/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2018-2021 HiSilicon Limited. */ #ifndef _HNS3_ETHDEV_H_ #define _HNS3_ETHDEV_H_ #include #include #include #include "hns3_cmd.h" #include "hns3_mbx.h" #include "hns3_rss.h" #include "hns3_fdir.h" #include "hns3_stats.h" /* Vendor ID */ #define PCI_VENDOR_ID_HUAWEI 0x19e5 /* Device IDs */ #define HNS3_DEV_ID_GE 0xA220 #define HNS3_DEV_ID_25GE 0xA221 #define HNS3_DEV_ID_25GE_RDMA 0xA222 #define HNS3_DEV_ID_50GE_RDMA 0xA224 #define HNS3_DEV_ID_100G_RDMA_MACSEC 0xA226 #define HNS3_DEV_ID_200G_RDMA 0xA228 #define HNS3_DEV_ID_100G_VF 0xA22E #define HNS3_DEV_ID_100G_RDMA_PFC_VF 0xA22F /* PCI Config offsets */ #define HNS3_PCI_REVISION_ID 0x08 #define HNS3_PCI_REVISION_ID_LEN 1 #define PCI_REVISION_ID_HIP08_B 0x21 #define PCI_REVISION_ID_HIP09_A 0x30 #define HNS3_PF_FUNC_ID 0 #define HNS3_1ST_VF_FUNC_ID 1 #define HNS3_SW_SHIFT_AND_DISCARD_MODE 0 #define HNS3_HW_SHIFT_AND_DISCARD_MODE 1 #define HNS3_UNLIMIT_PROMISC_MODE 0 #define HNS3_LIMIT_PROMISC_MODE 1 #define HNS3_SPECIAL_PORT_SW_CKSUM_MODE 0 #define HNS3_SPECIAL_PORT_HW_CKSUM_MODE 1 #define HNS3_UC_MACADDR_NUM 128 #define HNS3_VF_UC_MACADDR_NUM 48 #define HNS3_MC_MACADDR_NUM 128 #define HNS3_MAX_BD_SIZE 65535 #define HNS3_MAX_NON_TSO_BD_PER_PKT 8 #define HNS3_MAX_TSO_BD_PER_PKT 63 #define HNS3_MAX_FRAME_LEN 9728 #define HNS3_VLAN_TAG_SIZE 4 #define HNS3_DEFAULT_RX_BUF_LEN 2048 #define HNS3_MAX_BD_PAYLEN (1024 * 1024 - 1) #define HNS3_MAX_TSO_HDR_SIZE 512 #define HNS3_MAX_TSO_HDR_BD_NUM 3 #define HNS3_MAX_LRO_SIZE 64512 #define HNS3_ETH_OVERHEAD \ (RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN + HNS3_VLAN_TAG_SIZE * 2) #define HNS3_PKTLEN_TO_MTU(pktlen) ((pktlen) - HNS3_ETH_OVERHEAD) #define HNS3_MAX_MTU (HNS3_MAX_FRAME_LEN - HNS3_ETH_OVERHEAD) #define HNS3_DEFAULT_MTU 1500UL #define HNS3_DEFAULT_FRAME_LEN (HNS3_DEFAULT_MTU + HNS3_ETH_OVERHEAD) #define HNS3_HIP08_MIN_TX_PKT_LEN 33 #define HNS3_HIP09_MIN_TX_PKT_LEN 9 #define HNS3_BITS_PER_BYTE 8 #define HNS3_4_TCS 4 #define HNS3_8_TCS 8 #define HNS3_MAX_PF_NUM 8 #define HNS3_UMV_TBL_SIZE 3072 #define HNS3_DEFAULT_UMV_SPACE_PER_PF \ (HNS3_UMV_TBL_SIZE / HNS3_MAX_PF_NUM) #define HNS3_PF_CFG_BLOCK_SIZE 32 #define HNS3_PF_CFG_DESC_NUM \ (HNS3_PF_CFG_BLOCK_SIZE / HNS3_CFG_RD_LEN_BYTES) #define HNS3_DEFAULT_ENABLE_PFC_NUM 0 #define HNS3_INTR_UNREG_FAIL_RETRY_CNT 5 #define HNS3_INTR_UNREG_FAIL_DELAY_MS 500 #define HNS3_QUIT_RESET_CNT 10 #define HNS3_QUIT_RESET_DELAY_MS 100 #define HNS3_POLL_RESPONE_MS 1 #define HNS3_MAX_USER_PRIO 8 #define HNS3_PG_NUM 4 enum hns3_fc_mode { HNS3_FC_NONE, HNS3_FC_RX_PAUSE, HNS3_FC_TX_PAUSE, HNS3_FC_FULL, HNS3_FC_DEFAULT }; #define HNS3_SCH_MODE_SP 0 #define HNS3_SCH_MODE_DWRR 1 struct hns3_pg_info { uint8_t pg_id; uint8_t pg_sch_mode; /* 0: sp; 1: dwrr */ uint8_t tc_bit_map; uint32_t bw_limit; uint8_t tc_dwrr[HNS3_MAX_TC_NUM]; }; struct hns3_tc_info { uint8_t tc_id; uint8_t tc_sch_mode; /* 0: sp; 1: dwrr */ uint8_t pgid; uint32_t bw_limit; uint8_t up_to_tc_map; /* user priority mapping on the TC */ }; struct hns3_dcb_info { uint8_t num_tc; uint8_t num_pg; /* It must be 1 if vNET-Base schd */ uint8_t pg_dwrr[HNS3_PG_NUM]; uint8_t prio_tc[HNS3_MAX_USER_PRIO]; struct hns3_pg_info pg_info[HNS3_PG_NUM]; struct hns3_tc_info tc_info[HNS3_MAX_TC_NUM]; uint8_t hw_pfc_map; /* Allow for packet drop or not on this TC */ uint8_t pfc_en; /* Pfc enabled or not for user priority */ }; enum hns3_fc_status { HNS3_FC_STATUS_NONE, HNS3_FC_STATUS_MAC_PAUSE, HNS3_FC_STATUS_PFC, }; struct hns3_tc_queue_info { uint16_t tqp_offset; /* TQP offset from base TQP */ uint16_t tqp_count; /* Total TQPs */ uint8_t tc; /* TC index */ bool enable; /* If this TC is enable or not */ }; struct hns3_cfg { uint8_t tc_num; uint16_t tqp_desc_num; uint16_t rx_buf_len; uint16_t rss_size_max; uint8_t phy_addr; uint8_t media_type; uint8_t mac_addr[RTE_ETHER_ADDR_LEN]; uint8_t default_speed; uint32_t numa_node_map; uint8_t speed_ability; uint16_t umv_space; }; /* mac media type */ enum hns3_media_type { HNS3_MEDIA_TYPE_UNKNOWN, HNS3_MEDIA_TYPE_FIBER, HNS3_MEDIA_TYPE_COPPER, HNS3_MEDIA_TYPE_BACKPLANE, HNS3_MEDIA_TYPE_NONE, }; struct hns3_mac { uint8_t mac_addr[RTE_ETHER_ADDR_LEN]; uint8_t media_type; uint8_t phy_addr; uint8_t link_duplex : 1; /* ETH_LINK_[HALF/FULL]_DUPLEX */ uint8_t link_autoneg : 1; /* ETH_LINK_[AUTONEG/FIXED] */ uint8_t link_status : 1; /* ETH_LINK_[DOWN/UP] */ uint32_t link_speed; /* ETH_SPEED_NUM_ */ }; struct hns3_fake_queue_data { void **rx_queues; /* Array of pointers to fake RX queues. */ void **tx_queues; /* Array of pointers to fake TX queues. */ uint16_t nb_fake_rx_queues; /* Number of fake RX queues. */ uint16_t nb_fake_tx_queues; /* Number of fake TX queues. */ }; #define HNS3_PORT_BASE_VLAN_DISABLE 0 #define HNS3_PORT_BASE_VLAN_ENABLE 1 struct hns3_port_base_vlan_config { uint16_t state; uint16_t pvid; }; /* Primary process maintains driver state in main thread. * * +---------------+ * | UNINITIALIZED |<-----------+ * +---------------+ | * |.eth_dev_init |.eth_dev_uninit * V | * +---------------+------------+ * | INITIALIZED | * +---------------+<-----------<---------------+ * |.dev_configure | | * V |failed | * +---------------+------------+ | * | CONFIGURING | | * +---------------+----+ | * |success | | * | | +---------------+ * | | | CLOSING | * | | +---------------+ * | | ^ * V |.dev_configure | * +---------------+----+ |.dev_close * | CONFIGURED |----------------------------+ * +---------------+<-----------+ * |.dev_start | * V | * +---------------+ | * | STARTING |------------^ * +---------------+ failed | * |success | * | +---------------+ * | | STOPPING | * | +---------------+ * | ^ * V |.dev_stop * +---------------+------------+ * | STARTED | * +---------------+ */ enum hns3_adapter_state { HNS3_NIC_UNINITIALIZED = 0, HNS3_NIC_INITIALIZED, HNS3_NIC_CONFIGURING, HNS3_NIC_CONFIGURED, HNS3_NIC_STARTING, HNS3_NIC_STARTED, HNS3_NIC_STOPPING, HNS3_NIC_CLOSING, HNS3_NIC_CLOSED, HNS3_NIC_REMOVED, HNS3_NIC_NSTATES }; /* Reset various stages, execute in order */ enum hns3_reset_stage { /* Stop query services, stop transceiver, disable MAC */ RESET_STAGE_DOWN, /* Clear reset completion flags, disable send command */ RESET_STAGE_PREWAIT, /* Inform IMP to start resetting */ RESET_STAGE_REQ_HW_RESET, /* Waiting for hardware reset to complete */ RESET_STAGE_WAIT, /* Reinitialize hardware */ RESET_STAGE_DEV_INIT, /* Restore user settings and enable MAC */ RESET_STAGE_RESTORE, /* Restart query services, start transceiver */ RESET_STAGE_DONE, /* Not in reset state */ RESET_STAGE_NONE, }; enum hns3_reset_level { HNS3_NONE_RESET, HNS3_VF_FUNC_RESET, /* A VF function reset */ /* * All VFs under a PF perform function reset. * Kernel PF driver use mailbox to inform DPDK VF to do reset, the value * of the reset level and the one defined in kernel driver should be * same. */ HNS3_VF_PF_FUNC_RESET = 2, /* * All VFs under a PF perform FLR reset. * Kernel PF driver use mailbox to inform DPDK VF to do reset, the value * of the reset level and the one defined in kernel driver should be * same. * * According to the protocol of PCIe, FLR to a PF resets the PF state as * well as the SR-IOV extended capability including VF Enable which * means that VFs no longer exist. * * In PF FLR, the register state of VF is not reliable, VF's driver * should not access the registers of the VF device. */ HNS3_VF_FULL_RESET = 3, HNS3_FLR_RESET, /* A VF perform FLR reset */ /* All VFs under the rootport perform a global or IMP reset */ HNS3_VF_RESET, HNS3_FUNC_RESET, /* A PF function reset */ /* All PFs under the rootport perform a global reset */ HNS3_GLOBAL_RESET, HNS3_IMP_RESET, /* All PFs under the rootport perform a IMP reset */ HNS3_MAX_RESET }; enum hns3_wait_result { HNS3_WAIT_UNKNOWN, HNS3_WAIT_REQUEST, HNS3_WAIT_SUCCESS, HNS3_WAIT_TIMEOUT }; #define HNS3_RESET_SYNC_US 100000 struct hns3_reset_stats { uint64_t request_cnt; /* Total request reset times */ uint64_t global_cnt; /* Total GLOBAL reset times */ uint64_t imp_cnt; /* Total IMP reset times */ uint64_t exec_cnt; /* Total reset executive times */ uint64_t success_cnt; /* Total reset successful times */ uint64_t fail_cnt; /* Total reset failed times */ uint64_t merge_cnt; /* Total merged in high reset times */ }; typedef bool (*check_completion_func)(struct hns3_hw *hw); struct hns3_wait_data { void *hns; uint64_t end_ms; uint64_t interval; int16_t count; enum hns3_wait_result result; check_completion_func check_completion; }; struct hns3_reset_ops { void (*reset_service)(void *arg); int (*stop_service)(struct hns3_adapter *hns); int (*prepare_reset)(struct hns3_adapter *hns); int (*wait_hardware_ready)(struct hns3_adapter *hns); int (*reinit_dev)(struct hns3_adapter *hns); int (*restore_conf)(struct hns3_adapter *hns); int (*start_service)(struct hns3_adapter *hns); }; enum hns3_schedule { SCHEDULE_NONE, SCHEDULE_PENDING, SCHEDULE_REQUESTED, SCHEDULE_DEFERRED, }; struct hns3_reset_data { enum hns3_reset_stage stage; rte_atomic16_t schedule; /* Reset flag, covering the entire reset process */ rte_atomic16_t resetting; /* Used to disable sending cmds during reset */ rte_atomic16_t disable_cmd; /* The reset level being processed */ enum hns3_reset_level level; /* Reset level set, each bit represents a reset level */ uint64_t pending; /* Request reset level set, from interrupt or mailbox */ uint64_t request; int attempts; /* Reset failure retry */ int retries; /* Timeout failure retry in reset_post */ /* * At the time of global or IMP reset, the command cannot be sent to * stop the tx/rx queues. Tx/Rx queues may be access mbuf during the * reset process, so the mbuf is required to be released after the reset * is completed.The mbuf_deferred_free is used to mark whether mbuf * needs to be released. */ bool mbuf_deferred_free; struct timeval start_time; struct hns3_reset_stats stats; const struct hns3_reset_ops *ops; struct hns3_wait_data *wait_data; }; #define HNS3_INTR_MAPPING_VEC_RSV_ONE 0 #define HNS3_INTR_MAPPING_VEC_ALL 1 #define HNS3_INTR_COALESCE_GL_UINT_2US 0 #define HNS3_INTR_COALESCE_GL_UINT_1US 1 #define HNS3_INTR_QL_NONE 0 struct hns3_queue_intr { /* * interrupt mapping mode. * value range: * HNS3_INTR_MAPPING_VEC_RSV_ONE/HNS3_INTR_MAPPING_VEC_ALL * * - HNS3_INTR_MAPPING_VEC_RSV_ONE * For some versions of hardware network engine, because of the * hardware constraint, we need implement clearing the mapping * relationship configurations by binding all queues to the last * interrupt vector and reserving the last interrupt vector. This * method results in a decrease of the maximum queues when upper * applications call the rte_eth_dev_configure API function to * enable Rx interrupt. * * - HNS3_INTR_MAPPING_VEC_ALL * PMD can map/unmmap all interrupt vectors with queues when * Rx interrupt is enabled. */ uint8_t mapping_mode; /* * The unit of GL(gap limiter) configuration for interrupt coalesce of * queue's interrupt. * value range: * HNS3_INTR_COALESCE_GL_UINT_2US/HNS3_INTR_COALESCE_GL_UINT_1US */ uint8_t gl_unit; /* The max QL(quantity limiter) value */ uint16_t int_ql_max; }; #define HNS3_TSO_SW_CAL_PSEUDO_H_CSUM 0 #define HNS3_TSO_HW_CAL_PSEUDO_H_CSUM 1 struct hns3_hw { struct rte_eth_dev_data *data; void *io_base; uint8_t revision; /* PCI revision, low byte of class word */ struct hns3_cmq cmq; struct hns3_mbx_resp_status mbx_resp; /* mailbox response */ struct hns3_mbx_arq_ring arq; /* mailbox async rx queue */ struct hns3_mac mac; unsigned int secondary_cnt; /* Number of secondary processes init'd. */ struct hns3_tqp_stats tqp_stats; /* Include Mac stats | Rx stats | Tx stats */ struct hns3_mac_stats mac_stats; uint32_t mac_stats_reg_num; uint32_t fw_version; uint16_t num_msi; uint16_t total_tqps_num; /* total task queue pairs of this PF */ uint16_t tqps_num; /* num task queue pairs of this function */ uint16_t intr_tqps_num; /* num queue pairs mapping interrupt */ uint16_t rss_size_max; /* HW defined max RSS task queue */ uint16_t rx_buf_len; /* hold min hardware rx buf len */ uint16_t num_tx_desc; /* desc num of per tx queue */ uint16_t num_rx_desc; /* desc num of per rx queue */ uint32_t mng_entry_num; /* number of manager table entry */ uint32_t mac_entry_num; /* number of mac-vlan table entry */ struct rte_ether_addr mc_addrs[HNS3_MC_MACADDR_NUM]; int mc_addrs_num; /* Multicast mac addresses number */ /* The configuration info of RSS */ struct hns3_rss_conf rss_info; uint16_t rss_ind_tbl_size; uint16_t rss_key_size; uint8_t num_tc; /* Total number of enabled TCs */ uint8_t hw_tc_map; enum hns3_fc_mode requested_fc_mode; /* FC mode requested by user */ struct hns3_dcb_info dcb_info; enum hns3_fc_status current_fc_status; /* current flow control status */ struct hns3_tc_queue_info tc_queue[HNS3_MAX_TC_NUM]; uint16_t used_rx_queues; uint16_t used_tx_queues; /* Config max queue numbers between rx and tx queues from user */ uint16_t cfg_max_queues; struct hns3_fake_queue_data fkq_data; /* fake queue data */ uint16_t alloc_rss_size; /* RX queue number per TC */ uint16_t tx_qnum_per_tc; /* TX queue number per TC */ uint32_t capability; uint32_t max_tm_rate; /* * The minimum length of the packet supported by hardware in the Tx * direction. */ uint32_t min_tx_pkt_len; struct hns3_queue_intr intr; /* * tso mode. * value range: * HNS3_TSO_SW_CAL_PSEUDO_H_CSUM/HNS3_TSO_HW_CAL_PSEUDO_H_CSUM * * - HNS3_TSO_SW_CAL_PSEUDO_H_CSUM * In this mode, because of the hardware constraint, network driver * software need erase the L4 len value of the TCP pseudo header * and recalculate the TCP pseudo header checksum of packets that * need TSO. * * - HNS3_TSO_HW_CAL_PSEUDO_H_CSUM * In this mode, hardware support recalculate the TCP pseudo header * checksum of packets that need TSO, so network driver software * not need to recalculate it. */ uint8_t tso_mode; /* * vlan mode. * value range: * HNS3_SW_SHIFT_AND_DISCARD_MODE/HNS3_HW_SHIFT_AND_DISCARD_MODE * * - HNS3_SW_SHIFT_AND_DISCARD_MODE * For some versions of hardware network engine, because of the * hardware limitation, PMD needs to detect the PVID status * to work with hardware to implement PVID-related functions. * For example, driver need discard the stripped PVID tag to ensure * the PVID will not report to mbuf and shift the inserted VLAN tag * to avoid port based VLAN covering it. * * - HNS3_HW_SHIT_AND_DISCARD_MODE * PMD does not need to process PVID-related functions in * I/O process, Hardware will adjust the sequence between port based * VLAN tag and BD VLAN tag automatically and VLAN tag stripped by * PVID will be invisible to driver. And in this mode, hns3 is able * to send a multi-layer VLAN packets when hw VLAN insert offload * is enabled. */ uint8_t vlan_mode; /* * promisc mode. * value range: * HNS3_UNLIMIT_PROMISC_MODE/HNS3_LIMIT_PROMISC_MODE * * - HNS3_UNLIMIT_PROMISC_MODE * In this mode, TX unicast promisc will be configured when promisc * is set, driver can receive all the ingress and outgoing traffic. * In the words, all the ingress packets, all the packets sent from * the PF and other VFs on the same physical port. * * - HNS3_LIMIT_PROMISC_MODE * In this mode, TX unicast promisc is shutdown when promisc mode * is set. So, driver will only receive all the ingress traffic. * The packets sent from the PF and other VFs on the same physical * port won't be copied to the function which has set promisc mode. */ uint8_t promisc_mode; uint8_t max_non_tso_bd_num; /* max BD number of one non-TSO packet */ /* * udp checksum mode. * value range: * HNS3_SPECIAL_PORT_HW_CKSUM_MODE/HNS3_SPECIAL_PORT_SW_CKSUM_MODE * * - HNS3_SPECIAL_PORT_SW_CKSUM_MODE * In this mode, HW can not do checksum for special UDP port like * 4789, 4790, 6081 for non-tunnel UDP packets and UDP tunnel * packets without the PKT_TX_TUNEL_MASK in the mbuf. So, PMD need * do the checksum for these packets to avoid a checksum error. * * - HNS3_SPECIAL_PORT_HW_CKSUM_MODE * In this mode, HW does not have the preceding problems and can * directly calculate the checksum of these UDP packets. */ uint8_t udp_cksum_mode; struct hns3_port_base_vlan_config port_base_vlan_cfg; pthread_mutex_t flows_lock; /* rte_flow ops lock */ struct hns3_fdir_rule_list flow_fdir_list; /* flow fdir rule list */ struct hns3_rss_filter_list flow_rss_list; /* flow RSS rule list */ struct hns3_flow_mem_list flow_list; /* * PMD setup and configuration is not thread safe. Since it is not * performance sensitive, it is better to guarantee thread-safety * and add device level lock. Adapter control operations which * change its state should acquire the lock. */ rte_spinlock_t lock; enum hns3_adapter_state adapter_state; struct hns3_reset_data reset; }; #define HNS3_FLAG_TC_BASE_SCH_MODE 1 #define HNS3_FLAG_VNET_BASE_SCH_MODE 2 struct hns3_err_msix_intr_stats { uint64_t mac_afifo_tnl_int_cnt; uint64_t ppu_mpf_abn_int_st2_msix_cnt; uint64_t ssu_port_based_pf_int_cnt; uint64_t ppp_pf_abnormal_int_cnt; uint64_t ppu_pf_abnormal_int_msix_cnt; uint64_t imp_tcm_ecc_int_cnt; uint64_t cmdq_mem_ecc_int_cnt; uint64_t imp_rd_poison_int_cnt; uint64_t tqp_int_ecc_int_cnt; uint64_t msix_ecc_int_cnt; uint64_t ssu_ecc_multi_bit_int_0_cnt; uint64_t ssu_ecc_multi_bit_int_1_cnt; uint64_t ssu_common_ecc_int_cnt; uint64_t igu_int_cnt; uint64_t ppp_mpf_abnormal_int_st1_cnt; uint64_t ppp_mpf_abnormal_int_st3_cnt; uint64_t ppu_mpf_abnormal_int_st1_cnt; uint64_t ppu_mpf_abn_int_st2_ras_cnt; uint64_t ppu_mpf_abnormal_int_st3_cnt; uint64_t tm_sch_int_cnt; uint64_t qcn_fifo_int_cnt; uint64_t qcn_ecc_int_cnt; uint64_t ncsi_ecc_int_cnt; uint64_t ssu_port_based_err_int_cnt; uint64_t ssu_fifo_overflow_int_cnt; uint64_t ssu_ets_tcg_int_cnt; uint64_t igu_egu_tnl_int_cnt; uint64_t ppu_pf_abnormal_int_ras_cnt; }; /* vlan entry information. */ struct hns3_user_vlan_table { LIST_ENTRY(hns3_user_vlan_table) next; bool hd_tbl_status; uint16_t vlan_id; }; /* Vlan tag configuration for RX direction */ struct hns3_rx_vtag_cfg { bool rx_vlan_offload_en; /* Whether enable rx vlan offload */ bool strip_tag1_en; /* Whether strip inner vlan tag */ bool strip_tag2_en; /* Whether strip outer vlan tag */ /* * If strip_tag_en is enabled, this bit decide whether to map the vlan * tag to descriptor. */ bool strip_tag1_discard_en; bool strip_tag2_discard_en; /* * If this bit is enabled, only map inner/outer priority to descriptor * and the vlan tag is always 0. */ bool vlan1_vlan_prionly; bool vlan2_vlan_prionly; }; /* Vlan tag configuration for TX direction */ struct hns3_tx_vtag_cfg { bool accept_tag1; /* Whether accept tag1 packet from host */ bool accept_untag1; /* Whether accept untag1 packet from host */ bool accept_tag2; bool accept_untag2; bool insert_tag1_en; /* Whether insert outer vlan tag */ bool insert_tag2_en; /* Whether insert inner vlan tag */ /* * In shift mode, hw will shift the sequence of port based VLAN and * BD VLAN. */ bool tag_shift_mode_en; /* hw shift vlan tag automatically */ uint16_t default_tag1; /* The default outer vlan tag to insert */ uint16_t default_tag2; /* The default inner vlan tag to insert */ }; struct hns3_vtag_cfg { struct hns3_rx_vtag_cfg rx_vcfg; struct hns3_tx_vtag_cfg tx_vcfg; }; /* Request types for IPC. */ enum hns3_mp_req_type { HNS3_MP_REQ_START_RXTX = 1, HNS3_MP_REQ_STOP_RXTX, HNS3_MP_REQ_MAX }; /* Parameters for IPC. */ struct hns3_mp_param { enum hns3_mp_req_type type; int port_id; int result; }; /* Request timeout for IPC. */ #define HNS3_MP_REQ_TIMEOUT_SEC 5 /* Key string for IPC. */ #define HNS3_MP_NAME "net_hns3_mp" #define HNS3_L2TBL_NUM 4 #define HNS3_L3TBL_NUM 16 #define HNS3_L4TBL_NUM 16 #define HNS3_OL2TBL_NUM 4 #define HNS3_OL3TBL_NUM 16 #define HNS3_OL4TBL_NUM 16 struct hns3_ptype_table { uint32_t l3table[HNS3_L3TBL_NUM]; uint32_t l4table[HNS3_L4TBL_NUM]; uint32_t inner_l3table[HNS3_L3TBL_NUM]; uint32_t inner_l4table[HNS3_L4TBL_NUM]; uint32_t ol3table[HNS3_OL3TBL_NUM]; uint32_t ol4table[HNS3_OL4TBL_NUM]; }; #define HNS3_FIXED_MAX_TQP_NUM_MODE 0 #define HNS3_FLEX_MAX_TQP_NUM_MODE 1 struct hns3_pf { struct hns3_adapter *adapter; bool is_main_pf; uint16_t func_num; /* num functions of this pf, include pf and vfs */ /* * tqp_config mode * tqp_config_mode value range: * HNS3_FIXED_MAX_TQP_NUM_MODE, * HNS3_FLEX_MAX_TQP_NUM_MODE * * - HNS3_FIXED_MAX_TQP_NUM_MODE * There is a limitation on the number of pf interrupts available for * on some versions of network engines. In this case, the maximum * queue number of pf can not be greater than the interrupt number, * such as pf of network engine with revision_id 0x21. So the maximum * number of queues must be fixed. * * - HNS3_FLEX_MAX_TQP_NUM_MODE * In this mode, the maximum queue number of pf has not any constraint * and comes from the macro RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF * in the config file. Users can modify the macro according to their * own application scenarios, which is more flexible to use. */ uint8_t tqp_config_mode; uint32_t pkt_buf_size; /* Total pf buf size for tx/rx */ uint32_t tx_buf_size; /* Tx buffer size for each TC */ uint32_t dv_buf_size; /* Dv buffer size for each TC */ uint16_t mps; /* Max packet size */ uint8_t tx_sch_mode; uint8_t tc_max; /* max number of tc driver supported */ uint8_t local_max_tc; /* max number of local tc */ uint8_t pfc_max; uint8_t prio_tc[HNS3_MAX_USER_PRIO]; /* TC indexed by prio */ uint16_t pause_time; bool support_fc_autoneg; /* support FC autonegotiate */ uint16_t wanted_umv_size; uint16_t max_umv_size; uint16_t used_umv_size; /* Statistics information for abnormal interrupt */ struct hns3_err_msix_intr_stats abn_int_stats; bool support_sfp_query; uint32_t fec_mode; /* current FEC mode for ethdev */ struct hns3_vtag_cfg vtag_config; LIST_HEAD(vlan_tbl, hns3_user_vlan_table) vlan_list; struct hns3_fdir_info fdir; /* flow director info */ LIST_HEAD(counters, hns3_flow_counter) flow_counters; }; struct hns3_vf { struct hns3_adapter *adapter; }; struct hns3_adapter { struct hns3_hw hw; /* Specific for PF or VF */ bool is_vf; /* false - PF, true - VF */ union { struct hns3_pf pf; struct hns3_vf vf; }; bool rx_simple_allowed; bool rx_vec_allowed; bool tx_simple_allowed; bool tx_vec_allowed; struct hns3_ptype_table ptype_tbl __rte_cache_min_aligned; }; #define HNS3_DEV_SUPPORT_DCB_B 0x0 #define HNS3_DEV_SUPPORT_COPPER_B 0x1 #define HNS3_DEV_SUPPORT_UDP_GSO_B 0x2 #define HNS3_DEV_SUPPORT_FD_QUEUE_REGION_B 0x3 #define HNS3_DEV_SUPPORT_PTP_B 0x4 #define HNS3_DEV_SUPPORT_TX_PUSH_B 0x5 #define HNS3_DEV_SUPPORT_INDEP_TXRX_B 0x6 #define HNS3_DEV_SUPPORT_STASH_B 0x7 #define hns3_dev_dcb_supported(hw) \ hns3_get_bit((hw)->capability, HNS3_DEV_SUPPORT_DCB_B) /* Support copper media type */ #define hns3_dev_copper_supported(hw) \ hns3_get_bit((hw)->capability, HNS3_DEV_SUPPORT_COPPER_B) /* Support UDP GSO offload */ #define hns3_dev_udp_gso_supported(hw) \ hns3_get_bit((hw)->capability, HNS3_DEV_SUPPORT_UDP_GSO_B) /* Support the queue region action rule of flow directory */ #define hns3_dev_fd_queue_region_supported(hw) \ hns3_get_bit((hw)->capability, HNS3_DEV_SUPPORT_FD_QUEUE_REGION_B) /* Support PTP timestamp offload */ #define hns3_dev_ptp_supported(hw) \ hns3_get_bit((hw)->capability, HNS3_DEV_SUPPORT_PTP_B) #define hns3_dev_tx_push_supported(hw) \ hns3_get_bit((hw)->capability, HNS3_DEV_SUPPORT_TX_PUSH_B) /* Support to Independently enable/disable/reset Tx or Rx queues */ #define hns3_dev_indep_txrx_supported(hw) \ hns3_get_bit((hw)->capability, HNS3_DEV_SUPPORT_INDEP_TXRX_B) #define hns3_dev_stash_supported(hw) \ hns3_get_bit((hw)->capability, HNS3_DEV_SUPPORT_STASH_B) #define HNS3_DEV_PRIVATE_TO_HW(adapter) \ (&((struct hns3_adapter *)adapter)->hw) #define HNS3_DEV_PRIVATE_TO_PF(adapter) \ (&((struct hns3_adapter *)adapter)->pf) #define HNS3_DEV_HW_TO_ADAPTER(hw) \ container_of(hw, struct hns3_adapter, hw) #define hns3_set_field(origin, mask, shift, val) \ do { \ (origin) &= (~(mask)); \ (origin) |= ((val) << (shift)) & (mask); \ } while (0) #define hns3_get_field(origin, mask, shift) \ (((origin) & (mask)) >> (shift)) #define hns3_set_bit(origin, shift, val) \ hns3_set_field((origin), (0x1UL << (shift)), (shift), (val)) #define hns3_get_bit(origin, shift) \ hns3_get_field((origin), (0x1UL << (shift)), (shift)) #define hns3_gen_field_val(mask, shift, val) (((val) << (shift)) & (mask)) /* * upper_32_bits - return bits 32-63 of a number * A basic shift-right of a 64- or 32-bit quantity. Use this to suppress * the "right shift count >= width of type" warning when that quantity is * 32-bits. */ #define upper_32_bits(n) ((uint32_t)(((n) >> 16) >> 16)) /* lower_32_bits - return bits 0-31 of a number */ #define lower_32_bits(n) ((uint32_t)(n)) #define BIT(nr) (1UL << (nr)) #define BIT_ULL(x) (1ULL << (x)) #define BITS_PER_LONG (__SIZEOF_LONG__ * 8) #define GENMASK(h, l) \ (((~0UL) << (l)) & (~0UL >> (BITS_PER_LONG - 1 - (h)))) #define roundup(x, y) ((((x) + ((y) - 1)) / (y)) * (y)) #define rounddown(x, y) ((x) - ((x) % (y))) #define DIV_ROUND_UP(n, d) (((n) + (d) - 1) / (d)) /* * Because hardware always access register in little-endian mode based on hns3 * network engine, so driver should also call rte_cpu_to_le_32 to convert data * in little-endian mode before writing register and call rte_le_to_cpu_32 to * convert data after reading from register. * * Here the driver encapsulates the data conversion operation in the register * read/write operation function as below: * hns3_write_reg * hns3_write_reg_opt * hns3_read_reg * Therefore, when calling these functions, conversion is not required again. */ static inline void hns3_write_reg(void *base, uint32_t reg, uint32_t value) { rte_write32(rte_cpu_to_le_32(value), (volatile void *)((char *)base + reg)); } /* * The optimized function for writing registers used in the '.rx_pkt_burst' and * '.tx_pkt_burst' ops implementation function. */ static inline void hns3_write_reg_opt(volatile void *addr, uint32_t value) { rte_io_wmb(); rte_write32_relaxed(rte_cpu_to_le_32(value), addr); } static inline uint32_t hns3_read_reg(void *base, uint32_t reg) { uint32_t read_val = rte_read32((volatile void *)((char *)base + reg)); return rte_le_to_cpu_32(read_val); } #define hns3_write_dev(a, reg, value) \ hns3_write_reg((a)->io_base, (reg), (value)) #define hns3_read_dev(a, reg) \ hns3_read_reg((a)->io_base, (reg)) #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0])) #define NEXT_ITEM_OF_ACTION(act, actions, index) \ do { \ act = (actions) + (index); \ while (act->type == RTE_FLOW_ACTION_TYPE_VOID) { \ (index)++; \ act = actions + index; \ } \ } while (0) #define MSEC_PER_SEC 1000L #define USEC_PER_MSEC 1000L void hns3_clock_gettime(struct timeval *tv); uint64_t hns3_clock_calctime_ms(struct timeval *tv); uint64_t hns3_clock_gettime_ms(void); static inline uint64_t hns3_atomic_test_bit(unsigned int nr, volatile uint64_t *addr) { uint64_t res; res = (__atomic_load_n(addr, __ATOMIC_RELAXED) & (1UL << nr)) != 0; return res; } static inline void hns3_atomic_set_bit(unsigned int nr, volatile uint64_t *addr) { __atomic_fetch_or(addr, (1UL << nr), __ATOMIC_RELAXED); } static inline void hns3_atomic_clear_bit(unsigned int nr, volatile uint64_t *addr) { __atomic_fetch_and(addr, ~(1UL << nr), __ATOMIC_RELAXED); } static inline int64_t hns3_test_and_clear_bit(unsigned int nr, volatile uint64_t *addr) { uint64_t mask = (1UL << nr); return __atomic_fetch_and(addr, ~mask, __ATOMIC_RELAXED) & mask; } int hns3_buffer_alloc(struct hns3_hw *hw); int hns3_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type, enum rte_filter_op filter_op, void *arg); bool hns3_is_reset_pending(struct hns3_adapter *hns); bool hns3vf_is_reset_pending(struct hns3_adapter *hns); void hns3_update_link_status(struct hns3_hw *hw); static inline bool is_reset_pending(struct hns3_adapter *hns) { bool ret; if (hns->is_vf) ret = hns3vf_is_reset_pending(hns); else ret = hns3_is_reset_pending(hns); return ret; } static inline uint64_t hns3_txvlan_cap_get(struct hns3_hw *hw) { if (hw->port_base_vlan_cfg.state) return DEV_TX_OFFLOAD_VLAN_INSERT; else return DEV_TX_OFFLOAD_VLAN_INSERT | DEV_TX_OFFLOAD_QINQ_INSERT; } #endif /* _HNS3_ETHDEV_H_ */