->data_len -= (rxq->crc_len - end->data_len); secondlast->next = NULL; rte_pktmbuf_free_seg(end); } pkts[pkt_idx++] = start; start = NULL; end = NULL; } } else { /* not processing a split packet */ if (!split_flags[buf_idx]) { /* not a split packet, save and skip */ pkts[pkt_idx++] = rx_bufs[buf_idx]; continue; } end = start = rx_bufs[buf_idx]; rx_bufs[buf_idx]->data_len += rxq->crc_len; rx_bufs[buf_idx]->pkt_len += rxq->crc_len; } } /* save the partial packet for next time */ rxq->pkt_first_seg = start; rxq->pkt_last_seg = end; memcpy(rx_bufs, pkts, pkt_idx * (sizeof(*pkts))); return pkt_idx; } static __rte_always_inline int iavf_tx_free_bufs(struct iavf_tx_queue *txq) { struct iavf_tx_entry *txep; uint32_t n; uint32_t i; int nb_free = 0; struct rte_mbuf *m, *free[IAVF_VPMD_TX_MAX_FREE_BUF]; /* check DD bits on threshold descriptor */ if ((txq->tx_ring[txq->next_dd].cmd_type_offset_bsz & rte_cpu_to_le_64(IAVF_TXD_QW1_DTYPE_MASK)) != rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DESC_DONE)) return 0; n = txq->rs_thresh; /* first buffer to free from S/W ring is at index * tx_next_dd - (tx_rs_thresh-1) */ txep = &txq->sw_ring[txq->next_dd - (n - 1)]; m = rte_pktmbuf_prefree_seg(txep[0].mbuf); if (likely(m != NULL)) { free[0] = m; nb_free = 1; for (i = 1; i < n; i++) { m = rte_pktmbuf_prefree_seg(txep[i].mbuf); if (likely(m != NULL)) { if (likely(m->pool == free[0]->pool)) { free[nb_free++] = m; } else { rte_mempool_put_bulk(free[0]->pool, (void *)free, nb_free); free[0] = m; nb_free = 1; } } } rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free); } else { for (i = 1; i < n; i++) { m = rte_pktmbuf_prefree_seg(txep[i].mbuf); if (m) rte_mempool_put(m->pool, m); } } /* buffers were freed, update counters */ txq->nb_free = (uint16_t)(txq->nb_free + txq->rs_thresh); txq->next_dd = (uint16_t)(txq->next_dd + txq->rs_thresh); if (txq->next_dd >= txq->nb_tx_desc) txq->next_dd = (uint16_t)(txq->rs_thresh - 1); return txq->rs_thresh; } static __rte_always_inline void tx_backlog_entry(struct iavf_tx_entry *txep, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) { int i; for (i = 0; i < (int)nb_pkts; ++i) txep[i].mbuf = tx_pkts[i]; } static inline void _iavf_rx_queue_release_mbufs_vec(struct iavf_rx_queue *rxq) { const unsigned int mask = rxq->nb_rx_desc - 1; unsigned int i; if (!rxq->sw_ring || rxq->rxrearm_nb >= rxq->nb_rx_desc) return; /* free all mbufs that are valid in the ring */ if (rxq->rxrearm_nb == 0) { for (i = 0; i < rxq->nb_rx_desc; i++) { if (rxq->sw_ring[i]) rte_pktmbuf_free_seg(rxq->sw_ring[i]); } } else { for (i = rxq->rx_tail; i != rxq->rxrearm_start; i = (i + 1) & mask) { if (rxq->sw_ring[i]) rte_pktmbuf_free_seg(rxq->sw_ring[i]); } } rxq->rxrearm_nb = rxq->nb_rx_desc; /* set all entries to NULL */ memset(rxq->sw_ring, 0, sizeof(rxq->sw_ring[0]) * rxq->nb_rx_desc); } static inline void _iavf_tx_queue_release_mbufs_vec(struct iavf_tx_queue *txq) { unsigned i; const uint16_t max_desc = (uint16_t)(txq->nb_tx_desc - 1); if (!txq->sw_ring || txq->nb_free == max_desc) return; i = txq->next_dd - txq->rs_thresh + 1; if (txq->tx_tail < i) { for (; i < txq->nb_tx_desc; i++) { rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf); txq->sw_ring[i].mbuf = NULL; } i = 0; } } static inline int iavf_rxq_vec_setup_default(struct iavf_rx_queue *rxq) { uintptr_t p; struct rte_mbuf mb_def = { .buf_addr = 0 }; /* zeroed mbuf */ mb_def.nb_segs = 1; mb_def.data_off = RTE_PKTMBUF_HEADROOM; mb_def.port = rxq->port_id; rte_mbuf_refcnt_set(&mb_def, 1); /* prevent compiler reordering: rearm_data covers previous fields */ rte_compiler_barrier(); p = (uintptr_t)&mb_def.rearm_data; rxq->mbuf_initializer = *(uint64_t *)p; return 0; } static inline int iavf_rx_vec_queue_default(struct iavf_rx_queue *rxq) { if (!rxq) return -1; if (!rte_is_power_of_2(rxq->nb_rx_desc)) return -1; if (rxq->rx_free_thresh < IAVF_VPMD_RX_MAX_BURST) return -1; if (rxq->nb_rx_desc % rxq->rx_free_thresh) return -1; if (rxq->proto_xtr != IAVF_PROTO_XTR_NONE) return -1; return 0; } static inline int iavf_tx_vec_queue_default(struct iavf_tx_queue *txq) { if (!txq) return -1; if (txq->offloads & IAVF_NO_VECTOR_FLAGS) return -1; if (txq->rs_thresh < IAVF_VPMD_TX_MAX_BURST || txq->rs_thresh > IAVF_VPMD_TX_MAX_FREE_BUF) return -1; return 0; } static inline int iavf_rx_vec_dev_check_default(struct rte_eth_dev *dev) { int i; struct iavf_rx_queue *rxq; for (i = 0; i < dev->data->nb_rx_queues; i++) { rxq = dev->data->rx_queues[i]; if (iavf_rx_vec_queue_default(rxq)) return -1; } return 0; } static inline int iavf_tx_vec_dev_check_default(struct rte_eth_dev *dev) { int i; struct iavf_tx_queue *txq; for (i = 0; i < dev->data->nb_tx_queues; i++) { txq = dev->data->tx_queues[i]; if (iavf_tx_vec_queue_default(txq)) return -1; } return 0; } #ifdef CC_AVX2_SUPPORT static __rte_always_inline void iavf_rxq_rearm_common(struct iavf_rx_queue *rxq, __rte_unused bool avx512) { int i; uint16_t rx_id; volatile union iavf_rx_desc *rxdp; struct rte_mbuf **rxp = &rxq->sw_ring[rxq->rxrearm_start]; rxdp = rxq->rx_ring + rxq->rxrearm_start; /* Pull 'n' more MBUFs into the software ring */ if (rte_mempool_get_bulk(rxq->mp, (void *)rxp, IAVF_RXQ_REARM_THRESH) < 0) { if (rxq->rxrearm_nb + IAVF_RXQ_REARM_THRESH >= rxq->nb_rx_desc) { __m128i dma_addr0; dma_addr0 = _mm_setzero_si128(); for (i = 0; i < IAVF_VPMD_DESCS_PER_LOOP; i++) { rxp[i] = &rxq->fake_mbuf; _mm_store_si128((__m128i *)&rxdp[i].read, dma_addr0); } } rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed += IAVF_RXQ_REARM_THRESH; return; } #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC struct rte_mbuf *mb0, *mb1; __m128i dma_addr0, dma_addr1; __m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM, RTE_PKTMBUF_HEADROOM); /* Initialize the mbufs in vector, process 2 mbufs in one loop */ for (i = 0; i < IAVF_RXQ_REARM_THRESH; i += 2, rxp += 2) { __m128i vaddr0, vaddr1; mb0 = rxp[0]; mb1 = rxp[1]; /* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) != offsetof(struct rte_mbuf, buf_addr) + 8); vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr); vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr); /* convert pa to dma_addr hdr/data */ dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0); dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1); /* add headroom to pa values */ dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room); dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room); /* flush desc with pa dma_addr */ _mm_store_si128((__m128i *)&rxdp++->read, dma_addr0); _mm_store_si128((__m128i *)&rxdp++->read, dma_addr1); } #else #ifdef CC_AVX512_SUPPORT if (avx512) { struct rte_mbuf *mb0, *mb1, *mb2, *mb3; struct rte_mbuf *mb4, *mb5, *mb6, *mb7; __m512i dma_addr0_3, dma_addr4_7; __m512i hdr_room = _mm512_set1_epi64(RTE_PKTMBUF_HEADROOM); /* Initialize the mbufs in vector, process 8 mbufs in one loop */ for (i = 0; i < IAVF_RXQ_REARM_THRESH; i += 8, rxp += 8, rxdp += 8) { __m128i vaddr0, vaddr1, vaddr2, vaddr3; __m128i vaddr4, vaddr5, vaddr6, vaddr7; __m256i vaddr0_1, vaddr2_3; __m256i vaddr4_5, vaddr6_7; __m512i vaddr0_3, vaddr4_7; mb0 = rxp[0]; mb1 = rxp[1]; mb2 = rxp[2]; mb3 = rxp[3]; mb4 = rxp[4]; mb5 = rxp[5]; mb6 = rxp[6]; mb7 = rxp[7]; /* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) != offsetof(struct rte_mbuf, buf_addr) + 8); vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr); vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr); vaddr2 = _mm_loadu_si128((__m128i *)&mb2->buf_addr); vaddr3 = _mm_loadu_si128((__m128i *)&mb3->buf_addr); vaddr4 = _mm_loadu_si128((__m128i *)&mb4->buf_addr); vaddr5 = _mm_loadu_si128((__m128i *)&mb5->buf_addr); vaddr6 = _mm_loadu_si128((__m128i *)&mb6->buf_addr); vaddr7 = _mm_loadu_si128((__m128i *)&mb7->buf_addr); /** * merge 0 & 1, by casting 0 to 256-bit and inserting 1 * into the high lanes. Similarly for 2 & 3, and so on. */ vaddr0_1 = _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr0), vaddr1, 1); vaddr2_3 = _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr2), vaddr3, 1); vaddr4_5 = _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr4), vaddr5, 1); vaddr6_7 = _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr6), vaddr7, 1); vaddr0_3 = _mm512_inserti64x4(_mm512_castsi256_si512(vaddr0_1), vaddr2_3, 1); vaddr4_7 = _mm512_inserti64x4(_mm512_castsi256_si512(vaddr4_5), vaddr6_7, 1); /* convert pa to dma_addr hdr/data */ dma_addr0_3 = _mm512_unpackhi_epi64(vaddr0_3, vaddr0_3); dma_addr4_7 = _mm512_unpackhi_epi64(vaddr4_7, vaddr4_7); /* add headroom to pa values */ dma_addr0_3 = _mm512_add_epi64(dma_addr0_3, hdr_room); dma_addr4_7 = _mm512_add_epi64(dma_addr4_7, hdr_room); /* flush desc with pa dma_addr */ _mm512_store_si512((__m512i *)&rxdp->read, dma_addr0_3); _mm512_store_si512((__m512i *)&(rxdp + 4)->read, dma_addr4_7); } } else #endif { struct rte_mbuf *mb0, *mb1, *mb2, *mb3; __m256i dma_addr0_1, dma_addr2_3; __m256i hdr_room = _mm256_set1_epi64x(RTE_PKTMBUF_HEADROOM); /* Initialize the mbufs in vector, process 4 mbufs in one loop */ for (i = 0; i < IAVF_RXQ_REARM_THRESH; i += 4, rxp += 4, rxdp += 4) { __m128i vaddr0, vaddr1, vaddr2, vaddr3; __m256i vaddr0_1, vaddr2_3; mb0 = rxp[0]; mb1 = rxp[1]; mb2 = rxp[2]; mb3 = rxp[3]; /* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) != offsetof(struct rte_mbuf, buf_addr) + 8); vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr); vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr); vaddr2 = _mm_loadu_si128((__m128i *)&mb2->buf_addr); vaddr3 = _mm_loadu_si128((__m128i *)&mb3->buf_addr); /** * merge 0 & 1, by casting 0 to 256-bit and inserting 1 * into the high lanes. Similarly for 2 & 3 */ vaddr0_1 = _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr0), vaddr1, 1); vaddr2_3 = _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr2), vaddr3, 1); /* convert pa to dma_addr hdr/data */ dma_addr0_1 = _mm256_unpackhi_epi64(vaddr0_1, vaddr0_1); dma_addr2_3 = _mm256_unpackhi_epi64(vaddr2_3, vaddr2_3); /* add headroom to pa values */ dma_addr0_1 = _mm256_add_epi64(dma_addr0_1, hdr_room); dma_addr2_3 = _mm256_add_epi64(dma_addr2_3, hdr_room); /* flush desc with pa dma_addr */ _mm256_store_si256((__m256i *)&rxdp->read, dma_addr0_1); _mm256_store_si256((__m256i *)&(rxdp + 2)->read, dma_addr2_3); } } #endif rxq->rxrearm_start += IAVF_RXQ_REARM_THRESH; if (rxq->rxrearm_start >= rxq->nb_rx_desc) rxq->rxrearm_start = 0; rxq->rxrearm_nb -= IAVF_RXQ_REARM_THRESH; rx_id = (uint16_t)((rxq->rxrearm_start == 0) ? (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1)); /* Update the tail pointer on the NIC */ IAVF_PCI_REG_WRITE(rxq->qrx_tail, rx_id); } #endif #endif