/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2001-2020 Intel Corporation */ /* * 82542 Gigabit Ethernet Controller */ #include "e1000_api.h" STATIC s32 e1000_init_phy_params_82542(struct e1000_hw *hw); STATIC s32 e1000_init_nvm_params_82542(struct e1000_hw *hw); STATIC s32 e1000_init_mac_params_82542(struct e1000_hw *hw); STATIC s32 e1000_get_bus_info_82542(struct e1000_hw *hw); STATIC s32 e1000_reset_hw_82542(struct e1000_hw *hw); STATIC s32 e1000_init_hw_82542(struct e1000_hw *hw); STATIC s32 e1000_setup_link_82542(struct e1000_hw *hw); STATIC s32 e1000_led_on_82542(struct e1000_hw *hw); STATIC s32 e1000_led_off_82542(struct e1000_hw *hw); STATIC int e1000_rar_set_82542(struct e1000_hw *hw, u8 *addr, u32 index); STATIC void e1000_clear_hw_cntrs_82542(struct e1000_hw *hw); STATIC s32 e1000_read_mac_addr_82542(struct e1000_hw *hw); /** * e1000_init_phy_params_82542 - Init PHY func ptrs. * @hw: pointer to the HW structure **/ STATIC s32 e1000_init_phy_params_82542(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val = E1000_SUCCESS; DEBUGFUNC("e1000_init_phy_params_82542"); phy->type = e1000_phy_none; return ret_val; } /** * e1000_init_nvm_params_82542 - Init NVM func ptrs. * @hw: pointer to the HW structure **/ STATIC s32 e1000_init_nvm_params_82542(struct e1000_hw *hw) { struct e1000_nvm_info *nvm = &hw->nvm; DEBUGFUNC("e1000_init_nvm_params_82542"); nvm->address_bits = 6; nvm->delay_usec = 50; nvm->opcode_bits = 3; nvm->type = e1000_nvm_eeprom_microwire; nvm->word_size = 64; /* Function Pointers */ nvm->ops.read = e1000_read_nvm_microwire; nvm->ops.release = e1000_stop_nvm; nvm->ops.write = e1000_write_nvm_microwire; nvm->ops.update = e1000_update_nvm_checksum_generic; nvm->ops.validate = e1000_validate_nvm_checksum_generic; return E1000_SUCCESS; } /** * e1000_init_mac_params_82542 - Init MAC func ptrs. * @hw: pointer to the HW structure **/ STATIC s32 e1000_init_mac_params_82542(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; DEBUGFUNC("e1000_init_mac_params_82542"); /* Set media type */ hw->phy.media_type = e1000_media_type_fiber; /* Set mta register count */ mac->mta_reg_count = 128; /* Set rar entry count */ mac->rar_entry_count = E1000_RAR_ENTRIES; /* Function pointers */ /* bus type/speed/width */ mac->ops.get_bus_info = e1000_get_bus_info_82542; /* function id */ mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pci; /* reset */ mac->ops.reset_hw = e1000_reset_hw_82542; /* hw initialization */ mac->ops.init_hw = e1000_init_hw_82542; /* link setup */ mac->ops.setup_link = e1000_setup_link_82542; /* phy/fiber/serdes setup */ mac->ops.setup_physical_interface = e1000_setup_fiber_serdes_link_generic; /* check for link */ mac->ops.check_for_link = e1000_check_for_fiber_link_generic; /* multicast address update */ mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic; /* writing VFTA */ mac->ops.write_vfta = e1000_write_vfta_generic; /* clearing VFTA */ mac->ops.clear_vfta = e1000_clear_vfta_generic; /* read mac address */ mac->ops.read_mac_addr = e1000_read_mac_addr_82542; /* set RAR */ mac->ops.rar_set = e1000_rar_set_82542; /* turn on/off LED */ mac->ops.led_on = e1000_led_on_82542; mac->ops.led_off = e1000_led_off_82542; /* clear hardware counters */ mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82542; /* link info */ mac->ops.get_link_up_info = e1000_get_speed_and_duplex_fiber_serdes_generic; return E1000_SUCCESS; } /** * e1000_init_function_pointers_82542 - Init func ptrs. * @hw: pointer to the HW structure * * Called to initialize all function pointers and parameters. **/ void e1000_init_function_pointers_82542(struct e1000_hw *hw) { DEBUGFUNC("e1000_init_function_pointers_82542"); hw->mac.ops.init_params = e1000_init_mac_params_82542; hw->nvm.ops.init_params = e1000_init_nvm_params_82542; hw->phy.ops.init_params = e1000_init_phy_params_82542; } /** * e1000_get_bus_info_82542 - Obtain bus information for adapter * @hw: pointer to the HW structure * * This will obtain information about the HW bus for which the * adapter is attached and stores it in the hw structure. **/ STATIC s32 e1000_get_bus_info_82542(struct e1000_hw *hw) { DEBUGFUNC("e1000_get_bus_info_82542"); hw->bus.type = e1000_bus_type_pci; hw->bus.speed = e1000_bus_speed_unknown; hw->bus.width = e1000_bus_width_unknown; return E1000_SUCCESS; } /** * e1000_reset_hw_82542 - Reset hardware * @hw: pointer to the HW structure * * This resets the hardware into a known state. **/ STATIC s32 e1000_reset_hw_82542(struct e1000_hw *hw) { struct e1000_bus_info *bus = &hw->bus; s32 ret_val = E1000_SUCCESS; u32 ctrl; DEBUGFUNC("e1000_reset_hw_82542"); if (hw->revision_id == E1000_REVISION_2) { DEBUGOUT("Disabling MWI on 82542 rev 2\n"); e1000_pci_clear_mwi(hw); } DEBUGOUT("Masking off all interrupts\n"); E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); E1000_WRITE_REG(hw, E1000_RCTL, 0); E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP); E1000_WRITE_FLUSH(hw); /* * Delay to allow any outstanding PCI transactions to complete before * resetting the device */ msec_delay(10); ctrl = E1000_READ_REG(hw, E1000_CTRL); DEBUGOUT("Issuing a global reset to 82542/82543 MAC\n"); E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST); hw->nvm.ops.reload(hw); msec_delay(2); E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); E1000_READ_REG(hw, E1000_ICR); if (hw->revision_id == E1000_REVISION_2) { if (bus->pci_cmd_word & CMD_MEM_WRT_INVALIDATE) e1000_pci_set_mwi(hw); } return ret_val; } /** * e1000_init_hw_82542 - Initialize hardware * @hw: pointer to the HW structure * * This inits the hardware readying it for operation. **/ STATIC s32 e1000_init_hw_82542(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; struct e1000_dev_spec_82542 *dev_spec = &hw->dev_spec._82542; s32 ret_val = E1000_SUCCESS; u32 ctrl; u16 i; DEBUGFUNC("e1000_init_hw_82542"); /* Disabling VLAN filtering */ E1000_WRITE_REG(hw, E1000_VET, 0); mac->ops.clear_vfta(hw); /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ if (hw->revision_id == E1000_REVISION_2) { DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); e1000_pci_clear_mwi(hw); E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST); E1000_WRITE_FLUSH(hw); msec_delay(5); } /* Setup the receive address. */ e1000_init_rx_addrs_generic(hw, mac->rar_entry_count); /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */ if (hw->revision_id == E1000_REVISION_2) { E1000_WRITE_REG(hw, E1000_RCTL, 0); E1000_WRITE_FLUSH(hw); msec_delay(1); if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE) e1000_pci_set_mwi(hw); } /* Zero out the Multicast HASH table */ DEBUGOUT("Zeroing the MTA\n"); for (i = 0; i < mac->mta_reg_count; i++) E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); /* * Set the PCI priority bit correctly in the CTRL register. This * determines if the adapter gives priority to receives, or if it * gives equal priority to transmits and receives. */ if (dev_spec->dma_fairness) { ctrl = E1000_READ_REG(hw, E1000_CTRL); E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PRIOR); } /* Setup link and flow control */ ret_val = e1000_setup_link_82542(hw); /* * Clear all of the statistics registers (clear on read). It is * important that we do this after we have tried to establish link * because the symbol error count will increment wildly if there * is no link. */ e1000_clear_hw_cntrs_82542(hw); return ret_val; } /** * e1000_setup_link_82542 - Setup flow control and link settings * @hw: pointer to the HW structure * * Determines which flow control settings to use, then configures flow * control. Calls the appropriate media-specific link configuration * function. Assuming the adapter has a valid link partner, a valid link * should be established. Assumes the hardware has previously been reset * and the transmitter and receiver are not enabled. **/ STATIC s32 e1000_setup_link_82542(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; s32 ret_val; DEBUGFUNC("e1000_setup_link_82542"); ret_val = e1000_set_default_fc_generic(hw); if (ret_val) goto out; hw->fc.requested_mode &= ~e1000_fc_tx_pause; if (mac->report_tx_early) hw->fc.requested_mode &= ~e1000_fc_rx_pause; /* * Save off the requested flow control mode for use later. Depending * on the link partner's capabilities, we may or may not use this mode. */ hw->fc.current_mode = hw->fc.requested_mode; DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode); /* Call the necessary subroutine to configure the link. */ ret_val = mac->ops.setup_physical_interface(hw); if (ret_val) goto out; /* * Initialize the flow control address, type, and PAUSE timer * registers to their default values. This is done even if flow * control is disabled, because it does not hurt anything to * initialize these registers. */ DEBUGOUT("Initializing Flow Control address, type and timer regs\n"); E1000_WRITE_REG(hw, E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW); E1000_WRITE_REG(hw, E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH); E1000_WRITE_REG(hw, E1000_FCT, FLOW_CONTROL_TYPE); E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time); ret_val = e1000_set_fc_watermarks_generic(hw); out: return ret_val; } /** * e1000_led_on_82542 - Turn on SW controllable LED * @hw: pointer to the HW structure * * Turns the SW defined LED on. **/ STATIC s32 e1000_led_on_82542(struct e1000_hw *hw) { u32 ctrl = E1000_READ_REG(hw, E1000_CTRL); DEBUGFUNC("e1000_led_on_82542"); ctrl |= E1000_CTRL_SWDPIN0; ctrl |= E1000_CTRL_SWDPIO0; E1000_WRITE_REG(hw, E1000_CTRL, ctrl); return E1000_SUCCESS; } /** * e1000_led_off_82542 - Turn off SW controllable LED * @hw: pointer to the HW structure * * Turns the SW defined LED off. **/ STATIC s32 e1000_led_off_82542(struct e1000_hw *hw) { u32 ctrl = E1000_READ_REG(hw, E1000_CTRL); DEBUGFUNC("e1000_led_off_82542"); ctrl &= ~E1000_CTRL_SWDPIN0; ctrl |= E1000_CTRL_SWDPIO0; E1000_WRITE_REG(hw, E1000_CTRL, ctrl); return E1000_SUCCESS; } /** * e1000_rar_set_82542 - Set receive address register * @hw: pointer to the HW structure * @addr: pointer to the receive address * @index: receive address array register * * Sets the receive address array register at index to the address passed * in by addr. **/ STATIC int e1000_rar_set_82542(struct e1000_hw *hw, u8 *addr, u32 index) { u32 rar_low, rar_high; DEBUGFUNC("e1000_rar_set_82542"); /* * HW expects these in little endian so we reverse the byte order * from network order (big endian) to little endian */ rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) | ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); /* If MAC address zero, no need to set the AV bit */ if (rar_low || rar_high) rar_high |= E1000_RAH_AV; E1000_WRITE_REG_ARRAY(hw, E1000_RA, (index << 1), rar_low); E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((index << 1) + 1), rar_high); return E1000_SUCCESS; } /** * e1000_translate_register_82542 - Translate the proper register offset * @reg: e1000 register to be read * * Registers in 82542 are located in different offsets than other adapters * even though they function in the same manner. This function takes in * the name of the register to read and returns the correct offset for * 82542 silicon. **/ u32 e1000_translate_register_82542(u32 reg) { /* * Some of the 82542 registers are located at different * offsets than they are in newer adapters. * Despite the difference in location, the registers * function in the same manner. */ switch (reg) { case E1000_RA: reg = 0x00040; break; case E1000_RDTR: reg = 0x00108; break; case E1000_RDBAL(0): reg = 0x00110; break; case E1000_RDBAH(0): reg = 0x00114; break; case E1000_RDLEN(0): reg = 0x00118; break; case E1000_RDH(0): reg = 0x00120; break; case E1000_RDT(0): reg = 0x00128; break; case E1000_RDBAL(1): reg = 0x00138; break; case E1000_RDBAH(1): reg = 0x0013C; break; case E1000_RDLEN(1): reg = 0x00140; break; case E1000_RDH(1): reg = 0x00148; break; case E1000_RDT(1): reg = 0x00150; break; case E1000_FCRTH: reg = 0x00160; break; case E1000_FCRTL: reg = 0x00168; break; case E1000_MTA: reg = 0x00200; break; case E1000_TDBAL(0): reg = 0x00420; break; case E1000_TDBAH(0): reg = 0x00424; break; case E1000_TDLEN(0): reg = 0x00428; break; case E1000_TDH(0): reg = 0x00430; break; case E1000_TDT(0): reg = 0x00438; break; case E1000_TIDV: reg = 0x00440; break; case E1000_VFTA: reg = 0x00600; break; case E1000_TDFH: reg = 0x08010; break; case E1000_TDFT: reg = 0x08018; break; default: break; } return reg; } /** * e1000_clear_hw_cntrs_82542 - Clear device specific hardware counters * @hw: pointer to the HW structure * * Clears the hardware counters by reading the counter registers. **/ STATIC void e1000_clear_hw_cntrs_82542(struct e1000_hw *hw) { DEBUGFUNC("e1000_clear_hw_cntrs_82542"); e1000_clear_hw_cntrs_base_generic(hw); E1000_READ_REG(hw, E1000_PRC64); E1000_READ_REG(hw, E1000_PRC127); E1000_READ_REG(hw, E1000_PRC255); E1000_READ_REG(hw, E1000_PRC511); E1000_READ_REG(hw, E1000_PRC1023); E1000_READ_REG(hw, E1000_PRC1522); E1000_READ_REG(hw, E1000_PTC64); E1000_READ_REG(hw, E1000_PTC127); E1000_READ_REG(hw, E1000_PTC255); E1000_READ_REG(hw, E1000_PTC511); E1000_READ_REG(hw, E1000_PTC1023); E1000_READ_REG(hw, E1000_PTC1522); } /** * e1000_read_mac_addr_82542 - Read device MAC address * @hw: pointer to the HW structure * * Reads the device MAC address from the EEPROM and stores the value. **/ s32 e1000_read_mac_addr_82542(struct e1000_hw *hw) { s32 ret_val = E1000_SUCCESS; u16 offset, nvm_data, i; DEBUGFUNC("e1000_read_mac_addr"); for (i = 0; i < ETH_ADDR_LEN; i += 2) { offset = i >> 1; ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data); if (ret_val) { DEBUGOUT("NVM Read Error\n"); goto out; } hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF); hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8); } for (i = 0; i < ETH_ADDR_LEN; i++) hw->mac.addr[i] = hw->mac.perm_addr[i]; out: return ret_val; }