/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2014-2018 Broadcom * All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include "bnxt.h" #include "bnxt_filter.h" #include "bnxt_hwrm.h" #include "bnxt_irq.h" #include "bnxt_reps.h" #include "bnxt_ring.h" #include "bnxt_rxq.h" #include "bnxt_rxr.h" #include "bnxt_stats.h" #include "bnxt_txq.h" #include "bnxt_txr.h" #include "bnxt_vnic.h" #include "hsi_struct_def_dpdk.h" #include "bnxt_nvm_defs.h" #include "bnxt_tf_common.h" #include "ulp_flow_db.h" #include "rte_pmd_bnxt.h" #define DRV_MODULE_NAME "bnxt" static const char bnxt_version[] = "Broadcom NetXtreme driver " DRV_MODULE_NAME; /* * The set of PCI devices this driver supports */ static const struct rte_pci_id bnxt_pci_id_map[] = { { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_STRATUS_NIC_VF1) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_STRATUS_NIC_VF2) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_STRATUS_NIC) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414_VF) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57301) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57302) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57304_PF) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57304_VF) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_NS2) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57402) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57404) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_PF) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_VF) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57402_MF) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_RJ45) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57404_MF) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_MF) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_SFP) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_MF) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_5741X_VF) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_5731X_VF) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57314) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_MF) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57311) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57312) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57412) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_RJ45) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_RJ45) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57412_MF) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57317_RJ45) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_SFP) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_SFP) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57317_SFP) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414_MF) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_MF) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58802) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58804) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58808) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58802_VF) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57508) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57504) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57502) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57500_VF1) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57500_VF2) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57508_MF1) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57504_MF1) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57502_MF1) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57508_MF2) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57504_MF2) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57502_MF2) }, { .vendor_id = 0, /* sentinel */ }, }; #define BNXT_DEVARG_TRUFLOW "host-based-truflow" #define BNXT_DEVARG_FLOW_XSTAT "flow-xstat" #define BNXT_DEVARG_MAX_NUM_KFLOWS "max-num-kflows" #define BNXT_DEVARG_REPRESENTOR "representor" #define BNXT_DEVARG_REP_BASED_PF "rep-based-pf" #define BNXT_DEVARG_REP_IS_PF "rep-is-pf" #define BNXT_DEVARG_REP_Q_R2F "rep-q-r2f" #define BNXT_DEVARG_REP_Q_F2R "rep-q-f2r" #define BNXT_DEVARG_REP_FC_R2F "rep-fc-r2f" #define BNXT_DEVARG_REP_FC_F2R "rep-fc-f2r" static const char *const bnxt_dev_args[] = { BNXT_DEVARG_REPRESENTOR, BNXT_DEVARG_TRUFLOW, BNXT_DEVARG_FLOW_XSTAT, BNXT_DEVARG_MAX_NUM_KFLOWS, BNXT_DEVARG_REP_BASED_PF, BNXT_DEVARG_REP_IS_PF, BNXT_DEVARG_REP_Q_R2F, BNXT_DEVARG_REP_Q_F2R, BNXT_DEVARG_REP_FC_R2F, BNXT_DEVARG_REP_FC_F2R, NULL }; /* * truflow == false to disable the feature * truflow == true to enable the feature */ #define BNXT_DEVARG_TRUFLOW_INVALID(truflow) ((truflow) > 1) /* * flow_xstat == false to disable the feature * flow_xstat == true to enable the feature */ #define BNXT_DEVARG_FLOW_XSTAT_INVALID(flow_xstat) ((flow_xstat) > 1) /* * rep_is_pf == false to indicate VF representor * rep_is_pf == true to indicate PF representor */ #define BNXT_DEVARG_REP_IS_PF_INVALID(rep_is_pf) ((rep_is_pf) > 1) /* * rep_based_pf == Physical index of the PF */ #define BNXT_DEVARG_REP_BASED_PF_INVALID(rep_based_pf) ((rep_based_pf) > 15) /* * rep_q_r2f == Logical COS Queue index for the rep to endpoint direction */ #define BNXT_DEVARG_REP_Q_R2F_INVALID(rep_q_r2f) ((rep_q_r2f) > 3) /* * rep_q_f2r == Logical COS Queue index for the endpoint to rep direction */ #define BNXT_DEVARG_REP_Q_F2R_INVALID(rep_q_f2r) ((rep_q_f2r) > 3) /* * rep_fc_r2f == Flow control for the representor to endpoint direction */ #define BNXT_DEVARG_REP_FC_R2F_INVALID(rep_fc_r2f) ((rep_fc_r2f) > 1) /* * rep_fc_f2r == Flow control for the endpoint to representor direction */ #define BNXT_DEVARG_REP_FC_F2R_INVALID(rep_fc_f2r) ((rep_fc_f2r) > 1) int bnxt_cfa_code_dynfield_offset = -1; /* * max_num_kflows must be >= 32 * and must be a power-of-2 supported value * return: 1 -> invalid * 0 -> valid */ static int bnxt_devarg_max_num_kflow_invalid(uint16_t max_num_kflows) { if (max_num_kflows < 32 || !rte_is_power_of_2(max_num_kflows)) return 1; return 0; } static int bnxt_vlan_offload_set_op(struct rte_eth_dev *dev, int mask); static int bnxt_dev_uninit(struct rte_eth_dev *eth_dev); static int bnxt_init_resources(struct bnxt *bp, bool reconfig_dev); static int bnxt_uninit_resources(struct bnxt *bp, bool reconfig_dev); static void bnxt_cancel_fw_health_check(struct bnxt *bp); static int bnxt_restore_vlan_filters(struct bnxt *bp); static void bnxt_dev_recover(void *arg); static void bnxt_free_error_recovery_info(struct bnxt *bp); static void bnxt_free_rep_info(struct bnxt *bp); static int bnxt_check_fw_ready(struct bnxt *bp); int is_bnxt_in_error(struct bnxt *bp) { if (bp->flags & BNXT_FLAG_FATAL_ERROR) return -EIO; if (bp->flags & BNXT_FLAG_FW_RESET) return -EBUSY; return 0; } /***********************/ /* * High level utility functions */ static uint16_t bnxt_rss_ctxts(const struct bnxt *bp) { unsigned int num_rss_rings = RTE_MIN(bp->rx_nr_rings, BNXT_RSS_TBL_SIZE_THOR); if (!BNXT_CHIP_THOR(bp)) return 1; return RTE_ALIGN_MUL_CEIL(num_rss_rings, BNXT_RSS_ENTRIES_PER_CTX_THOR) / BNXT_RSS_ENTRIES_PER_CTX_THOR; } uint16_t bnxt_rss_hash_tbl_size(const struct bnxt *bp) { if (!BNXT_CHIP_THOR(bp)) return HW_HASH_INDEX_SIZE; return bnxt_rss_ctxts(bp) * BNXT_RSS_ENTRIES_PER_CTX_THOR; } static void bnxt_free_parent_info(struct bnxt *bp) { rte_free(bp->parent); bp->parent = NULL; } static void bnxt_free_pf_info(struct bnxt *bp) { rte_free(bp->pf); bp->pf = NULL; } static void bnxt_free_link_info(struct bnxt *bp) { rte_free(bp->link_info); bp->link_info = NULL; } static void bnxt_free_leds_info(struct bnxt *bp) { if (BNXT_VF(bp)) return; rte_free(bp->leds); bp->leds = NULL; } static void bnxt_free_flow_stats_info(struct bnxt *bp) { rte_free(bp->flow_stat); bp->flow_stat = NULL; } static void bnxt_free_cos_queues(struct bnxt *bp) { rte_free(bp->rx_cos_queue); bp->rx_cos_queue = NULL; rte_free(bp->tx_cos_queue); bp->tx_cos_queue = NULL; } static void bnxt_free_mem(struct bnxt *bp, bool reconfig) { bnxt_free_filter_mem(bp); bnxt_free_vnic_attributes(bp); bnxt_free_vnic_mem(bp); /* tx/rx rings are configured as part of *_queue_setup callbacks. * If the number of rings change across fw update, * we don't have much choice except to warn the user. */ if (!reconfig) { bnxt_free_stats(bp); bnxt_free_tx_rings(bp); bnxt_free_rx_rings(bp); } bnxt_free_async_cp_ring(bp); bnxt_free_rxtx_nq_ring(bp); rte_free(bp->grp_info); bp->grp_info = NULL; } static int bnxt_alloc_parent_info(struct bnxt *bp) { bp->parent = rte_zmalloc("bnxt_parent_info", sizeof(struct bnxt_parent_info), 0); if (bp->parent == NULL) return -ENOMEM; return 0; } static int bnxt_alloc_pf_info(struct bnxt *bp) { bp->pf = rte_zmalloc("bnxt_pf_info", sizeof(struct bnxt_pf_info), 0); if (bp->pf == NULL) return -ENOMEM; return 0; } static int bnxt_alloc_link_info(struct bnxt *bp) { bp->link_info = rte_zmalloc("bnxt_link_info", sizeof(struct bnxt_link_info), 0); if (bp->link_info == NULL) return -ENOMEM; return 0; } static int bnxt_alloc_leds_info(struct bnxt *bp) { if (BNXT_VF(bp)) return 0; bp->leds = rte_zmalloc("bnxt_leds", BNXT_MAX_LED * sizeof(struct bnxt_led_info), 0); if (bp->leds == NULL) return -ENOMEM; return 0; } static int bnxt_alloc_cos_queues(struct bnxt *bp) { bp->rx_cos_queue = rte_zmalloc("bnxt_rx_cosq", BNXT_COS_QUEUE_COUNT * sizeof(struct bnxt_cos_queue_info), 0); if (bp->rx_cos_queue == NULL) return -ENOMEM; bp->tx_cos_queue = rte_zmalloc("bnxt_tx_cosq", BNXT_COS_QUEUE_COUNT * sizeof(struct bnxt_cos_queue_info), 0); if (bp->tx_cos_queue == NULL) return -ENOMEM; return 0; } static int bnxt_alloc_flow_stats_info(struct bnxt *bp) { bp->flow_stat = rte_zmalloc("bnxt_flow_xstat", sizeof(struct bnxt_flow_stat_info), 0); if (bp->flow_stat == NULL) return -ENOMEM; return 0; } static int bnxt_alloc_mem(struct bnxt *bp, bool reconfig) { int rc; rc = bnxt_alloc_ring_grps(bp); if (rc) goto alloc_mem_err; rc = bnxt_alloc_async_ring_struct(bp); if (rc) goto alloc_mem_err; rc = bnxt_alloc_vnic_mem(bp); if (rc) goto alloc_mem_err; rc = bnxt_alloc_vnic_attributes(bp, reconfig); if (rc) goto alloc_mem_err; rc = bnxt_alloc_filter_mem(bp); if (rc) goto alloc_mem_err; rc = bnxt_alloc_async_cp_ring(bp); if (rc) goto alloc_mem_err; rc = bnxt_alloc_rxtx_nq_ring(bp); if (rc) goto alloc_mem_err; if (BNXT_FLOW_XSTATS_EN(bp)) { rc = bnxt_alloc_flow_stats_info(bp); if (rc) goto alloc_mem_err; } return 0; alloc_mem_err: bnxt_free_mem(bp, reconfig); return rc; } static int bnxt_setup_one_vnic(struct bnxt *bp, uint16_t vnic_id) { struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf; struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; uint64_t rx_offloads = dev_conf->rxmode.offloads; struct bnxt_rx_queue *rxq; unsigned int j; int rc; rc = bnxt_vnic_grp_alloc(bp, vnic); if (rc) goto err_out; PMD_DRV_LOG(DEBUG, "vnic[%d] = %p vnic->fw_grp_ids = %p\n", vnic_id, vnic, vnic->fw_grp_ids); rc = bnxt_hwrm_vnic_alloc(bp, vnic); if (rc) goto err_out; /* Alloc RSS context only if RSS mode is enabled */ if (dev_conf->rxmode.mq_mode & ETH_MQ_RX_RSS) { int j, nr_ctxs = bnxt_rss_ctxts(bp); /* RSS table size in Thor is 512. * Cap max Rx rings to same value */ if (bp->rx_nr_rings > BNXT_RSS_TBL_SIZE_THOR) { PMD_DRV_LOG(ERR, "RxQ cnt %d > reta_size %d\n", bp->rx_nr_rings, BNXT_RSS_TBL_SIZE_THOR); goto err_out; } rc = 0; for (j = 0; j < nr_ctxs; j++) { rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, j); if (rc) break; } if (rc) { PMD_DRV_LOG(ERR, "HWRM vnic %d ctx %d alloc failure rc: %x\n", vnic_id, j, rc); goto err_out; } vnic->num_lb_ctxts = nr_ctxs; } /* * Firmware sets pf pair in default vnic cfg. If the VLAN strip * setting is not available at this time, it will not be * configured correctly in the CFA. */ if (rx_offloads & DEV_RX_OFFLOAD_VLAN_STRIP) vnic->vlan_strip = true; else vnic->vlan_strip = false; rc = bnxt_hwrm_vnic_cfg(bp, vnic); if (rc) goto err_out; rc = bnxt_set_hwrm_vnic_filters(bp, vnic); if (rc) goto err_out; for (j = 0; j < bp->rx_num_qs_per_vnic; j++) { rxq = bp->eth_dev->data->rx_queues[j]; PMD_DRV_LOG(DEBUG, "rxq[%d]->vnic=%p vnic->fw_grp_ids=%p\n", j, rxq->vnic, rxq->vnic->fw_grp_ids); if (BNXT_HAS_RING_GRPS(bp) && rxq->rx_deferred_start) rxq->vnic->fw_grp_ids[j] = INVALID_HW_RING_ID; else vnic->rx_queue_cnt++; } PMD_DRV_LOG(DEBUG, "vnic->rx_queue_cnt = %d\n", vnic->rx_queue_cnt); rc = bnxt_vnic_rss_configure(bp, vnic); if (rc) goto err_out; bnxt_hwrm_vnic_plcmode_cfg(bp, vnic); rc = bnxt_hwrm_vnic_tpa_cfg(bp, vnic, (rx_offloads & DEV_RX_OFFLOAD_TCP_LRO) ? true : false); if (rc) goto err_out; return 0; err_out: PMD_DRV_LOG(ERR, "HWRM vnic %d cfg failure rc: %x\n", vnic_id, rc); return rc; } static int bnxt_register_fc_ctx_mem(struct bnxt *bp) { int rc = 0; rc = bnxt_hwrm_ctx_rgtr(bp, bp->flow_stat->rx_fc_in_tbl.dma, &bp->flow_stat->rx_fc_in_tbl.ctx_id); if (rc) return rc; PMD_DRV_LOG(DEBUG, "rx_fc_in_tbl.va = %p rx_fc_in_tbl.dma = %p" " rx_fc_in_tbl.ctx_id = %d\n", bp->flow_stat->rx_fc_in_tbl.va, (void *)((uintptr_t)bp->flow_stat->rx_fc_in_tbl.dma), bp->flow_stat->rx_fc_in_tbl.ctx_id); rc = bnxt_hwrm_ctx_rgtr(bp, bp->flow_stat->rx_fc_out_tbl.dma, &bp->flow_stat->rx_fc_out_tbl.ctx_id); if (rc) return rc; PMD_DRV_LOG(DEBUG, "rx_fc_out_tbl.va = %p rx_fc_out_tbl.dma = %p" " rx_fc_out_tbl.ctx_id = %d\n", bp->flow_stat->rx_fc_out_tbl.va, (void *)((uintptr_t)bp->flow_stat->rx_fc_out_tbl.dma), bp->flow_stat->rx_fc_out_tbl.ctx_id); rc = bnxt_hwrm_ctx_rgtr(bp, bp->flow_stat->tx_fc_in_tbl.dma, &bp->flow_stat->tx_fc_in_tbl.ctx_id); if (rc) return rc; PMD_DRV_LOG(DEBUG, "tx_fc_in_tbl.va = %p tx_fc_in_tbl.dma = %p" " tx_fc_in_tbl.ctx_id = %d\n", bp->flow_stat->tx_fc_in_tbl.va, (void *)((uintptr_t)bp->flow_stat->tx_fc_in_tbl.dma), bp->flow_stat->tx_fc_in_tbl.ctx_id); rc = bnxt_hwrm_ctx_rgtr(bp, bp->flow_stat->tx_fc_out_tbl.dma, &bp->flow_stat->tx_fc_out_tbl.ctx_id); if (rc) return rc; PMD_DRV_LOG(DEBUG, "tx_fc_out_tbl.va = %p tx_fc_out_tbl.dma = %p" " tx_fc_out_tbl.ctx_id = %d\n", bp->flow_stat->tx_fc_out_tbl.va, (void *)((uintptr_t)bp->flow_stat->tx_fc_out_tbl.dma), bp->flow_stat->tx_fc_out_tbl.ctx_id); memset(bp->flow_stat->rx_fc_out_tbl.va, 0, bp->flow_stat->rx_fc_out_tbl.size); rc = bnxt_hwrm_cfa_counter_cfg(bp, BNXT_DIR_RX, CFA_COUNTER_CFG_IN_COUNTER_TYPE_FC, bp->flow_stat->rx_fc_out_tbl.ctx_id, bp->flow_stat->max_fc, true); if (rc) return rc; memset(bp->flow_stat->tx_fc_out_tbl.va, 0, bp->flow_stat->tx_fc_out_tbl.size); rc = bnxt_hwrm_cfa_counter_cfg(bp, BNXT_DIR_TX, CFA_COUNTER_CFG_IN_COUNTER_TYPE_FC, bp->flow_stat->tx_fc_out_tbl.ctx_id, bp->flow_stat->max_fc, true); return rc; } static int bnxt_alloc_ctx_mem_buf(struct bnxt *bp, char *type, size_t size, struct bnxt_ctx_mem_buf_info *ctx) { if (!ctx) return -EINVAL; ctx->va = rte_zmalloc_socket(type, size, 0, bp->eth_dev->device->numa_node); if (ctx->va == NULL) return -ENOMEM; rte_mem_lock_page(ctx->va); ctx->size = size; ctx->dma = rte_mem_virt2iova(ctx->va); if (ctx->dma == RTE_BAD_IOVA) return -ENOMEM; return 0; } static int bnxt_init_fc_ctx_mem(struct bnxt *bp) { struct rte_pci_device *pdev = bp->pdev; char type[RTE_MEMZONE_NAMESIZE]; uint16_t max_fc; int rc = 0; max_fc = bp->flow_stat->max_fc; sprintf(type, "bnxt_rx_fc_in_" PCI_PRI_FMT, pdev->addr.domain, pdev->addr.bus, pdev->addr.devid, pdev->addr.function); /* 4 bytes for each counter-id */ rc = bnxt_alloc_ctx_mem_buf(bp, type, max_fc * 4, &bp->flow_stat->rx_fc_in_tbl); if (rc) return rc; sprintf(type, "bnxt_rx_fc_out_" PCI_PRI_FMT, pdev->addr.domain, pdev->addr.bus, pdev->addr.devid, pdev->addr.function); /* 16 bytes for each counter - 8 bytes pkt_count, 8 bytes byte_count */ rc = bnxt_alloc_ctx_mem_buf(bp, type, max_fc * 16, &bp->flow_stat->rx_fc_out_tbl); if (rc) return rc; sprintf(type, "bnxt_tx_fc_in_" PCI_PRI_FMT, pdev->addr.domain, pdev->addr.bus, pdev->addr.devid, pdev->addr.function); /* 4 bytes for each counter-id */ rc = bnxt_alloc_ctx_mem_buf(bp, type, max_fc * 4, &bp->flow_stat->tx_fc_in_tbl); if (rc) return rc; sprintf(type, "bnxt_tx_fc_out_" PCI_PRI_FMT, pdev->addr.domain, pdev->addr.bus, pdev->addr.devid, pdev->addr.function); /* 16 bytes for each counter - 8 bytes pkt_count, 8 bytes byte_count */ rc = bnxt_alloc_ctx_mem_buf(bp, type, max_fc * 16, &bp->flow_stat->tx_fc_out_tbl); if (rc) return rc; rc = bnxt_register_fc_ctx_mem(bp); return rc; } static int bnxt_init_ctx_mem(struct bnxt *bp) { int rc = 0; if (!(bp->fw_cap & BNXT_FW_CAP_ADV_FLOW_COUNTERS) || !(BNXT_PF(bp) || BNXT_VF_IS_TRUSTED(bp)) || !BNXT_FLOW_XSTATS_EN(bp)) return 0; rc = bnxt_hwrm_cfa_counter_qcaps(bp, &bp->flow_stat->max_fc); if (rc) return rc; rc = bnxt_init_fc_ctx_mem(bp); return rc; } static inline bool bnxt_force_link_config(struct bnxt *bp) { uint16_t subsystem_device_id = bp->pdev->id.subsystem_device_id; switch (subsystem_device_id) { case BROADCOM_DEV_957508_N2100: case BROADCOM_DEV_957414_N225: return true; default: return false; } } static int bnxt_update_phy_setting(struct bnxt *bp) { struct rte_eth_link new; int rc; rc = bnxt_get_hwrm_link_config(bp, &new); if (rc) { PMD_DRV_LOG(ERR, "Failed to get link settings\n"); return rc; } /* * Device is not obliged link down in certain scenarios, even * when forced. When FW does not allow any user other than BMC * to shutdown the port, bnxt_get_hwrm_link_config() call always * returns link up. Force phy update always in that case. */ if (!new.link_status || bnxt_force_link_config(bp)) { rc = bnxt_set_hwrm_link_config(bp, true); if (rc) { PMD_DRV_LOG(ERR, "Failed to update PHY settings\n"); return rc; } } return rc; } static void bnxt_free_prev_ring_stats(struct bnxt *bp) { rte_free(bp->prev_rx_ring_stats); rte_free(bp->prev_tx_ring_stats); bp->prev_rx_ring_stats = NULL; bp->prev_tx_ring_stats = NULL; } static int bnxt_alloc_prev_ring_stats(struct bnxt *bp) { bp->prev_rx_ring_stats = rte_zmalloc("bnxt_prev_rx_ring_stats", sizeof(struct bnxt_ring_stats) * bp->rx_cp_nr_rings, 0); if (bp->prev_rx_ring_stats == NULL) return -ENOMEM; bp->prev_tx_ring_stats = rte_zmalloc("bnxt_prev_tx_ring_stats", sizeof(struct bnxt_ring_stats) * bp->tx_cp_nr_rings, 0); if (bp->tx_cp_nr_rings > 0 && bp->prev_tx_ring_stats == NULL) goto error; return 0; error: bnxt_free_prev_ring_stats(bp); return -ENOMEM; } static int bnxt_start_nic(struct bnxt *bp) { struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(bp->eth_dev); struct rte_intr_handle *intr_handle = &pci_dev->intr_handle; uint32_t intr_vector = 0; uint32_t queue_id, base = BNXT_MISC_VEC_ID; uint32_t vec = BNXT_MISC_VEC_ID; unsigned int i, j; int rc; if (bp->eth_dev->data->mtu > RTE_ETHER_MTU) { bp->eth_dev->data->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME; bp->flags |= BNXT_FLAG_JUMBO; } else { bp->eth_dev->data->dev_conf.rxmode.offloads &= ~DEV_RX_OFFLOAD_JUMBO_FRAME; bp->flags &= ~BNXT_FLAG_JUMBO; } /* THOR does not support ring groups. * But we will use the array to save RSS context IDs. */ if (BNXT_CHIP_THOR(bp)) bp->max_ring_grps = BNXT_MAX_RSS_CTXTS_THOR; rc = bnxt_alloc_all_hwrm_stat_ctxs(bp); if (rc) { PMD_DRV_LOG(ERR, "HWRM stat ctx alloc failure rc: %x\n", rc); goto err_out; } rc = bnxt_alloc_hwrm_rings(bp); if (rc) { PMD_DRV_LOG(ERR, "HWRM ring alloc failure rc: %x\n", rc); goto err_out; } rc = bnxt_alloc_all_hwrm_ring_grps(bp); if (rc) { PMD_DRV_LOG(ERR, "HWRM ring grp alloc failure: %x\n", rc); goto err_out; } if (!(bp->vnic_cap_flags & BNXT_VNIC_CAP_COS_CLASSIFY)) goto skip_cosq_cfg; for (j = 0, i = 0; i < BNXT_COS_QUEUE_COUNT; i++) { if (bp->rx_cos_queue[i].id != 0xff) { struct bnxt_vnic_info *vnic = &bp->vnic_info[j++]; if (!vnic) { PMD_DRV_LOG(ERR, "Num pools more than FW profile\n"); rc = -EINVAL; goto err_out; } vnic->cos_queue_id = bp->rx_cos_queue[i].id; bp->rx_cosq_cnt++; } } skip_cosq_cfg: rc = bnxt_mq_rx_configure(bp); if (rc) { PMD_DRV_LOG(ERR, "MQ mode configure failure rc: %x\n", rc); goto err_out; } /* VNIC configuration */ for (i = 0; i < bp->nr_vnics; i++) { rc = bnxt_setup_one_vnic(bp, i); if (rc) goto err_out; } for (j = 0; j < bp->tx_nr_rings; j++) { struct bnxt_tx_queue *txq = bp->tx_queues[j]; if (!txq->tx_deferred_start) { bp->eth_dev->data->tx_queue_state[j] = RTE_ETH_QUEUE_STATE_STARTED; txq->tx_started = true; } } rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, &bp->vnic_info[0], 0, NULL); if (rc) { PMD_DRV_LOG(ERR, "HWRM cfa l2 rx mask failure rc: %x\n", rc); goto err_out; } /* check and configure queue intr-vector mapping */ if ((rte_intr_cap_multiple(intr_handle) || !RTE_ETH_DEV_SRIOV(bp->eth_dev).active) && bp->eth_dev->data->dev_conf.intr_conf.rxq != 0) { intr_vector = bp->eth_dev->data->nb_rx_queues; PMD_DRV_LOG(DEBUG, "intr_vector = %d\n", intr_vector); if (intr_vector > bp->rx_cp_nr_rings) { PMD_DRV_LOG(ERR, "At most %d intr queues supported", bp->rx_cp_nr_rings); return -ENOTSUP; } rc = rte_intr_efd_enable(intr_handle, intr_vector); if (rc) return rc; } if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) { intr_handle->intr_vec = rte_zmalloc("intr_vec", bp->eth_dev->data->nb_rx_queues * sizeof(int), 0); if (intr_handle->intr_vec == NULL) { PMD_DRV_LOG(ERR, "Failed to allocate %d rx_queues" " intr_vec", bp->eth_dev->data->nb_rx_queues); rc = -ENOMEM; goto err_out; } PMD_DRV_LOG(DEBUG, "intr_handle->intr_vec = %p " "intr_handle->nb_efd = %d intr_handle->max_intr = %d\n", intr_handle->intr_vec, intr_handle->nb_efd, intr_handle->max_intr); for (queue_id = 0; queue_id < bp->eth_dev->data->nb_rx_queues; queue_id++) { intr_handle->intr_vec[queue_id] = vec + BNXT_RX_VEC_START; if (vec < base + intr_handle->nb_efd - 1) vec++; } } /* enable uio/vfio intr/eventfd mapping */ rc = rte_intr_enable(intr_handle); #ifndef RTE_EXEC_ENV_FREEBSD /* In FreeBSD OS, nic_uio driver does not support interrupts */ if (rc) goto err_out; #endif rc = bnxt_update_phy_setting(bp); if (rc) goto err_out; bp->mark_table = rte_zmalloc("bnxt_mark_table", BNXT_MARK_TABLE_SZ, 0); if (!bp->mark_table) PMD_DRV_LOG(ERR, "Allocation of mark table failed\n"); return 0; err_out: /* Some of the error status returned by FW may not be from errno.h */ if (rc > 0) rc = -EIO; return rc; } static int bnxt_shutdown_nic(struct bnxt *bp) { bnxt_free_all_hwrm_resources(bp); bnxt_free_all_filters(bp); bnxt_free_all_vnics(bp); return 0; } /* * Device configuration and status function */ uint32_t bnxt_get_speed_capabilities(struct bnxt *bp) { uint32_t pam4_link_speed = 0; uint32_t link_speed = 0; uint32_t speed_capa = 0; if (bp->link_info == NULL) return 0; link_speed = bp->link_info->support_speeds; /* If PAM4 is configured, use PAM4 supported speed */ if (bp->link_info->support_pam4_speeds > 0) pam4_link_speed = bp->link_info->support_pam4_speeds; if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_LINK_SPEED_100MB) speed_capa |= ETH_LINK_SPEED_100M; if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_100MBHD) speed_capa |= ETH_LINK_SPEED_100M_HD; if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_1GB) speed_capa |= ETH_LINK_SPEED_1G; if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_2_5GB) speed_capa |= ETH_LINK_SPEED_2_5G; if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_10GB) speed_capa |= ETH_LINK_SPEED_10G; if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_20GB) speed_capa |= ETH_LINK_SPEED_20G; if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_25GB) speed_capa |= ETH_LINK_SPEED_25G; if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_40GB) speed_capa |= ETH_LINK_SPEED_40G; if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_50GB) speed_capa |= ETH_LINK_SPEED_50G; if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_100GB) speed_capa |= ETH_LINK_SPEED_100G; if (pam4_link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_PAM4_SPEEDS_50G) speed_capa |= ETH_LINK_SPEED_50G; if (pam4_link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_PAM4_SPEEDS_100G) speed_capa |= ETH_LINK_SPEED_100G; if (pam4_link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_PAM4_SPEEDS_200G) speed_capa |= ETH_LINK_SPEED_200G; if (bp->link_info->auto_mode == HWRM_PORT_PHY_QCFG_OUTPUT_AUTO_MODE_NONE) speed_capa |= ETH_LINK_SPEED_FIXED; else speed_capa |= ETH_LINK_SPEED_AUTONEG; return speed_capa; } static int bnxt_dev_info_get_op(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *dev_info) { struct rte_pci_device *pdev = RTE_DEV_TO_PCI(eth_dev->device); struct bnxt *bp = eth_dev->data->dev_private; uint16_t max_vnics, i, j, vpool, vrxq; unsigned int max_rx_rings; int rc; rc = is_bnxt_in_error(bp); if (rc) return rc; /* MAC Specifics */ dev_info->max_mac_addrs = RTE_MIN(bp->max_l2_ctx, ETH_NUM_RECEIVE_MAC_ADDR); dev_info->max_hash_mac_addrs = 0; /* PF/VF specifics */ if (BNXT_PF(bp)) dev_info->max_vfs = pdev->max_vfs; max_rx_rings = bnxt_max_rings(bp); /* For the sake of symmetry, max_rx_queues = max_tx_queues */ dev_info->max_rx_queues = max_rx_rings; dev_info->max_tx_queues = max_rx_rings; dev_info->reta_size = bnxt_rss_hash_tbl_size(bp); dev_info->hash_key_size = HW_HASH_KEY_SIZE; max_vnics = bp->max_vnics; /* MTU specifics */ dev_info->min_mtu = RTE_ETHER_MIN_MTU; dev_info->max_mtu = BNXT_MAX_MTU; /* Fast path specifics */ dev_info->min_rx_bufsize = 1; dev_info->max_rx_pktlen = BNXT_MAX_PKT_LEN; dev_info->rx_offload_capa = bnxt_get_rx_port_offloads(bp); dev_info->tx_queue_offload_capa = DEV_TX_OFFLOAD_MBUF_FAST_FREE; dev_info->tx_offload_capa = bnxt_get_tx_port_offloads(bp) | dev_info->tx_queue_offload_capa; dev_info->flow_type_rss_offloads = BNXT_ETH_RSS_SUPPORT; dev_info->speed_capa = bnxt_get_speed_capabilities(bp); dev_info->default_rxconf = (struct rte_eth_rxconf) { .rx_thresh = { .pthresh = 8, .hthresh = 8, .wthresh = 0, }, .rx_free_thresh = 32, .rx_drop_en = BNXT_DEFAULT_RX_DROP_EN, }; dev_info->default_txconf = (struct rte_eth_txconf) { .tx_thresh = { .pthresh = 32, .hthresh = 0, .wthresh = 0, }, .tx_free_thresh = 32, .tx_rs_thresh = 32, }; eth_dev->data->dev_conf.intr_conf.lsc = 1; dev_info->rx_desc_lim.nb_min = BNXT_MIN_RING_DESC; dev_info->rx_desc_lim.nb_max = BNXT_MAX_RX_RING_DESC; dev_info->tx_desc_lim.nb_min = BNXT_MIN_RING_DESC; dev_info->tx_desc_lim.nb_max = BNXT_MAX_TX_RING_DESC; if (BNXT_PF(bp) || BNXT_VF_IS_TRUSTED(bp)) { dev_info->switch_info.name = eth_dev->device->name; dev_info->switch_info.domain_id = bp->switch_domain_id; dev_info->switch_info.port_id = BNXT_PF(bp) ? BNXT_SWITCH_PORT_ID_PF : BNXT_SWITCH_PORT_ID_TRUSTED_VF; } /* * TODO: default_rxconf, default_txconf, rx_desc_lim, and tx_desc_lim * need further investigation. */ /* VMDq resources */ vpool = 64; /* ETH_64_POOLS */ vrxq = 128; /* ETH_VMDQ_DCB_NUM_QUEUES */ for (i = 0; i < 4; vpool >>= 1, i++) { if (max_vnics > vpool) { for (j = 0; j < 5; vrxq >>= 1, j++) { if (dev_info->max_rx_queues > vrxq) { if (vpool > vrxq) vpool = vrxq; goto found; } } /* Not enough resources to support VMDq */ break; } } /* Not enough resources to support VMDq */ vpool = 0; vrxq = 0; found: dev_info->max_vmdq_pools = vpool; dev_info->vmdq_queue_num = vrxq; dev_info->vmdq_pool_base = 0; dev_info->vmdq_queue_base = 0; return 0; } /* Configure the device based on the configuration provided */ static int bnxt_dev_configure_op(struct rte_eth_dev *eth_dev) { struct bnxt *bp = eth_dev->data->dev_private; uint64_t rx_offloads = eth_dev->data->dev_conf.rxmode.offloads; struct rte_eth_rss_conf *rss_conf = ð_dev->data->dev_conf.rx_adv_conf.rss_conf; int rc; bp->rx_queues = (void *)eth_dev->data->rx_queues; bp->tx_queues = (void *)eth_dev->data->tx_queues; bp->tx_nr_rings = eth_dev->data->nb_tx_queues; bp->rx_nr_rings = eth_dev->data->nb_rx_queues; rc = is_bnxt_in_error(bp); if (rc) return rc; if (BNXT_VF(bp) && (bp->flags & BNXT_FLAG_NEW_RM)) { rc = bnxt_hwrm_check_vf_rings(bp); if (rc) { PMD_DRV_LOG(ERR, "HWRM insufficient resources\n"); return -ENOSPC; } /* If a resource has already been allocated - in this case * it is the async completion ring, free it. Reallocate it after * resource reservation. This will ensure the resource counts * are calculated correctly. */ pthread_mutex_lock(&bp->def_cp_lock); if (!BNXT_HAS_NQ(bp) && bp->async_cp_ring) { bnxt_disable_int(bp); bnxt_free_cp_ring(bp, bp->async_cp_ring); } rc = bnxt_hwrm_func_reserve_vf_resc(bp, false); if (rc) { PMD_DRV_LOG(ERR, "HWRM resource alloc fail:%x\n", rc); pthread_mutex_unlock(&bp->def_cp_lock); return -ENOSPC; } if (!BNXT_HAS_NQ(bp) && bp->async_cp_ring) { rc = bnxt_alloc_async_cp_ring(bp); if (rc) { pthread_mutex_unlock(&bp->def_cp_lock); return rc; } bnxt_enable_int(bp); } pthread_mutex_unlock(&bp->def_cp_lock); } /* Inherit new configurations */ if (eth_dev->data->nb_rx_queues > bp->max_rx_rings || eth_dev->data->nb_tx_queues > bp->max_tx_rings || eth_dev->data->nb_rx_queues + eth_dev->data->nb_tx_queues + BNXT_NUM_ASYNC_CPR(bp) > bp->max_cp_rings || eth_dev->data->nb_rx_queues + eth_dev->data->nb_tx_queues > bp->max_stat_ctx) goto resource_error; if (BNXT_HAS_RING_GRPS(bp) && (uint32_t)(eth_dev->data->nb_rx_queues) > bp->max_ring_grps) goto resource_error; if (!(eth_dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS) && bp->max_vnics < eth_dev->data->nb_rx_queues) goto resource_error; bp->rx_cp_nr_rings = bp->rx_nr_rings; bp->tx_cp_nr_rings = bp->tx_nr_rings; if (eth_dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG) rx_offloads |= DEV_RX_OFFLOAD_RSS_HASH; eth_dev->data->dev_conf.rxmode.offloads = rx_offloads; if (rx_offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) { eth_dev->data->mtu = eth_dev->data->dev_conf.rxmode.max_rx_pkt_len - RTE_ETHER_HDR_LEN - RTE_ETHER_CRC_LEN - VLAN_TAG_SIZE * BNXT_NUM_VLANS; bnxt_mtu_set_op(eth_dev, eth_dev->data->mtu); } /* application provides the hash key to program */ if (rss_conf->rss_key != NULL) { if (rss_conf->rss_key_len != HW_HASH_KEY_SIZE) PMD_DRV_LOG(WARNING, "port %u RSS key len must be %d bytes long", eth_dev->data->port_id, HW_HASH_KEY_SIZE); else memcpy(bp->rss_conf.rss_key, rss_conf->rss_key, HW_HASH_KEY_SIZE); } bp->rss_conf.rss_key_len = HW_HASH_KEY_SIZE; bp->rss_conf.rss_hf = rss_conf->rss_hf; return 0; resource_error: PMD_DRV_LOG(ERR, "Insufficient resources to support requested config\n"); PMD_DRV_LOG(ERR, "Num Queues Requested: Tx %d, Rx %d\n", eth_dev->data->nb_tx_queues, eth_dev->data->nb_rx_queues); PMD_DRV_LOG(ERR, "MAX: TxQ %d, RxQ %d, CQ %d Stat %d, Grp %d, Vnic %d\n", bp->max_tx_rings, bp->max_rx_rings, bp->max_cp_rings, bp->max_stat_ctx, bp->max_ring_grps, bp->max_vnics); return -ENOSPC; } void bnxt_print_link_info(struct rte_eth_dev *eth_dev) { struct rte_eth_link *link = ð_dev->data->dev_link; if (link->link_status) PMD_DRV_LOG(INFO, "Port %d Link Up - speed %u Mbps - %s\n", eth_dev->data->port_id, (uint32_t)link->link_speed, (link->link_duplex == ETH_LINK_FULL_DUPLEX) ? ("full-duplex") : ("half-duplex\n")); else PMD_DRV_LOG(INFO, "Port %d Link Down\n", eth_dev->data->port_id); } /* * Determine whether the current configuration requires support for scattered * receive; return 1 if scattered receive is required and 0 if not. */ static int bnxt_scattered_rx(struct rte_eth_dev *eth_dev) { uint16_t buf_size; int i; if (eth_dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER) return 1; if (eth_dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_TCP_LRO) return 1; for (i = 0; i < eth_dev->data->nb_rx_queues; i++) { struct bnxt_rx_queue *rxq = eth_dev->data->rx_queues[i]; buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) - RTE_PKTMBUF_HEADROOM); if (eth_dev->data->dev_conf.rxmode.max_rx_pkt_len > buf_size) return 1; } return 0; } static eth_rx_burst_t bnxt_receive_function(struct rte_eth_dev *eth_dev) { struct bnxt *bp = eth_dev->data->dev_private; #if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64) #ifndef RTE_LIBRTE_IEEE1588 /* * Vector mode receive can be enabled only if scatter rx is not * in use and rx offloads are limited to VLAN stripping and * CRC stripping. */ if (!eth_dev->data->scattered_rx && !(eth_dev->data->dev_conf.rxmode.offloads & ~(DEV_RX_OFFLOAD_VLAN_STRIP | DEV_RX_OFFLOAD_KEEP_CRC | DEV_RX_OFFLOAD_JUMBO_FRAME | DEV_RX_OFFLOAD_IPV4_CKSUM | DEV_RX_OFFLOAD_UDP_CKSUM | DEV_RX_OFFLOAD_TCP_CKSUM | DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM | DEV_RX_OFFLOAD_OUTER_UDP_CKSUM | DEV_RX_OFFLOAD_RSS_HASH | DEV_RX_OFFLOAD_VLAN_FILTER)) && !BNXT_TRUFLOW_EN(bp) && BNXT_NUM_ASYNC_CPR(bp) && rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) { PMD_DRV_LOG(INFO, "Using vector mode receive for port %d\n", eth_dev->data->port_id); bp->flags |= BNXT_FLAG_RX_VECTOR_PKT_MODE; return bnxt_recv_pkts_vec; } PMD_DRV_LOG(INFO, "Vector mode receive disabled for port %d\n", eth_dev->data->port_id); PMD_DRV_LOG(INFO, "Port %d scatter: %d rx offload: %" PRIX64 "\n", eth_dev->data->port_id, eth_dev->data->scattered_rx, eth_dev->data->dev_conf.rxmode.offloads); #endif #endif bp->flags &= ~BNXT_FLAG_RX_VECTOR_PKT_MODE; return bnxt_recv_pkts; } static eth_tx_burst_t bnxt_transmit_function(__rte_unused struct rte_eth_dev *eth_dev) { #if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64) #ifndef RTE_LIBRTE_IEEE1588 uint64_t offloads = eth_dev->data->dev_conf.txmode.offloads; struct bnxt *bp = eth_dev->data->dev_private; /* * Vector mode transmit can be enabled only if not using scatter rx * or tx offloads. */ if (!eth_dev->data->scattered_rx && !(offloads & ~DEV_TX_OFFLOAD_MBUF_FAST_FREE) && !BNXT_TRUFLOW_EN(bp) && rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) { PMD_DRV_LOG(INFO, "Using vector mode transmit for port %d\n", eth_dev->data->port_id); return bnxt_xmit_pkts_vec; } PMD_DRV_LOG(INFO, "Vector mode transmit disabled for port %d\n", eth_dev->data->port_id); PMD_DRV_LOG(INFO, "Port %d scatter: %d tx offload: %" PRIX64 "\n", eth_dev->data->port_id, eth_dev->data->scattered_rx, offloads); #endif #endif return bnxt_xmit_pkts; } static int bnxt_handle_if_change_status(struct bnxt *bp) { int rc; /* Since fw has undergone a reset and lost all contexts, * set fatal flag to not issue hwrm during cleanup */ bp->flags |= BNXT_FLAG_FATAL_ERROR; bnxt_uninit_resources(bp, true); /* clear fatal flag so that re-init happens */ bp->flags &= ~BNXT_FLAG_FATAL_ERROR; rc = bnxt_check_fw_ready(bp); if (rc) return rc; rc = bnxt_init_resources(bp, true); bp->flags &= ~BNXT_FLAG_IF_CHANGE_HOT_FW_RESET_DONE; return rc; } static int bnxt_dev_set_link_up_op(struct rte_eth_dev *eth_dev) { struct bnxt *bp = eth_dev->data->dev_private; int rc = 0; if (!BNXT_SINGLE_PF(bp)) return -ENOTSUP; if (!bp->link_info->link_up) rc = bnxt_set_hwrm_link_config(bp, true); if (!rc) eth_dev->data->dev_link.link_status = 1; bnxt_print_link_info(eth_dev); return rc; } static int bnxt_dev_set_link_down_op(struct rte_eth_dev *eth_dev) { struct bnxt *bp = eth_dev->data->dev_private; if (!BNXT_SINGLE_PF(bp)) return -ENOTSUP; eth_dev->data->dev_link.link_status = 0; bnxt_set_hwrm_link_config(bp, false); bp->link_info->link_up = 0; return 0; } static void bnxt_free_switch_domain(struct bnxt *bp) { int rc = 0; if (!(BNXT_PF(bp) || BNXT_VF_IS_TRUSTED(bp))) return; rc = rte_eth_switch_domain_free(bp->switch_domain_id); if (rc) PMD_DRV_LOG(ERR, "free switch domain:%d fail: %d\n", bp->switch_domain_id, rc); } static void bnxt_ptp_get_current_time(void *arg) { struct bnxt *bp = arg; struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; int rc; rc = is_bnxt_in_error(bp); if (rc) return; if (!ptp) return; bnxt_hwrm_port_ts_query(bp, BNXT_PTP_FLAGS_CURRENT_TIME, &ptp->current_time); rc = rte_eal_alarm_set(US_PER_S, bnxt_ptp_get_current_time, (void *)bp); if (rc != 0) { PMD_DRV_LOG(ERR, "Failed to re-schedule PTP alarm\n"); bp->flags &= ~BNXT_FLAGS_PTP_ALARM_SCHEDULED; } } static int bnxt_schedule_ptp_alarm(struct bnxt *bp) { struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; int rc; if (bp->flags & BNXT_FLAGS_PTP_ALARM_SCHEDULED) return 0; bnxt_hwrm_port_ts_query(bp, BNXT_PTP_FLAGS_CURRENT_TIME, &ptp->current_time); rc = rte_eal_alarm_set(US_PER_S, bnxt_ptp_get_current_time, (void *)bp); return rc; } static void bnxt_cancel_ptp_alarm(struct bnxt *bp) { if (bp->flags & BNXT_FLAGS_PTP_ALARM_SCHEDULED) { rte_eal_alarm_cancel(bnxt_ptp_get_current_time, (void *)bp); bp->flags &= ~BNXT_FLAGS_PTP_ALARM_SCHEDULED; } } static void bnxt_ptp_stop(struct bnxt *bp) { bnxt_cancel_ptp_alarm(bp); bp->flags &= ~BNXT_FLAGS_PTP_TIMESYNC_ENABLED; } static int bnxt_ptp_start(struct bnxt *bp) { int rc; rc = bnxt_schedule_ptp_alarm(bp); if (rc != 0) { PMD_DRV_LOG(ERR, "Failed to schedule PTP alarm\n"); } else { bp->flags |= BNXT_FLAGS_PTP_TIMESYNC_ENABLED; bp->flags |= BNXT_FLAGS_PTP_ALARM_SCHEDULED; } return rc; } /* Unload the driver, release resources */ int bnxt_dev_stop_op(struct rte_eth_dev *eth_dev) { struct bnxt *bp = eth_dev->data->dev_private; struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); struct rte_intr_handle *intr_handle = &pci_dev->intr_handle; struct rte_eth_link link; int ret; eth_dev->data->dev_started = 0; eth_dev->data->scattered_rx = 0; /* Prevent crashes when queues are still in use */ eth_dev->rx_pkt_burst = &bnxt_dummy_recv_pkts; eth_dev->tx_pkt_burst = &bnxt_dummy_xmit_pkts; bnxt_disable_int(bp); /* disable uio/vfio intr/eventfd mapping */ rte_intr_disable(intr_handle); /* Stop the child representors for this device */ ret = bnxt_rep_stop_all(bp); if (ret != 0) return ret; /* delete the bnxt ULP port details */ bnxt_ulp_port_deinit(bp); bnxt_cancel_fw_health_check(bp); if (BNXT_THOR_PTP_TIMESYNC_ENABLED(bp)) bnxt_cancel_ptp_alarm(bp); /* Do not bring link down during reset recovery */ if (!is_bnxt_in_error(bp)) { bnxt_dev_set_link_down_op(eth_dev); /* Wait for link to be reset */ if (BNXT_SINGLE_PF(bp)) rte_delay_ms(500); /* clear the recorded link status */ memset(&link, 0, sizeof(link)); rte_eth_linkstatus_set(eth_dev, &link); } /* Clean queue intr-vector mapping */ rte_intr_efd_disable(intr_handle); if (intr_handle->intr_vec != NULL) { rte_free(intr_handle->intr_vec); intr_handle->intr_vec = NULL; } bnxt_hwrm_port_clr_stats(bp); bnxt_free_tx_mbufs(bp); bnxt_free_rx_mbufs(bp); /* Process any remaining notifications in default completion queue */ bnxt_int_handler(eth_dev); bnxt_shutdown_nic(bp); bnxt_hwrm_if_change(bp, false); bnxt_free_prev_ring_stats(bp); rte_free(bp->mark_table); bp->mark_table = NULL; bp->flags &= ~BNXT_FLAG_RX_VECTOR_PKT_MODE; bp->rx_cosq_cnt = 0; /* All filters are deleted on a port stop. */ if (BNXT_FLOW_XSTATS_EN(bp)) bp->flow_stat->flow_count = 0; return 0; } int bnxt_dev_start_op(struct rte_eth_dev *eth_dev) { struct bnxt *bp = eth_dev->data->dev_private; uint64_t rx_offloads = eth_dev->data->dev_conf.rxmode.offloads; int vlan_mask = 0; int rc, retry_cnt = BNXT_IF_CHANGE_RETRY_COUNT; if (bp->rx_cp_nr_rings > RTE_ETHDEV_QUEUE_STAT_CNTRS) PMD_DRV_LOG(ERR, "RxQ cnt %d > RTE_ETHDEV_QUEUE_STAT_CNTRS %d\n", bp->rx_cp_nr_rings, RTE_ETHDEV_QUEUE_STAT_CNTRS); do { rc = bnxt_hwrm_if_change(bp, true); if (rc == 0 || rc != -EAGAIN) break; rte_delay_ms(BNXT_IF_CHANGE_RETRY_INTERVAL); } while (retry_cnt--); if (rc) return rc; if (bp->flags & BNXT_FLAG_IF_CHANGE_HOT_FW_RESET_DONE) { rc = bnxt_handle_if_change_status(bp); if (rc) return rc; } bnxt_enable_int(bp); eth_dev->data->scattered_rx = bnxt_scattered_rx(eth_dev); rc = bnxt_start_nic(bp); if (rc) goto error; rc = bnxt_alloc_prev_ring_stats(bp); if (rc) goto error; eth_dev->data->dev_started = 1; bnxt_link_update_op(eth_dev, 1); if (rx_offloads & DEV_RX_OFFLOAD_VLAN_FILTER) vlan_mask |= ETH_VLAN_FILTER_MASK; if (rx_offloads & DEV_RX_OFFLOAD_VLAN_STRIP) vlan_mask |= ETH_VLAN_STRIP_MASK; rc = bnxt_vlan_offload_set_op(eth_dev, vlan_mask); if (rc) goto error; /* Initialize bnxt ULP port details */ rc = bnxt_ulp_port_init(bp); if (rc) goto error; eth_dev->rx_pkt_burst = bnxt_receive_function(eth_dev); eth_dev->tx_pkt_burst = bnxt_transmit_function(eth_dev); bnxt_schedule_fw_health_check(bp); if (BNXT_THOR_PTP_TIMESYNC_ENABLED(bp)) bnxt_schedule_ptp_alarm(bp); return 0; error: bnxt_dev_stop_op(eth_dev); return rc; } static void bnxt_uninit_locks(struct bnxt *bp) { pthread_mutex_destroy(&bp->flow_lock); pthread_mutex_destroy(&bp->def_cp_lock); pthread_mutex_destroy(&bp->health_check_lock); if (bp->rep_info) { pthread_mutex_destroy(&bp->rep_info->vfr_lock); pthread_mutex_destroy(&bp->rep_info->vfr_start_lock); } } static void bnxt_drv_uninit(struct bnxt *bp) { bnxt_free_leds_info(bp); bnxt_free_cos_queues(bp); bnxt_free_link_info(bp); bnxt_free_parent_info(bp); bnxt_uninit_locks(bp); rte_memzone_free((const struct rte_memzone *)bp->tx_mem_zone); bp->tx_mem_zone = NULL; rte_memzone_free((const struct rte_memzone *)bp->rx_mem_zone); bp->rx_mem_zone = NULL; bnxt_free_vf_info(bp); bnxt_free_pf_info(bp); rte_free(bp->grp_info); bp->grp_info = NULL; } static int bnxt_dev_close_op(struct rte_eth_dev *eth_dev) { struct bnxt *bp = eth_dev->data->dev_private; int ret = 0; if (rte_eal_process_type() != RTE_PROC_PRIMARY) return 0; /* cancel the recovery handler before remove dev */ rte_eal_alarm_cancel(bnxt_dev_reset_and_resume, (void *)bp); rte_eal_alarm_cancel(bnxt_dev_recover, (void *)bp); bnxt_cancel_fc_thread(bp); rte_eal_alarm_cancel(bnxt_handle_vf_cfg_change, (void *)bp); if (eth_dev->data->dev_started) ret = bnxt_dev_stop_op(eth_dev); bnxt_uninit_resources(bp, false); bnxt_drv_uninit(bp); return ret; } static void bnxt_mac_addr_remove_op(struct rte_eth_dev *eth_dev, uint32_t index) { struct bnxt *bp = eth_dev->data->dev_private; uint64_t pool_mask = eth_dev->data->mac_pool_sel[index]; struct bnxt_vnic_info *vnic; struct bnxt_filter_info *filter, *temp_filter; uint32_t i; if (is_bnxt_in_error(bp)) return; /* * Loop through all VNICs from the specified filter flow pools to * remove the corresponding MAC addr filter */ for (i = 0; i < bp->nr_vnics; i++) { if (!(pool_mask & (1ULL << i))) continue; vnic = &bp->vnic_info[i]; filter = STAILQ_FIRST(&vnic->filter); while (filter) { temp_filter = STAILQ_NEXT(filter, next); if (filter->mac_index == index) { STAILQ_REMOVE(&vnic->filter, filter, bnxt_filter_info, next); bnxt_hwrm_clear_l2_filter(bp, filter); bnxt_free_filter(bp, filter); } filter = temp_filter; } } } static int bnxt_add_mac_filter(struct bnxt *bp, struct bnxt_vnic_info *vnic, struct rte_ether_addr *mac_addr, uint32_t index, uint32_t pool) { struct bnxt_filter_info *filter; int rc = 0; /* Attach requested MAC address to the new l2_filter */ STAILQ_FOREACH(filter, &vnic->filter, next) { if (filter->mac_index == index) { PMD_DRV_LOG(DEBUG, "MAC addr already existed for pool %d\n", pool); return 0; } } filter = bnxt_alloc_filter(bp); if (!filter) { PMD_DRV_LOG(ERR, "L2 filter alloc failed\n"); return -ENODEV; } /* bnxt_alloc_filter copies default MAC to filter->l2_addr. So, * if the MAC that's been programmed now is a different one, then, * copy that addr to filter->l2_addr */ if (mac_addr) memcpy(filter->l2_addr, mac_addr, RTE_ETHER_ADDR_LEN); filter->flags |= HWRM_CFA_L2_FILTER_ALLOC_INPUT_FLAGS_OUTERMOST; rc = bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id, filter); if (!rc) { filter->mac_index = index; if (filter->mac_index == 0) STAILQ_INSERT_HEAD(&vnic->filter, filter, next); else STAILQ_INSERT_TAIL(&vnic->filter, filter, next); } else { bnxt_free_filter(bp, filter); } return rc; } static int bnxt_mac_addr_add_op(struct rte_eth_dev *eth_dev, struct rte_ether_addr *mac_addr, uint32_t index, uint32_t pool) { struct bnxt *bp = eth_dev->data->dev_private; struct bnxt_vnic_info *vnic = &bp->vnic_info[pool]; int rc = 0; rc = is_bnxt_in_error(bp); if (rc) return rc; if (BNXT_VF(bp) && !BNXT_VF_IS_TRUSTED(bp)) { PMD_DRV_LOG(ERR, "Cannot add MAC address to a VF interface\n"); return -ENOTSUP; } if (!vnic) { PMD_DRV_LOG(ERR, "VNIC not found for pool %d!\n", pool); return -EINVAL; } /* Filter settings will get applied when port is started */ if (!eth_dev->data->dev_started) return 0; rc = bnxt_add_mac_filter(bp, vnic, mac_addr, index, pool); return rc; } int bnxt_link_update_op(struct rte_eth_dev *eth_dev, int wait_to_complete) { int rc = 0; struct bnxt *bp = eth_dev->data->dev_private; struct rte_eth_link new; int cnt = wait_to_complete ? BNXT_MAX_LINK_WAIT_CNT : BNXT_MIN_LINK_WAIT_CNT; rc = is_bnxt_in_error(bp); if (rc) return rc; memset(&new, 0, sizeof(new)); if (bp->link_info == NULL) goto out; /* Only single function PF can bring the phy down. * In certain scenarios, device is not obliged link down even when forced. * When port is stopped, report link down in those cases. */ if (!eth_dev->data->dev_started && (!BNXT_SINGLE_PF(bp) || bnxt_force_link_config(bp))) goto out; do { /* Retrieve link info from hardware */ rc = bnxt_get_hwrm_link_config(bp, &new); if (rc) { new.link_speed = ETH_LINK_SPEED_100M; new.link_duplex = ETH_LINK_FULL_DUPLEX; PMD_DRV_LOG(ERR, "Failed to retrieve link rc = 0x%x!\n", rc); goto out; } if (!wait_to_complete || new.link_status) break; rte_delay_ms(BNXT_LINK_WAIT_INTERVAL); } while (cnt--); out: /* Timed out or success */ if (new.link_status != eth_dev->data->dev_link.link_status || new.link_speed != eth_dev->data->dev_link.link_speed) { rte_eth_linkstatus_set(eth_dev, &new); bnxt_print_link_info(eth_dev); } return rc; } static int bnxt_promiscuous_enable_op(struct rte_eth_dev *eth_dev) { struct bnxt *bp = eth_dev->data->dev_private; struct bnxt_vnic_info *vnic; uint32_t old_flags; int rc; rc = is_bnxt_in_error(bp); if (rc) return rc; /* Filter settings will get applied when port is started */ if (!eth_dev->data->dev_started) return 0; if (bp->vnic_info == NULL) return 0; vnic = BNXT_GET_DEFAULT_VNIC(bp); old_flags = vnic->flags; vnic->flags |= BNXT_VNIC_INFO_PROMISC; rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL); if (rc != 0) vnic->flags = old_flags; return rc; } static int bnxt_promiscuous_disable_op(struct rte_eth_dev *eth_dev) { struct bnxt *bp = eth_dev->data->dev_private; struct bnxt_vnic_info *vnic; uint32_t old_flags; int rc; rc = is_bnxt_in_error(bp); if (rc) return rc; /* Filter settings will get applied when port is started */ if (!eth_dev->data->dev_started) return 0; if (bp->vnic_info == NULL) return 0; vnic = BNXT_GET_DEFAULT_VNIC(bp); old_flags = vnic->flags; vnic->flags &= ~BNXT_VNIC_INFO_PROMISC; rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL); if (rc != 0) vnic->flags = old_flags; return rc; } static int bnxt_allmulticast_enable_op(struct rte_eth_dev *eth_dev) { struct bnxt *bp = eth_dev->data->dev_private; struct bnxt_vnic_info *vnic; uint32_t old_flags; int rc; rc = is_bnxt_in_error(bp); if (rc) return rc; /* Filter settings will get applied when port is started */ if (!eth_dev->data->dev_started) return 0; if (bp->vnic_info == NULL) return 0; vnic = BNXT_GET_DEFAULT_VNIC(bp); old_flags = vnic->flags; vnic->flags |= BNXT_VNIC_INFO_ALLMULTI; rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL); if (rc != 0) vnic->flags = old_flags; return rc; } static int bnxt_allmulticast_disable_op(struct rte_eth_dev *eth_dev) { struct bnxt *bp = eth_dev->data->dev_private; struct bnxt_vnic_info *vnic; uint32_t old_flags; int rc; rc = is_bnxt_in_error(bp); if (rc) return rc; /* Filter settings will get applied when port is started */ if (!eth_dev->data->dev_started) return 0; if (bp->vnic_info == NULL) return 0; vnic = BNXT_GET_DEFAULT_VNIC(bp); old_flags = vnic->flags; vnic->flags &= ~BNXT_VNIC_INFO_ALLMULTI; rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL); if (rc != 0) vnic->flags = old_flags; return rc; } /* Return bnxt_rx_queue pointer corresponding to a given rxq. */ static struct bnxt_rx_queue *bnxt_qid_to_rxq(struct bnxt *bp, uint16_t qid) { if (qid >= bp->rx_nr_rings) return NULL; return bp->eth_dev->data->rx_queues[qid]; } /* Return rxq corresponding to a given rss table ring/group ID. */ static uint16_t bnxt_rss_to_qid(struct bnxt *bp, uint16_t fwr) { struct bnxt_rx_queue *rxq; unsigned int i; if (!BNXT_HAS_RING_GRPS(bp)) { for (i = 0; i < bp->rx_nr_rings; i++) { rxq = bp->eth_dev->data->rx_queues[i]; if (rxq->rx_ring->rx_ring_struct->fw_ring_id == fwr) return rxq->index; } } else { for (i = 0; i < bp->rx_nr_rings; i++) { if (bp->grp_info[i].fw_grp_id == fwr) return i; } } return INVALID_HW_RING_ID; } static int bnxt_reta_update_op(struct rte_eth_dev *eth_dev, struct rte_eth_rss_reta_entry64 *reta_conf, uint16_t reta_size) { struct bnxt *bp = eth_dev->data->dev_private; struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf; struct bnxt_vnic_info *vnic = BNXT_GET_DEFAULT_VNIC(bp); uint16_t tbl_size = bnxt_rss_hash_tbl_size(bp); uint16_t idx, sft; int i, rc; rc = is_bnxt_in_error(bp); if (rc) return rc; if (!vnic->rss_table) return -EINVAL; if (!(dev_conf->rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG)) return -EINVAL; if (reta_size != tbl_size) { PMD_DRV_LOG(ERR, "The configured hash table lookup size " "(%d) must equal the size supported by the hardware " "(%d)\n", reta_size, tbl_size); return -EINVAL; } for (i = 0; i < reta_size; i++) { struct bnxt_rx_queue *rxq; idx = i / RTE_RETA_GROUP_SIZE; sft = i % RTE_RETA_GROUP_SIZE; if (!(reta_conf[idx].mask & (1ULL << sft))) continue; rxq = bnxt_qid_to_rxq(bp, reta_conf[idx].reta[sft]); if (!rxq) { PMD_DRV_LOG(ERR, "Invalid ring in reta_conf.\n"); return -EINVAL; } if (BNXT_CHIP_THOR(bp)) { vnic->rss_table[i * 2] = rxq->rx_ring->rx_ring_struct->fw_ring_id; vnic->rss_table[i * 2 + 1] = rxq->cp_ring->cp_ring_struct->fw_ring_id; } else { vnic->rss_table[i] = vnic->fw_grp_ids[reta_conf[idx].reta[sft]]; } } rc = bnxt_hwrm_vnic_rss_cfg(bp, vnic); return rc; } static int bnxt_reta_query_op(struct rte_eth_dev *eth_dev, struct rte_eth_rss_reta_entry64 *reta_conf, uint16_t reta_size) { struct bnxt *bp = eth_dev->data->dev_private; struct bnxt_vnic_info *vnic = BNXT_GET_DEFAULT_VNIC(bp); uint16_t tbl_size = bnxt_rss_hash_tbl_size(bp); uint16_t idx, sft, i; int rc; rc = is_bnxt_in_error(bp); if (rc) return rc; if (!vnic) return -EINVAL; if (!vnic->rss_table) return -EINVAL; if (reta_size != tbl_size) { PMD_DRV_LOG(ERR, "The configured hash table lookup size " "(%d) must equal the size supported by the hardware " "(%d)\n", reta_size, tbl_size); return -EINVAL; } for (idx = 0, i = 0; i < reta_size; i++) { idx = i / RTE_RETA_GROUP_SIZE; sft = i % RTE_RETA_GROUP_SIZE; if (reta_conf[idx].mask & (1ULL << sft)) { uint16_t qid; if (BNXT_CHIP_THOR(bp)) qid = bnxt_rss_to_qid(bp, vnic->rss_table[i * 2]); else qid = bnxt_rss_to_qid(bp, vnic->rss_table[i]); if (qid == INVALID_HW_RING_ID) { PMD_DRV_LOG(ERR, "Inv. entry in rss table.\n"); return -EINVAL; } reta_conf[idx].reta[sft] = qid; } } return 0; } static int bnxt_rss_hash_update_op(struct rte_eth_dev *eth_dev, struct rte_eth_rss_conf *rss_conf) { struct bnxt *bp = eth_dev->data->dev_private; struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf; struct bnxt_vnic_info *vnic; int rc; rc = is_bnxt_in_error(bp); if (rc) return rc; /* * If RSS enablement were different than dev_configure, * then return -EINVAL */ if (dev_conf->rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG) { if (!rss_conf->rss_hf) PMD_DRV_LOG(ERR, "Hash type NONE\n"); } else { if (rss_conf->rss_hf & BNXT_ETH_RSS_SUPPORT) return -EINVAL; } /* Update the default RSS VNIC(s) */ vnic = BNXT_GET_DEFAULT_VNIC(bp); vnic->hash_type = bnxt_rte_to_hwrm_hash_types(rss_conf->rss_hf); vnic->hash_mode = bnxt_rte_to_hwrm_hash_level(bp, rss_conf->rss_hf, ETH_RSS_LEVEL(rss_conf->rss_hf)); /* Cache the hash function */ bp->rss_conf.rss_hf = rss_conf->rss_hf; /* * If hashkey is not specified, use the previously configured * hashkey */ if (!rss_conf->rss_key) goto rss_config; if (rss_conf->rss_key_len != HW_HASH_KEY_SIZE) { PMD_DRV_LOG(ERR, "Invalid hashkey length, should be %d bytes\n", HW_HASH_KEY_SIZE); return -EINVAL; } memcpy(vnic->rss_hash_key, rss_conf->rss_key, rss_conf->rss_key_len); /* Cache the hash key */ memcpy(bp->rss_conf.rss_key, rss_conf->rss_key, HW_HASH_KEY_SIZE); rss_config: rc = bnxt_hwrm_vnic_rss_cfg(bp, vnic); return rc; } static int bnxt_rss_hash_conf_get_op(struct rte_eth_dev *eth_dev, struct rte_eth_rss_conf *rss_conf) { struct bnxt *bp = eth_dev->data->dev_private; struct bnxt_vnic_info *vnic = BNXT_GET_DEFAULT_VNIC(bp); int len, rc; uint32_t hash_types; rc = is_bnxt_in_error(bp); if (rc) return rc; /* RSS configuration is the same for all VNICs */ if (vnic && vnic->rss_hash_key) { if (rss_conf->rss_key) { len = rss_conf->rss_key_len <= HW_HASH_KEY_SIZE ? rss_conf->rss_key_len : HW_HASH_KEY_SIZE; memcpy(rss_conf->rss_key, vnic->rss_hash_key, len); } hash_types = vnic->hash_type; rss_conf->rss_hf = 0; if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4) { rss_conf->rss_hf |= ETH_RSS_IPV4; hash_types &= ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4; } if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4) { rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP; hash_types &= ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4; } if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4) { rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP; hash_types &= ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4; } if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6) { rss_conf->rss_hf |= ETH_RSS_IPV6; hash_types &= ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6; } if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6) { rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP; hash_types &= ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6; } if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6) { rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP; hash_types &= ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6; } rss_conf->rss_hf |= bnxt_hwrm_to_rte_rss_level(bp, vnic->hash_mode); if (hash_types) { PMD_DRV_LOG(ERR, "Unknown RSS config from firmware (%08x), RSS disabled", vnic->hash_type); return -ENOTSUP; } } else { rss_conf->rss_hf = 0; } return 0; } static int bnxt_flow_ctrl_get_op(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) { struct bnxt *bp = dev->data->dev_private; struct rte_eth_link link_info; int rc; rc = is_bnxt_in_error(bp); if (rc) return rc; rc = bnxt_get_hwrm_link_config(bp, &link_info); if (rc) return rc; memset(fc_conf, 0, sizeof(*fc_conf)); if (bp->link_info->auto_pause) fc_conf->autoneg = 1; switch (bp->link_info->pause) { case 0: fc_conf->mode = RTE_FC_NONE; break; case HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_TX: fc_conf->mode = RTE_FC_TX_PAUSE; break; case HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_RX: fc_conf->mode = RTE_FC_RX_PAUSE; break; case (HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_TX | HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_RX): fc_conf->mode = RTE_FC_FULL; break; } return 0; } static int bnxt_flow_ctrl_set_op(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) { struct bnxt *bp = dev->data->dev_private; int rc; rc = is_bnxt_in_error(bp); if (rc) return rc; if (!BNXT_SINGLE_PF(bp)) { PMD_DRV_LOG(ERR, "Flow Control Settings cannot be modified on VF or on shared PF\n"); return -ENOTSUP; } switch (fc_conf->mode) { case RTE_FC_NONE: bp->link_info->auto_pause = 0; bp->link_info->force_pause = 0; break; case RTE_FC_RX_PAUSE: if (fc_conf->autoneg) { bp->link_info->auto_pause = HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_RX; bp->link_info->force_pause = 0; } else { bp->link_info->auto_pause = 0; bp->link_info->force_pause = HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_RX; } break; case RTE_FC_TX_PAUSE: if (fc_conf->autoneg) { bp->link_info->auto_pause = HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_TX; bp->link_info->force_pause = 0; } else { bp->link_info->auto_pause = 0; bp->link_info->force_pause = HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_TX; } break; case RTE_FC_FULL: if (fc_conf->autoneg) { bp->link_info->auto_pause = HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_TX | HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_RX; bp->link_info->force_pause = 0; } else { bp->link_info->auto_pause = 0; bp->link_info->force_pause = HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_TX | HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_RX; } break; } return bnxt_set_hwrm_link_config(bp, true); } /* Add UDP tunneling port */ static int bnxt_udp_tunnel_port_add_op(struct rte_eth_dev *eth_dev, struct rte_eth_udp_tunnel *udp_tunnel) { struct bnxt *bp = eth_dev->data->dev_private; uint16_t tunnel_type = 0; int rc = 0; rc = is_bnxt_in_error(bp); if (rc) return rc; switch (udp_tunnel->prot_type) { case RTE_TUNNEL_TYPE_VXLAN: if (bp->vxlan_port_cnt) { PMD_DRV_LOG(ERR, "Tunnel Port %d already programmed\n", udp_tunnel->udp_port); if (bp->vxlan_port != udp_tunnel->udp_port) { PMD_DRV_LOG(ERR, "Only one port allowed\n"); return -ENOSPC; } bp->vxlan_port_cnt++; return 0; } tunnel_type = HWRM_TUNNEL_DST_PORT_ALLOC_INPUT_TUNNEL_TYPE_VXLAN; break; case RTE_TUNNEL_TYPE_GENEVE: if (bp->geneve_port_cnt) { PMD_DRV_LOG(ERR, "Tunnel Port %d already programmed\n", udp_tunnel->udp_port); if (bp->geneve_port != udp_tunnel->udp_port) { PMD_DRV_LOG(ERR, "Only one port allowed\n"); return -ENOSPC; } bp->geneve_port_cnt++; return 0; } tunnel_type = HWRM_TUNNEL_DST_PORT_ALLOC_INPUT_TUNNEL_TYPE_GENEVE; break; default: PMD_DRV_LOG(ERR, "Tunnel type is not supported\n"); return -ENOTSUP; } rc = bnxt_hwrm_tunnel_dst_port_alloc(bp, udp_tunnel->udp_port, tunnel_type); if (rc != 0) return rc; if (tunnel_type == HWRM_TUNNEL_DST_PORT_ALLOC_INPUT_TUNNEL_TYPE_VXLAN) bp->vxlan_port_cnt++; if (tunnel_type == HWRM_TUNNEL_DST_PORT_ALLOC_INPUT_TUNNEL_TYPE_GENEVE) bp->geneve_port_cnt++; return rc; } static int bnxt_udp_tunnel_port_del_op(struct rte_eth_dev *eth_dev, struct rte_eth_udp_tunnel *udp_tunnel) { struct bnxt *bp = eth_dev->data->dev_private; uint16_t tunnel_type = 0; uint16_t port = 0; int rc = 0; rc = is_bnxt_in_error(bp); if (rc) return rc; switch (udp_tunnel->prot_type) { case RTE_TUNNEL_TYPE_VXLAN: if (!bp->vxlan_port_cnt) { PMD_DRV_LOG(ERR, "No Tunnel port configured yet\n"); return -EINVAL; } if (bp->vxlan_port != udp_tunnel->udp_port) { PMD_DRV_LOG(ERR, "Req Port: %d. Configured port: %d\n", udp_tunnel->udp_port, bp->vxlan_port); return -EINVAL; } if (--bp->vxlan_port_cnt) return 0; tunnel_type = HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_VXLAN; port = bp->vxlan_fw_dst_port_id; break; case RTE_TUNNEL_TYPE_GENEVE: if (!bp->geneve_port_cnt) { PMD_DRV_LOG(ERR, "No Tunnel port configured yet\n"); return -EINVAL; } if (bp->geneve_port != udp_tunnel->udp_port) { PMD_DRV_LOG(ERR, "Req Port: %d. Configured port: %d\n", udp_tunnel->udp_port, bp->geneve_port); return -EINVAL; } if (--bp->geneve_port_cnt) return 0; tunnel_type = HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_GENEVE; port = bp->geneve_fw_dst_port_id; break; default: PMD_DRV_LOG(ERR, "Tunnel type is not supported\n"); return -ENOTSUP; } rc = bnxt_hwrm_tunnel_dst_port_free(bp, port, tunnel_type); return rc; } static int bnxt_del_vlan_filter(struct bnxt *bp, uint16_t vlan_id) { struct bnxt_filter_info *filter; struct bnxt_vnic_info *vnic; int rc = 0; uint32_t chk = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN; vnic = BNXT_GET_DEFAULT_VNIC(bp); filter = STAILQ_FIRST(&vnic->filter); while (filter) { /* Search for this matching MAC+VLAN filter */ if (bnxt_vlan_filter_exists(bp, filter, chk, vlan_id)) { /* Delete the filter */ rc = bnxt_hwrm_clear_l2_filter(bp, filter); if (rc) return rc; STAILQ_REMOVE(&vnic->filter, filter, bnxt_filter_info, next); bnxt_free_filter(bp, filter); PMD_DRV_LOG(INFO, "Deleted vlan filter for %d\n", vlan_id); return 0; } filter = STAILQ_NEXT(filter, next); } return -ENOENT; } static int bnxt_add_vlan_filter(struct bnxt *bp, uint16_t vlan_id) { struct bnxt_filter_info *filter; struct bnxt_vnic_info *vnic; int rc = 0; uint32_t en = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN | HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN_MASK; uint32_t chk = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN; /* Implementation notes on the use of VNIC in this command: * * By default, these filters belong to default vnic for the function. * Once these filters are set up, only destination VNIC can be modified. * If the destination VNIC is not specified in this command, * then the HWRM shall only create an l2 context id. */ vnic = BNXT_GET_DEFAULT_VNIC(bp); filter = STAILQ_FIRST(&vnic->filter); /* Check if the VLAN has already been added */ while (filter) { if (bnxt_vlan_filter_exists(bp, filter, chk, vlan_id)) return -EEXIST; filter = STAILQ_NEXT(filter, next); } /* No match found. Alloc a fresh filter and issue the L2_FILTER_ALLOC * command to create MAC+VLAN filter with the right flags, enables set. */ filter = bnxt_alloc_filter(bp); if (!filter) { PMD_DRV_LOG(ERR, "MAC/VLAN filter alloc failed\n"); return -ENOMEM; } /* MAC + VLAN ID filter */ /* If l2_ivlan == 0 and l2_ivlan_mask != 0, only * untagged packets are received * * If l2_ivlan != 0 and l2_ivlan_mask != 0, untagged * packets and only the programmed vlan's packets are received */ filter->l2_ivlan = vlan_id; filter->l2_ivlan_mask = 0x0FFF; filter->enables |= en; filter->flags |= HWRM_CFA_L2_FILTER_ALLOC_INPUT_FLAGS_OUTERMOST; rc = bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id, filter); if (rc) { /* Free the newly allocated filter as we were * not able to create the filter in hardware. */ bnxt_free_filter(bp, filter); return rc; } filter->mac_index = 0; /* Add this new filter to the list */ if (vlan_id == 0) STAILQ_INSERT_HEAD(&vnic->filter, filter, next); else STAILQ_INSERT_TAIL(&vnic->filter, filter, next); PMD_DRV_LOG(INFO, "Added Vlan filter for %d\n", vlan_id); return rc; } static int bnxt_vlan_filter_set_op(struct rte_eth_dev *eth_dev, uint16_t vlan_id, int on) { struct bnxt *bp = eth_dev->data->dev_private; int rc; rc = is_bnxt_in_error(bp); if (rc) return rc; if (!eth_dev->data->dev_started) { PMD_DRV_LOG(ERR, "port must be started before setting vlan\n"); return -EINVAL; } /* These operations apply to ALL existing MAC/VLAN filters */ if (on) return bnxt_add_vlan_filter(bp, vlan_id); else return bnxt_del_vlan_filter(bp, vlan_id); } static int bnxt_del_dflt_mac_filter(struct bnxt *bp, struct bnxt_vnic_info *vnic) { struct bnxt_filter_info *filter; int rc; filter = STAILQ_FIRST(&vnic->filter); while (filter) { if (filter->mac_index == 0 && !memcmp(filter->l2_addr, bp->mac_addr, RTE_ETHER_ADDR_LEN)) { rc = bnxt_hwrm_clear_l2_filter(bp, filter); if (!rc) { STAILQ_REMOVE(&vnic->filter, filter, bnxt_filter_info, next); bnxt_free_filter(bp, filter); } return rc; } filter = STAILQ_NEXT(filter, next); } return 0; } static int bnxt_config_vlan_hw_filter(struct bnxt *bp, uint64_t rx_offloads) { struct bnxt_vnic_info *vnic; unsigned int i; int rc; vnic = BNXT_GET_DEFAULT_VNIC(bp); if (!(rx_offloads & DEV_RX_OFFLOAD_VLAN_FILTER)) { /* Remove any VLAN filters programmed */ for (i = 0; i < RTE_ETHER_MAX_VLAN_ID; i++) bnxt_del_vlan_filter(bp, i); rc = bnxt_add_mac_filter(bp, vnic, NULL, 0, 0); if (rc) return rc; } else { /* Default filter will allow packets that match the * dest mac. So, it has to be deleted, otherwise, we * will endup receiving vlan packets for which the * filter is not programmed, when hw-vlan-filter * configuration is ON */ bnxt_del_dflt_mac_filter(bp, vnic); /* This filter will allow only untagged packets */ bnxt_add_vlan_filter(bp, 0); } PMD_DRV_LOG(DEBUG, "VLAN Filtering: %d\n", !!(rx_offloads & DEV_RX_OFFLOAD_VLAN_FILTER)); return 0; } static int bnxt_free_one_vnic(struct bnxt *bp, uint16_t vnic_id) { struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; unsigned int i; int rc; /* Destroy vnic filters and vnic */ if (bp->eth_dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_VLAN_FILTER) { for (i = 0; i < RTE_ETHER_MAX_VLAN_ID; i++) bnxt_del_vlan_filter(bp, i); } bnxt_del_dflt_mac_filter(bp, vnic); rc = bnxt_hwrm_vnic_ctx_free(bp, vnic); if (rc) return rc; rc = bnxt_hwrm_vnic_free(bp, vnic); if (rc) return rc; rte_free(vnic->fw_grp_ids); vnic->fw_grp_ids = NULL; vnic->rx_queue_cnt = 0; return 0; } static int bnxt_config_vlan_hw_stripping(struct bnxt *bp, uint64_t rx_offloads) { struct bnxt_vnic_info *vnic = BNXT_GET_DEFAULT_VNIC(bp); int rc; /* Destroy, recreate and reconfigure the default vnic */ rc = bnxt_free_one_vnic(bp, 0); if (rc) return rc; /* default vnic 0 */ rc = bnxt_setup_one_vnic(bp, 0); if (rc) return rc; if (bp->eth_dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_VLAN_FILTER) { rc = bnxt_add_vlan_filter(bp, 0); if (rc) return rc; rc = bnxt_restore_vlan_filters(bp); if (rc) return rc; } else { rc = bnxt_add_mac_filter(bp, vnic, NULL, 0, 0); if (rc) return rc; } rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL); if (rc) return rc; PMD_DRV_LOG(DEBUG, "VLAN Strip Offload: %d\n", !!(rx_offloads & DEV_RX_OFFLOAD_VLAN_STRIP)); return rc; } static int bnxt_vlan_offload_set_op(struct rte_eth_dev *dev, int mask) { uint64_t rx_offloads = dev->data->dev_conf.rxmode.offloads; struct bnxt *bp = dev->data->dev_private; int rc; rc = is_bnxt_in_error(bp); if (rc) return rc; /* Filter settings will get applied when port is started */ if (!dev->data->dev_started) return 0; if (mask & ETH_VLAN_FILTER_MASK) { /* Enable or disable VLAN filtering */ rc = bnxt_config_vlan_hw_filter(bp, rx_offloads); if (rc) return rc; } if (mask & ETH_VLAN_STRIP_MASK) { /* Enable or disable VLAN stripping */ rc = bnxt_config_vlan_hw_stripping(bp, rx_offloads); if (rc) return rc; } if (mask & ETH_VLAN_EXTEND_MASK) { if (rx_offloads & DEV_RX_OFFLOAD_VLAN_EXTEND) PMD_DRV_LOG(DEBUG, "Extend VLAN supported\n"); else PMD_DRV_LOG(INFO, "Extend VLAN unsupported\n"); } return 0; } static int bnxt_vlan_tpid_set_op(struct rte_eth_dev *dev, enum rte_vlan_type vlan_type, uint16_t tpid) { struct bnxt *bp = dev->data->dev_private; int qinq = dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_VLAN_EXTEND; if (vlan_type != ETH_VLAN_TYPE_INNER && vlan_type != ETH_VLAN_TYPE_OUTER) { PMD_DRV_LOG(ERR, "Unsupported vlan type."); return -EINVAL; } if (!qinq) { PMD_DRV_LOG(ERR, "QinQ not enabled. Needs to be ON as we can " "accelerate only outer vlan\n"); return -EINVAL; } if (vlan_type == ETH_VLAN_TYPE_OUTER) { switch (tpid) { case RTE_ETHER_TYPE_QINQ: bp->outer_tpid_bd = TX_BD_LONG_CFA_META_VLAN_TPID_TPID88A8; break; case RTE_ETHER_TYPE_VLAN: bp->outer_tpid_bd = TX_BD_LONG_CFA_META_VLAN_TPID_TPID8100; break; case RTE_ETHER_TYPE_QINQ1: bp->outer_tpid_bd = TX_BD_LONG_CFA_META_VLAN_TPID_TPID9100; break; case RTE_ETHER_TYPE_QINQ2: bp->outer_tpid_bd = TX_BD_LONG_CFA_META_VLAN_TPID_TPID9200; break; case RTE_ETHER_TYPE_QINQ3: bp->outer_tpid_bd = TX_BD_LONG_CFA_META_VLAN_TPID_TPID9300; break; default: PMD_DRV_LOG(ERR, "Invalid TPID: %x\n", tpid); return -EINVAL; } bp->outer_tpid_bd |= tpid; PMD_DRV_LOG(INFO, "outer_tpid_bd = %x\n", bp->outer_tpid_bd); } else if (vlan_type == ETH_VLAN_TYPE_INNER) { PMD_DRV_LOG(ERR, "Can accelerate only outer vlan in QinQ\n"); return -EINVAL; } return 0; } static int bnxt_set_default_mac_addr_op(struct rte_eth_dev *dev, struct rte_ether_addr *addr) { struct bnxt *bp = dev->data->dev_private; /* Default Filter is tied to VNIC 0 */ struct bnxt_vnic_info *vnic = BNXT_GET_DEFAULT_VNIC(bp); int rc; rc = is_bnxt_in_error(bp); if (rc) return rc; if (BNXT_VF(bp) && !BNXT_VF_IS_TRUSTED(bp)) return -EPERM; if (rte_is_zero_ether_addr(addr)) return -EINVAL; /* Filter settings will get applied when port is started */ if (!dev->data->dev_started) return 0; /* Check if the requested MAC is already added */ if (memcmp(addr, bp->mac_addr, RTE_ETHER_ADDR_LEN) == 0) return 0; /* Destroy filter and re-create it */ bnxt_del_dflt_mac_filter(bp, vnic); memcpy(bp->mac_addr, addr, RTE_ETHER_ADDR_LEN); if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_VLAN_FILTER) { /* This filter will allow only untagged packets */ rc = bnxt_add_vlan_filter(bp, 0); } else { rc = bnxt_add_mac_filter(bp, vnic, addr, 0, 0); } PMD_DRV_LOG(DEBUG, "Set MAC addr\n"); return rc; } static int bnxt_dev_set_mc_addr_list_op(struct rte_eth_dev *eth_dev, struct rte_ether_addr *mc_addr_set, uint32_t nb_mc_addr) { struct bnxt *bp = eth_dev->data->dev_private; struct bnxt_vnic_info *vnic; uint32_t i = 0; int rc; rc = is_bnxt_in_error(bp); if (rc) return rc; vnic = BNXT_GET_DEFAULT_VNIC(bp); bp->nb_mc_addr = nb_mc_addr; if (nb_mc_addr > BNXT_MAX_MC_ADDRS) { vnic->flags |= BNXT_VNIC_INFO_ALLMULTI; goto allmulti; } /* TODO Check for Duplicate mcast addresses */ vnic->flags &= ~BNXT_VNIC_INFO_ALLMULTI; for (i = 0; i < nb_mc_addr; i++) rte_ether_addr_copy(&mc_addr_set[i], &bp->mcast_addr_list[i]); if (bp->nb_mc_addr) vnic->flags |= BNXT_VNIC_INFO_MCAST; else vnic->flags &= ~BNXT_VNIC_INFO_MCAST; allmulti: return bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL); } static int bnxt_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size) { struct bnxt *bp = dev->data->dev_private; uint8_t fw_major = (bp->fw_ver >> 24) & 0xff; uint8_t fw_minor = (bp->fw_ver >> 16) & 0xff; uint8_t fw_updt = (bp->fw_ver >> 8) & 0xff; uint8_t fw_rsvd = bp->fw_ver & 0xff; int ret; ret = snprintf(fw_version, fw_size, "%d.%d.%d.%d", fw_major, fw_minor, fw_updt, fw_rsvd); if (ret < 0) return -EINVAL; ret += 1; /* add the size of '\0' */ if (fw_size < (size_t)ret) return ret; else return 0; } static void bnxt_rxq_info_get_op(struct rte_eth_dev *dev, uint16_t queue_id, struct rte_eth_rxq_info *qinfo) { struct bnxt *bp = dev->data->dev_private; struct bnxt_rx_queue *rxq; if (is_bnxt_in_error(bp)) return; rxq = dev->data->rx_queues[queue_id]; qinfo->mp = rxq->mb_pool; qinfo->scattered_rx = dev->data->scattered_rx; qinfo->nb_desc = rxq->nb_rx_desc; qinfo->conf.rx_free_thresh = rxq->rx_free_thresh; qinfo->conf.rx_drop_en = rxq->drop_en; qinfo->conf.rx_deferred_start = rxq->rx_deferred_start; qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads; } static void bnxt_txq_info_get_op(struct rte_eth_dev *dev, uint16_t queue_id, struct rte_eth_txq_info *qinfo) { struct bnxt *bp = dev->data->dev_private; struct bnxt_tx_queue *txq; if (is_bnxt_in_error(bp)) return; txq = dev->data->tx_queues[queue_id]; qinfo->nb_desc = txq->nb_tx_desc; qinfo->conf.tx_thresh.pthresh = txq->pthresh; qinfo->conf.tx_thresh.hthresh = txq->hthresh; qinfo->conf.tx_thresh.wthresh = txq->wthresh; qinfo->conf.tx_free_thresh = txq->tx_free_thresh; qinfo->conf.tx_rs_thresh = 0; qinfo->conf.tx_deferred_start = txq->tx_deferred_start; qinfo->conf.offloads = txq->offloads; } static const struct { eth_rx_burst_t pkt_burst; const char *info; } bnxt_rx_burst_info[] = { {bnxt_recv_pkts, "Scalar"}, #if defined(RTE_ARCH_X86) {bnxt_recv_pkts_vec, "Vector SSE"}, #elif defined(RTE_ARCH_ARM64) {bnxt_recv_pkts_vec, "Vector Neon"}, #endif }; static int bnxt_rx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id, struct rte_eth_burst_mode *mode) { eth_rx_burst_t pkt_burst = dev->rx_pkt_burst; size_t i; for (i = 0; i < RTE_DIM(bnxt_rx_burst_info); i++) { if (pkt_burst == bnxt_rx_burst_info[i].pkt_burst) { snprintf(mode->info, sizeof(mode->info), "%s", bnxt_rx_burst_info[i].info); return 0; } } return -EINVAL; } static const struct { eth_tx_burst_t pkt_burst; const char *info; } bnxt_tx_burst_info[] = { {bnxt_xmit_pkts, "Scalar"}, #if defined(RTE_ARCH_X86) {bnxt_xmit_pkts_vec, "Vector SSE"}, #elif defined(RTE_ARCH_ARM64) {bnxt_xmit_pkts_vec, "Vector Neon"}, #endif }; static int bnxt_tx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id, struct rte_eth_burst_mode *mode) { eth_tx_burst_t pkt_burst = dev->tx_pkt_burst; size_t i; for (i = 0; i < RTE_DIM(bnxt_tx_burst_info); i++) { if (pkt_burst == bnxt_tx_burst_info[i].pkt_burst) { snprintf(mode->info, sizeof(mode->info), "%s", bnxt_tx_burst_info[i].info); return 0; } } return -EINVAL; } int bnxt_mtu_set_op(struct rte_eth_dev *eth_dev, uint16_t new_mtu) { struct bnxt *bp = eth_dev->data->dev_private; uint32_t new_pkt_size; uint32_t rc = 0; uint32_t i; rc = is_bnxt_in_error(bp); if (rc) return rc; /* Exit if receive queues are not configured yet */ if (!eth_dev->data->nb_rx_queues) return rc; new_pkt_size = new_mtu + RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN + VLAN_TAG_SIZE * BNXT_NUM_VLANS; /* * Disallow any MTU change that would require scattered receive support * if it is not already enabled. */ if (eth_dev->data->dev_started && !eth_dev->data->scattered_rx && (new_pkt_size > eth_dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)) { PMD_DRV_LOG(ERR, "MTU change would require scattered rx support. "); PMD_DRV_LOG(ERR, "Stop port before changing MTU.\n"); return -EINVAL; } if (new_mtu > RTE_ETHER_MTU) { bp->flags |= BNXT_FLAG_JUMBO; bp->eth_dev->data->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME; } else { bp->eth_dev->data->dev_conf.rxmode.offloads &= ~DEV_RX_OFFLOAD_JUMBO_FRAME; bp->flags &= ~BNXT_FLAG_JUMBO; } /* Is there a change in mtu setting? */ if (eth_dev->data->dev_conf.rxmode.max_rx_pkt_len == new_pkt_size) return rc; for (i = 0; i < bp->nr_vnics; i++) { struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; uint16_t size = 0; vnic->mru = BNXT_VNIC_MRU(new_mtu); rc = bnxt_hwrm_vnic_cfg(bp, vnic); if (rc) break; size = rte_pktmbuf_data_room_size(bp->rx_queues[0]->mb_pool); size -= RTE_PKTMBUF_HEADROOM; if (size < new_mtu) { rc = bnxt_hwrm_vnic_plcmode_cfg(bp, vnic); if (rc) return rc; } } if (!rc) eth_dev->data->dev_conf.rxmode.max_rx_pkt_len = new_pkt_size; PMD_DRV_LOG(INFO, "New MTU is %d\n", new_mtu); return rc; } static int bnxt_vlan_pvid_set_op(struct rte_eth_dev *dev, uint16_t pvid, int on) { struct bnxt *bp = dev->data->dev_private; uint16_t vlan = bp->vlan; int rc; rc = is_bnxt_in_error(bp); if (rc) return rc; if (!BNXT_SINGLE_PF(bp)) { PMD_DRV_LOG(ERR, "PVID cannot be modified on VF or on shared PF\n"); return -ENOTSUP; } bp->vlan = on ? pvid : 0; rc = bnxt_hwrm_set_default_vlan(bp, 0, 0); if (rc) bp->vlan = vlan; return rc; } static int bnxt_dev_led_on_op(struct rte_eth_dev *dev) { struct bnxt *bp = dev->data->dev_private; int rc; rc = is_bnxt_in_error(bp); if (rc) return rc; return bnxt_hwrm_port_led_cfg(bp, true); } static int bnxt_dev_led_off_op(struct rte_eth_dev *dev) { struct bnxt *bp = dev->data->dev_private; int rc; rc = is_bnxt_in_error(bp); if (rc) return rc; return bnxt_hwrm_port_led_cfg(bp, false); } static uint32_t bnxt_rx_queue_count_op(struct rte_eth_dev *dev, uint16_t rx_queue_id) { struct bnxt *bp = (struct bnxt *)dev->data->dev_private; struct bnxt_cp_ring_info *cpr; uint32_t desc = 0, raw_cons, cp_ring_size; struct bnxt_rx_queue *rxq; struct rx_pkt_cmpl *rxcmp; int rc; rc = is_bnxt_in_error(bp); if (rc) return rc; rxq = dev->data->rx_queues[rx_queue_id]; cpr = rxq->cp_ring; raw_cons = cpr->cp_raw_cons; cp_ring_size = cpr->cp_ring_struct->ring_size; while (1) { uint32_t agg_cnt, cons, cmpl_type; cons = RING_CMP(cpr->cp_ring_struct, raw_cons); rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons]; if (!bnxt_cpr_cmp_valid(rxcmp, raw_cons, cp_ring_size)) break; cmpl_type = CMP_TYPE(rxcmp); switch (cmpl_type) { case CMPL_BASE_TYPE_RX_L2: case CMPL_BASE_TYPE_RX_L2_V2: agg_cnt = BNXT_RX_L2_AGG_BUFS(rxcmp); raw_cons = raw_cons + CMP_LEN(cmpl_type) + agg_cnt; desc++; break; case CMPL_BASE_TYPE_RX_TPA_END: if (BNXT_CHIP_THOR(rxq->bp)) { struct rx_tpa_v2_end_cmpl_hi *p5_tpa_end; p5_tpa_end = (void *)rxcmp; agg_cnt = BNXT_TPA_END_AGG_BUFS_TH(p5_tpa_end); } else { struct rx_tpa_end_cmpl *tpa_end; tpa_end = (void *)rxcmp; agg_cnt = BNXT_TPA_END_AGG_BUFS(tpa_end); } raw_cons = raw_cons + CMP_LEN(cmpl_type) + agg_cnt; desc++; break; default: raw_cons += CMP_LEN(cmpl_type); } } return desc; } static int bnxt_rx_descriptor_status_op(void *rx_queue, uint16_t offset) { struct bnxt_rx_queue *rxq = rx_queue; struct bnxt_cp_ring_info *cpr; struct bnxt_rx_ring_info *rxr; uint32_t desc, raw_cons, cp_ring_size; struct bnxt *bp = rxq->bp; struct rx_pkt_cmpl *rxcmp; int rc; rc = is_bnxt_in_error(bp); if (rc) return rc; if (offset >= rxq->nb_rx_desc) return -EINVAL; rxr = rxq->rx_ring; cpr = rxq->cp_ring; cp_ring_size = cpr->cp_ring_struct->ring_size; /* * For the vector receive case, the completion at the requested * offset can be indexed directly. */ #if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64) if (bp->flags & BNXT_FLAG_RX_VECTOR_PKT_MODE) { struct rx_pkt_cmpl *rxcmp; uint32_t cons; /* Check status of completion descriptor. */ raw_cons = cpr->cp_raw_cons + offset * CMP_LEN(CMPL_BASE_TYPE_RX_L2); cons = RING_CMP(cpr->cp_ring_struct, raw_cons); rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons]; if (bnxt_cpr_cmp_valid(rxcmp, raw_cons, cp_ring_size)) return RTE_ETH_RX_DESC_DONE; /* Check whether rx desc has an mbuf attached. */ cons = RING_CMP(rxr->rx_ring_struct, raw_cons / 2); if (cons >= rxq->rxrearm_start && cons < rxq->rxrearm_start + rxq->rxrearm_nb) { return RTE_ETH_RX_DESC_UNAVAIL; } return RTE_ETH_RX_DESC_AVAIL; } #endif /* * For the non-vector receive case, scan the completion ring to * locate the completion descriptor for the requested offset. */ raw_cons = cpr->cp_raw_cons; desc = 0; while (1) { uint32_t agg_cnt, cons, cmpl_type; cons = RING_CMP(cpr->cp_ring_struct, raw_cons); rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons]; if (!bnxt_cpr_cmp_valid(rxcmp, raw_cons, cp_ring_size)) break; cmpl_type = CMP_TYPE(rxcmp); switch (cmpl_type) { case CMPL_BASE_TYPE_RX_L2: case CMPL_BASE_TYPE_RX_L2_V2: if (desc == offset) { cons = rxcmp->opaque; if (rxr->rx_buf_ring[cons]) return RTE_ETH_RX_DESC_DONE; else return RTE_ETH_RX_DESC_UNAVAIL; } agg_cnt = BNXT_RX_L2_AGG_BUFS(rxcmp); raw_cons = raw_cons + CMP_LEN(cmpl_type) + agg_cnt; desc++; break; case CMPL_BASE_TYPE_RX_TPA_END: if (desc == offset) return RTE_ETH_RX_DESC_DONE; if (BNXT_CHIP_THOR(rxq->bp)) { struct rx_tpa_v2_end_cmpl_hi *p5_tpa_end; p5_tpa_end = (void *)rxcmp; agg_cnt = BNXT_TPA_END_AGG_BUFS_TH(p5_tpa_end); } else { struct rx_tpa_end_cmpl *tpa_end; tpa_end = (void *)rxcmp; agg_cnt = BNXT_TPA_END_AGG_BUFS(tpa_end); } raw_cons = raw_cons + CMP_LEN(cmpl_type) + agg_cnt; desc++; break; default: raw_cons += CMP_LEN(cmpl_type); } } return RTE_ETH_RX_DESC_AVAIL; } static int bnxt_tx_descriptor_status_op(void *tx_queue, uint16_t offset) { struct bnxt_tx_queue *txq = (struct bnxt_tx_queue *)tx_queue; struct bnxt_cp_ring_info *cpr = txq->cp_ring; uint32_t ring_mask, raw_cons, nb_tx_pkts = 0; struct cmpl_base *cp_desc_ring; int rc; rc = is_bnxt_in_error(txq->bp); if (rc) return rc; if (offset >= txq->nb_tx_desc) return -EINVAL; /* Return "desc done" if descriptor is available for use. */ if (bnxt_tx_bds_in_hw(txq) <= offset) return RTE_ETH_TX_DESC_DONE; raw_cons = cpr->cp_raw_cons; cp_desc_ring = cpr->cp_desc_ring; ring_mask = cpr->cp_ring_struct->ring_mask; /* Check to see if hw has posted a completion for the descriptor. */ while (1) { struct tx_cmpl *txcmp; uint32_t cons; cons = RING_CMPL(ring_mask, raw_cons); txcmp = (struct tx_cmpl *)&cp_desc_ring[cons]; if (!bnxt_cpr_cmp_valid(txcmp, raw_cons, ring_mask + 1)) break; if (CMP_TYPE(txcmp) == TX_CMPL_TYPE_TX_L2) nb_tx_pkts += rte_le_to_cpu_32(txcmp->opaque); if (nb_tx_pkts > offset) return RTE_ETH_TX_DESC_DONE; raw_cons = NEXT_RAW_CMP(raw_cons); } /* Descriptor is pending transmit, not yet completed by hardware. */ return RTE_ETH_TX_DESC_FULL; } int bnxt_filter_ctrl_op(struct rte_eth_dev *dev, enum rte_filter_type filter_type, enum rte_filter_op filter_op, void *arg) { struct bnxt *bp = dev->data->dev_private; int ret = 0; if (!bp) return -EIO; if (BNXT_ETH_DEV_IS_REPRESENTOR(dev)) { struct bnxt_representor *vfr = dev->data->dev_private; bp = vfr->parent_dev->data->dev_private; /* parent is deleted while children are still valid */ if (!bp) { PMD_DRV_LOG(DEBUG, "BNXT Port:%d VFR Error %d:%d\n", dev->data->port_id, filter_type, filter_op); return -EIO; } } ret = is_bnxt_in_error(bp); if (ret) return ret; switch (filter_type) { case RTE_ETH_FILTER_GENERIC: if (filter_op != RTE_ETH_FILTER_GET) return -EINVAL; /* PMD supports thread-safe flow operations. rte_flow API * functions can avoid mutex for multi-thread safety. */ dev->data->dev_flags |= RTE_ETH_DEV_FLOW_OPS_THREAD_SAFE; if (BNXT_TRUFLOW_EN(bp)) *(const void **)arg = &bnxt_ulp_rte_flow_ops; else *(const void **)arg = &bnxt_flow_ops; break; default: PMD_DRV_LOG(ERR, "Filter type (%d) not supported", filter_type); ret = -EINVAL; break; } return ret; } static const uint32_t * bnxt_dev_supported_ptypes_get_op(struct rte_eth_dev *dev) { static const uint32_t ptypes[] = { RTE_PTYPE_L2_ETHER_VLAN, RTE_PTYPE_L3_IPV4_EXT_UNKNOWN, RTE_PTYPE_L3_IPV6_EXT_UNKNOWN, RTE_PTYPE_L4_ICMP, RTE_PTYPE_L4_TCP, RTE_PTYPE_L4_UDP, RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN, RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN, RTE_PTYPE_INNER_L4_ICMP, RTE_PTYPE_INNER_L4_TCP, RTE_PTYPE_INNER_L4_UDP, RTE_PTYPE_UNKNOWN }; if (!dev->rx_pkt_burst) return NULL; return ptypes; } static int bnxt_map_regs(struct bnxt *bp, uint32_t *reg_arr, int count, int reg_win) { uint32_t reg_base = *reg_arr & 0xfffff000; uint32_t win_off; int i; for (i = 0; i < count; i++) { if ((reg_arr[i] & 0xfffff000) != reg_base) return -ERANGE; } win_off = BNXT_GRCPF_REG_WINDOW_BASE_OUT + (reg_win - 1) * 4; rte_write32(reg_base, (uint8_t *)bp->bar0 + win_off); return 0; } static int bnxt_map_ptp_regs(struct bnxt *bp) { struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; uint32_t *reg_arr; int rc, i; reg_arr = ptp->rx_regs; rc = bnxt_map_regs(bp, reg_arr, BNXT_PTP_RX_REGS, 5); if (rc) return rc; reg_arr = ptp->tx_regs; rc = bnxt_map_regs(bp, reg_arr, BNXT_PTP_TX_REGS, 6); if (rc) return rc; for (i = 0; i < BNXT_PTP_RX_REGS; i++) ptp->rx_mapped_regs[i] = 0x5000 + (ptp->rx_regs[i] & 0xfff); for (i = 0; i < BNXT_PTP_TX_REGS; i++) ptp->tx_mapped_regs[i] = 0x6000 + (ptp->tx_regs[i] & 0xfff); return 0; } static void bnxt_unmap_ptp_regs(struct bnxt *bp) { rte_write32(0, (uint8_t *)bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 16); rte_write32(0, (uint8_t *)bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 20); } static uint64_t bnxt_cc_read(struct bnxt *bp) { uint64_t ns; ns = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 + BNXT_GRCPF_REG_SYNC_TIME)); ns |= (uint64_t)(rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 + BNXT_GRCPF_REG_SYNC_TIME + 4))) << 32; return ns; } static int bnxt_get_tx_ts(struct bnxt *bp, uint64_t *ts) { struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; uint32_t fifo; fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 + ptp->tx_mapped_regs[BNXT_PTP_TX_FIFO])); if (fifo & BNXT_PTP_TX_FIFO_EMPTY) return -EAGAIN; fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 + ptp->tx_mapped_regs[BNXT_PTP_TX_FIFO])); *ts = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 + ptp->tx_mapped_regs[BNXT_PTP_TX_TS_L])); *ts |= (uint64_t)rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 + ptp->tx_mapped_regs[BNXT_PTP_TX_TS_H])) << 32; rte_read32((uint8_t *)bp->bar0 + ptp->tx_mapped_regs[BNXT_PTP_TX_SEQ]); return 0; } static int bnxt_clr_rx_ts(struct bnxt *bp, uint64_t *last_ts) { struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; struct bnxt_pf_info *pf = bp->pf; uint16_t port_id; int i = 0; uint32_t fifo; if (!ptp || (bp->flags & BNXT_FLAG_THOR_CHIP)) return -EINVAL; port_id = pf->port_id; fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 + ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO])); while ((fifo & BNXT_PTP_RX_FIFO_PENDING) && (i < BNXT_PTP_RX_PND_CNT)) { rte_write32(1 << port_id, (uint8_t *)bp->bar0 + ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO_ADV]); fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 + ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO])); *last_ts = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 + ptp->rx_mapped_regs[BNXT_PTP_RX_TS_L])); *last_ts |= (uint64_t)rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 + ptp->rx_mapped_regs[BNXT_PTP_RX_TS_H])) << 32; i++; } if (i >= BNXT_PTP_RX_PND_CNT) return -EBUSY; return 0; } static int bnxt_get_rx_ts(struct bnxt *bp, uint64_t *ts) { struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; struct bnxt_pf_info *pf = bp->pf; uint16_t port_id; uint32_t fifo; fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 + ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO])); if (!(fifo & BNXT_PTP_RX_FIFO_PENDING)) return -EAGAIN; port_id = pf->port_id; rte_write32(1 << port_id, (uint8_t *)bp->bar0 + ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO_ADV]); fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 + ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO])); if (fifo & BNXT_PTP_RX_FIFO_PENDING) return bnxt_clr_rx_ts(bp, ts); *ts = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 + ptp->rx_mapped_regs[BNXT_PTP_RX_TS_L])); *ts |= (uint64_t)rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 + ptp->rx_mapped_regs[BNXT_PTP_RX_TS_H])) << 32; return 0; } static int bnxt_timesync_write_time(struct rte_eth_dev *dev, const struct timespec *ts) { uint64_t ns; struct bnxt *bp = dev->data->dev_private; struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; if (!ptp) return -ENOTSUP; ns = rte_timespec_to_ns(ts); /* Set the timecounters to a new value. */ ptp->tc.nsec = ns; ptp->tx_tstamp_tc.nsec = ns; ptp->rx_tstamp_tc.nsec = ns; return 0; } static int bnxt_timesync_read_time(struct rte_eth_dev *dev, struct timespec *ts) { struct bnxt *bp = dev->data->dev_private; struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; uint64_t ns, systime_cycles = 0; int rc = 0; if (!ptp) return -ENOTSUP; if (BNXT_CHIP_THOR(bp)) rc = bnxt_hwrm_port_ts_query(bp, BNXT_PTP_FLAGS_CURRENT_TIME, &systime_cycles); else systime_cycles = bnxt_cc_read(bp); ns = rte_timecounter_update(&ptp->tc, systime_cycles); *ts = rte_ns_to_timespec(ns); return rc; } static int bnxt_timesync_enable(struct rte_eth_dev *dev) { struct bnxt *bp = dev->data->dev_private; struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; uint32_t shift = 0; int rc; if (!ptp) return -ENOTSUP; ptp->rx_filter = 1; ptp->tx_tstamp_en = 1; ptp->rxctl = BNXT_PTP_MSG_EVENTS; rc = bnxt_hwrm_ptp_cfg(bp); if (rc) return rc; memset(&ptp->tc, 0, sizeof(struct rte_timecounter)); memset(&ptp->rx_tstamp_tc, 0, sizeof(struct rte_timecounter)); memset(&ptp->tx_tstamp_tc, 0, sizeof(struct rte_timecounter)); ptp->tc.cc_mask = BNXT_CYCLECOUNTER_MASK; ptp->tc.cc_shift = shift; ptp->tc.nsec_mask = (1ULL << shift) - 1; ptp->rx_tstamp_tc.cc_mask = BNXT_CYCLECOUNTER_MASK; ptp->rx_tstamp_tc.cc_shift = shift; ptp->rx_tstamp_tc.nsec_mask = (1ULL << shift) - 1; ptp->tx_tstamp_tc.cc_mask = BNXT_CYCLECOUNTER_MASK; ptp->tx_tstamp_tc.cc_shift = shift; ptp->tx_tstamp_tc.nsec_mask = (1ULL << shift) - 1; if (!BNXT_CHIP_THOR(bp)) bnxt_map_ptp_regs(bp); else rc = bnxt_ptp_start(bp); return rc; } static int bnxt_timesync_disable(struct rte_eth_dev *dev) { struct bnxt *bp = dev->data->dev_private; struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; if (!ptp) return -ENOTSUP; ptp->rx_filter = 0; ptp->tx_tstamp_en = 0; ptp->rxctl = 0; bnxt_hwrm_ptp_cfg(bp); if (!BNXT_CHIP_THOR(bp)) bnxt_unmap_ptp_regs(bp); else bnxt_ptp_stop(bp); return 0; } static int bnxt_timesync_read_rx_timestamp(struct rte_eth_dev *dev, struct timespec *timestamp, uint32_t flags __rte_unused) { struct bnxt *bp = dev->data->dev_private; struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; uint64_t rx_tstamp_cycles = 0; uint64_t ns; if (!ptp) return -ENOTSUP; if (BNXT_CHIP_THOR(bp)) rx_tstamp_cycles = ptp->rx_timestamp; else bnxt_get_rx_ts(bp, &rx_tstamp_cycles); ns = rte_timecounter_update(&ptp->rx_tstamp_tc, rx_tstamp_cycles); *timestamp = rte_ns_to_timespec(ns); return 0; } static int bnxt_timesync_read_tx_timestamp(struct rte_eth_dev *dev, struct timespec *timestamp) { struct bnxt *bp = dev->data->dev_private; struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; uint64_t tx_tstamp_cycles = 0; uint64_t ns; int rc = 0; if (!ptp) return -ENOTSUP; if (BNXT_CHIP_THOR(bp)) rc = bnxt_hwrm_port_ts_query(bp, BNXT_PTP_FLAGS_PATH_TX, &tx_tstamp_cycles); else rc = bnxt_get_tx_ts(bp, &tx_tstamp_cycles); ns = rte_timecounter_update(&ptp->tx_tstamp_tc, tx_tstamp_cycles); *timestamp = rte_ns_to_timespec(ns); return rc; } static int bnxt_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta) { struct bnxt *bp = dev->data->dev_private; struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; if (!ptp) return -ENOTSUP; ptp->tc.nsec += delta; ptp->tx_tstamp_tc.nsec += delta; ptp->rx_tstamp_tc.nsec += delta; return 0; } static int bnxt_get_eeprom_length_op(struct rte_eth_dev *dev) { struct bnxt *bp = dev->data->dev_private; int rc; uint32_t dir_entries; uint32_t entry_length; rc = is_bnxt_in_error(bp); if (rc) return rc; PMD_DRV_LOG(INFO, PCI_PRI_FMT "\n", bp->pdev->addr.domain, bp->pdev->addr.bus, bp->pdev->addr.devid, bp->pdev->addr.function); rc = bnxt_hwrm_nvm_get_dir_info(bp, &dir_entries, &entry_length); if (rc != 0) return rc; return dir_entries * entry_length; } static int bnxt_get_eeprom_op(struct rte_eth_dev *dev, struct rte_dev_eeprom_info *in_eeprom) { struct bnxt *bp = dev->data->dev_private; uint32_t index; uint32_t offset; int rc; rc = is_bnxt_in_error(bp); if (rc) return rc; PMD_DRV_LOG(INFO, PCI_PRI_FMT " in_eeprom->offset = %d len = %d\n", bp->pdev->addr.domain, bp->pdev->addr.bus, bp->pdev->addr.devid, bp->pdev->addr.function, in_eeprom->offset, in_eeprom->length); if (in_eeprom->offset == 0) /* special offset value to get directory */ return bnxt_get_nvram_directory(bp, in_eeprom->length, in_eeprom->data); index = in_eeprom->offset >> 24; offset = in_eeprom->offset & 0xffffff; if (index != 0) return bnxt_hwrm_get_nvram_item(bp, index - 1, offset, in_eeprom->length, in_eeprom->data); return 0; } static bool bnxt_dir_type_is_ape_bin_format(uint16_t dir_type) { switch (dir_type) { case BNX_DIR_TYPE_CHIMP_PATCH: case BNX_DIR_TYPE_BOOTCODE: case BNX_DIR_TYPE_BOOTCODE_2: case BNX_DIR_TYPE_APE_FW: case BNX_DIR_TYPE_APE_PATCH: case BNX_DIR_TYPE_KONG_FW: case BNX_DIR_TYPE_KONG_PATCH: case BNX_DIR_TYPE_BONO_FW: case BNX_DIR_TYPE_BONO_PATCH: /* FALLTHROUGH */ return true; } return false; } static bool bnxt_dir_type_is_other_exec_format(uint16_t dir_type) { switch (dir_type) { case BNX_DIR_TYPE_AVS: case BNX_DIR_TYPE_EXP_ROM_MBA: case BNX_DIR_TYPE_PCIE: case BNX_DIR_TYPE_TSCF_UCODE: case BNX_DIR_TYPE_EXT_PHY: case BNX_DIR_TYPE_CCM: case BNX_DIR_TYPE_ISCSI_BOOT: case BNX_DIR_TYPE_ISCSI_BOOT_IPV6: case BNX_DIR_TYPE_ISCSI_BOOT_IPV4N6: /* FALLTHROUGH */ return true; } return false; } static bool bnxt_dir_type_is_executable(uint16_t dir_type) { return bnxt_dir_type_is_ape_bin_format(dir_type) || bnxt_dir_type_is_other_exec_format(dir_type); } static int bnxt_set_eeprom_op(struct rte_eth_dev *dev, struct rte_dev_eeprom_info *in_eeprom) { struct bnxt *bp = dev->data->dev_private; uint8_t index, dir_op; uint16_t type, ext, ordinal, attr; int rc; rc = is_bnxt_in_error(bp); if (rc) return rc; PMD_DRV_LOG(INFO, PCI_PRI_FMT " in_eeprom->offset = %d len = %d\n", bp->pdev->addr.domain, bp->pdev->addr.bus, bp->pdev->addr.devid, bp->pdev->addr.function, in_eeprom->offset, in_eeprom->length); if (!BNXT_PF(bp)) { PMD_DRV_LOG(ERR, "NVM write not supported from a VF\n"); return -EINVAL; } type = in_eeprom->magic >> 16; if (type == 0xffff) { /* special value for directory operations */ index = in_eeprom->magic & 0xff; dir_op = in_eeprom->magic >> 8; if (index == 0) return -EINVAL; switch (dir_op) { case 0x0e: /* erase */ if (in_eeprom->offset != ~in_eeprom->magic) return -EINVAL; return bnxt_hwrm_erase_nvram_directory(bp, index - 1); default: return -EINVAL; } } /* Create or re-write an NVM item: */ if (bnxt_dir_type_is_executable(type) == true) return -EOPNOTSUPP; ext = in_eeprom->magic & 0xffff; ordinal = in_eeprom->offset >> 16; attr = in_eeprom->offset & 0xffff; return bnxt_hwrm_flash_nvram(bp, type, ordinal, ext, attr, in_eeprom->data, in_eeprom->length); } /* * Initialization */ static const struct eth_dev_ops bnxt_dev_ops = { .dev_infos_get = bnxt_dev_info_get_op, .dev_close = bnxt_dev_close_op, .dev_configure = bnxt_dev_configure_op, .dev_start = bnxt_dev_start_op, .dev_stop = bnxt_dev_stop_op, .dev_set_link_up = bnxt_dev_set_link_up_op, .dev_set_link_down = bnxt_dev_set_link_down_op, .stats_get = bnxt_stats_get_op, .stats_reset = bnxt_stats_reset_op, .rx_queue_setup = bnxt_rx_queue_setup_op, .rx_queue_release = bnxt_rx_queue_release_op, .tx_queue_setup = bnxt_tx_queue_setup_op, .tx_queue_release = bnxt_tx_queue_release_op, .rx_queue_intr_enable = bnxt_rx_queue_intr_enable_op, .rx_queue_intr_disable = bnxt_rx_queue_intr_disable_op, .reta_update = bnxt_reta_update_op, .reta_query = bnxt_reta_query_op, .rss_hash_update = bnxt_rss_hash_update_op, .rss_hash_conf_get = bnxt_rss_hash_conf_get_op, .link_update = bnxt_link_update_op, .promiscuous_enable = bnxt_promiscuous_enable_op, .promiscuous_disable = bnxt_promiscuous_disable_op, .allmulticast_enable = bnxt_allmulticast_enable_op, .allmulticast_disable = bnxt_allmulticast_disable_op, .mac_addr_add = bnxt_mac_addr_add_op, .mac_addr_remove = bnxt_mac_addr_remove_op, .flow_ctrl_get = bnxt_flow_ctrl_get_op, .flow_ctrl_set = bnxt_flow_ctrl_set_op, .udp_tunnel_port_add = bnxt_udp_tunnel_port_add_op, .udp_tunnel_port_del = bnxt_udp_tunnel_port_del_op, .vlan_filter_set = bnxt_vlan_filter_set_op, .vlan_offload_set = bnxt_vlan_offload_set_op, .vlan_tpid_set = bnxt_vlan_tpid_set_op, .vlan_pvid_set = bnxt_vlan_pvid_set_op, .mtu_set = bnxt_mtu_set_op, .mac_addr_set = bnxt_set_default_mac_addr_op, .xstats_get = bnxt_dev_xstats_get_op, .xstats_get_names = bnxt_dev_xstats_get_names_op, .xstats_reset = bnxt_dev_xstats_reset_op, .fw_version_get = bnxt_fw_version_get, .set_mc_addr_list = bnxt_dev_set_mc_addr_list_op, .rxq_info_get = bnxt_rxq_info_get_op, .txq_info_get = bnxt_txq_info_get_op, .rx_burst_mode_get = bnxt_rx_burst_mode_get, .tx_burst_mode_get = bnxt_tx_burst_mode_get, .dev_led_on = bnxt_dev_led_on_op, .dev_led_off = bnxt_dev_led_off_op, .rx_queue_start = bnxt_rx_queue_start, .rx_queue_stop = bnxt_rx_queue_stop, .tx_queue_start = bnxt_tx_queue_start, .tx_queue_stop = bnxt_tx_queue_stop, .filter_ctrl = bnxt_filter_ctrl_op, .dev_supported_ptypes_get = bnxt_dev_supported_ptypes_get_op, .get_eeprom_length = bnxt_get_eeprom_length_op, .get_eeprom = bnxt_get_eeprom_op, .set_eeprom = bnxt_set_eeprom_op, .timesync_enable = bnxt_timesync_enable, .timesync_disable = bnxt_timesync_disable, .timesync_read_time = bnxt_timesync_read_time, .timesync_write_time = bnxt_timesync_write_time, .timesync_adjust_time = bnxt_timesync_adjust_time, .timesync_read_rx_timestamp = bnxt_timesync_read_rx_timestamp, .timesync_read_tx_timestamp = bnxt_timesync_read_tx_timestamp, }; static uint32_t bnxt_map_reset_regs(struct bnxt *bp, uint32_t reg) { uint32_t offset; /* Only pre-map the reset GRC registers using window 3 */ rte_write32(reg & 0xfffff000, (uint8_t *)bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 8); offset = BNXT_GRCP_WINDOW_3_BASE + (reg & 0xffc); return offset; } int bnxt_map_fw_health_status_regs(struct bnxt *bp) { struct bnxt_error_recovery_info *info = bp->recovery_info; uint32_t reg_base = 0xffffffff; int i; /* Only pre-map the monitoring GRC registers using window 2 */ for (i = 0; i < BNXT_FW_STATUS_REG_CNT; i++) { uint32_t reg = info->status_regs[i]; if (BNXT_FW_STATUS_REG_TYPE(reg) != BNXT_FW_STATUS_REG_TYPE_GRC) continue; if (reg_base == 0xffffffff) reg_base = reg & 0xfffff000; if ((reg & 0xfffff000) != reg_base) return -ERANGE; /* Use mask 0xffc as the Lower 2 bits indicates * address space location */ info->mapped_status_regs[i] = BNXT_GRCP_WINDOW_2_BASE + (reg & 0xffc); } if (reg_base == 0xffffffff) return 0; rte_write32(reg_base, (uint8_t *)bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4); return 0; } static void bnxt_write_fw_reset_reg(struct bnxt *bp, uint32_t index) { struct bnxt_error_recovery_info *info = bp->recovery_info; uint32_t delay = info->delay_after_reset[index]; uint32_t val = info->reset_reg_val[index]; uint32_t reg = info->reset_reg[index]; uint32_t type, offset; int ret; type = BNXT_FW_STATUS_REG_TYPE(reg); offset = BNXT_FW_STATUS_REG_OFF(reg); switch (type) { case BNXT_FW_STATUS_REG_TYPE_CFG: ret = rte_pci_write_config(bp->pdev, &val, sizeof(val), offset); if (ret < 0) { PMD_DRV_LOG(ERR, "Failed to write %#x at PCI offset %#x", val, offset); return; } break; case BNXT_FW_STATUS_REG_TYPE_GRC: offset = bnxt_map_reset_regs(bp, offset); rte_write32(val, (uint8_t *)bp->bar0 + offset); break; case BNXT_FW_STATUS_REG_TYPE_BAR0: rte_write32(val, (uint8_t *)bp->bar0 + offset); break; } /* wait on a specific interval of time until core reset is complete */ if (delay) rte_delay_ms(delay); } static void bnxt_dev_cleanup(struct bnxt *bp) { bp->eth_dev->data->dev_link.link_status = 0; bp->link_info->link_up = 0; if (bp->eth_dev->data->dev_started) bnxt_dev_stop_op(bp->eth_dev); bnxt_uninit_resources(bp, true); } static int bnxt_check_fw_reset_done(struct bnxt *bp) { int timeout = bp->fw_reset_max_msecs; uint16_t val = 0; int rc; do { rc = rte_pci_read_config(bp->pdev, &val, sizeof(val), PCI_SUBSYSTEM_ID_OFFSET); if (rc < 0) { PMD_DRV_LOG(ERR, "Failed to read PCI offset 0x%x", PCI_SUBSYSTEM_ID_OFFSET); return rc; } if (val != 0xffff) break; rte_delay_ms(1); } while (timeout--); if (val == 0xffff) { PMD_DRV_LOG(ERR, "Firmware reset aborted, PCI config space invalid\n"); return -1; } return 0; } static int bnxt_restore_vlan_filters(struct bnxt *bp) { struct rte_eth_dev *dev = bp->eth_dev; struct rte_vlan_filter_conf *vfc; int vidx, vbit, rc; uint16_t vlan_id; for (vlan_id = 1; vlan_id <= RTE_ETHER_MAX_VLAN_ID; vlan_id++) { vfc = &dev->data->vlan_filter_conf; vidx = vlan_id / 64; vbit = vlan_id % 64; /* Each bit corresponds to a VLAN id */ if (vfc->ids[vidx] & (UINT64_C(1) << vbit)) { rc = bnxt_add_vlan_filter(bp, vlan_id); if (rc) return rc; } } return 0; } static int bnxt_restore_mac_filters(struct bnxt *bp) { struct rte_eth_dev *dev = bp->eth_dev; struct rte_eth_dev_info dev_info; struct rte_ether_addr *addr; uint64_t pool_mask; uint32_t pool = 0; uint32_t i; int rc; if (BNXT_VF(bp) && !BNXT_VF_IS_TRUSTED(bp)) return 0; rc = bnxt_dev_info_get_op(dev, &dev_info); if (rc) return rc; /* replay MAC address configuration */ for (i = 1; i < dev_info.max_mac_addrs; i++) { addr = &dev->data->mac_addrs[i]; /* skip zero address */ if (rte_is_zero_ether_addr(addr)) continue; pool = 0; pool_mask = dev->data->mac_pool_sel[i]; do { if (pool_mask & 1ULL) { rc = bnxt_mac_addr_add_op(dev, addr, i, pool); if (rc) return rc; } pool_mask >>= 1; pool++; } while (pool_mask); } return 0; } static int bnxt_restore_mcast_mac_filters(struct bnxt *bp) { int ret = 0; ret = bnxt_dev_set_mc_addr_list_op(bp->eth_dev, bp->mcast_addr_list, bp->nb_mc_addr); if (ret) PMD_DRV_LOG(ERR, "Failed to restore multicast MAC addreeses\n"); return ret; } static int bnxt_restore_filters(struct bnxt *bp) { struct rte_eth_dev *dev = bp->eth_dev; int ret = 0; if (dev->data->all_multicast) { ret = bnxt_allmulticast_enable_op(dev); if (ret) return ret; } if (dev->data->promiscuous) { ret = bnxt_promiscuous_enable_op(dev); if (ret) return ret; } ret = bnxt_restore_mac_filters(bp); if (ret) return ret; /* if vlans are already programmed, this can fail with -EEXIST */ ret = bnxt_restore_vlan_filters(bp); if (ret && ret != -EEXIST) return ret; ret = bnxt_restore_mcast_mac_filters(bp); if (ret) return ret; return ret; } static int bnxt_check_fw_ready(struct bnxt *bp) { int timeout = bp->fw_reset_max_msecs ? : BNXT_MAX_FW_RESET_TIMEOUT; int rc = 0; do { rc = bnxt_hwrm_poll_ver_get(bp); if (rc == 0) break; rte_delay_ms(BNXT_FW_READY_WAIT_INTERVAL); timeout -= BNXT_FW_READY_WAIT_INTERVAL; } while (rc && timeout > 0); if (rc) PMD_DRV_LOG(ERR, "FW is not Ready after reset\n"); return rc; } static void bnxt_dev_recover(void *arg) { struct bnxt *bp = arg; int rc = 0; if (!bp->fw_reset_min_msecs) { rc = bnxt_check_fw_reset_done(bp); if (rc) goto err; } /* Clear Error flag so that device re-init should happen */ bp->flags &= ~BNXT_FLAG_FATAL_ERROR; rc = bnxt_check_fw_ready(bp); if (rc) goto err; rc = bnxt_init_resources(bp, true); if (rc) { PMD_DRV_LOG(ERR, "Failed to initialize resources after reset\n"); goto err; } /* clear reset flag as the device is initialized now */ bp->flags &= ~BNXT_FLAG_FW_RESET; rc = bnxt_dev_start_op(bp->eth_dev); if (rc) { PMD_DRV_LOG(ERR, "Failed to start port after reset\n"); goto err_start; } rc = bnxt_restore_filters(bp); if (rc) goto err_start; PMD_DRV_LOG(INFO, "Recovered from FW reset\n"); return; err_start: bnxt_dev_stop_op(bp->eth_dev); err: bp->flags |= BNXT_FLAG_FATAL_ERROR; bnxt_uninit_resources(bp, false); if (bp->eth_dev->data->dev_conf.intr_conf.rmv) rte_eth_dev_callback_process(bp->eth_dev, RTE_ETH_EVENT_INTR_RMV, NULL); PMD_DRV_LOG(ERR, "Failed to recover from FW reset\n"); } void bnxt_dev_reset_and_resume(void *arg) { struct bnxt *bp = arg; uint32_t us = US_PER_MS * bp->fw_reset_min_msecs; uint16_t val = 0; int rc; bnxt_dev_cleanup(bp); bnxt_wait_for_device_shutdown(bp); /* During some fatal firmware error conditions, the PCI config space * register 0x2e which normally contains the subsystem ID will become * 0xffff. This register will revert back to the normal value after * the chip has completed core reset. If we detect this condition, * we can poll this config register immediately for the value to revert. */ if (bp->flags & BNXT_FLAG_FATAL_ERROR) { rc = rte_pci_read_config(bp->pdev, &val, sizeof(val), PCI_SUBSYSTEM_ID_OFFSET); if (rc < 0) { PMD_DRV_LOG(ERR, "Failed to read PCI offset 0x%x", PCI_SUBSYSTEM_ID_OFFSET); return; } if (val == 0xffff) { bp->fw_reset_min_msecs = 0; us = 1; } } rc = rte_eal_alarm_set(us, bnxt_dev_recover, (void *)bp); if (rc) PMD_DRV_LOG(ERR, "Error setting recovery alarm"); } uint32_t bnxt_read_fw_status_reg(struct bnxt *bp, uint32_t index) { struct bnxt_error_recovery_info *info = bp->recovery_info; uint32_t reg = info->status_regs[index]; uint32_t type, offset, val = 0; int ret = 0; type = BNXT_FW_STATUS_REG_TYPE(reg); offset = BNXT_FW_STATUS_REG_OFF(reg); switch (type) { case BNXT_FW_STATUS_REG_TYPE_CFG: ret = rte_pci_read_config(bp->pdev, &val, sizeof(val), offset); if (ret < 0) PMD_DRV_LOG(ERR, "Failed to read PCI offset %#x", offset); break; case BNXT_FW_STATUS_REG_TYPE_GRC: offset = info->mapped_status_regs[index]; /* FALLTHROUGH */ case BNXT_FW_STATUS_REG_TYPE_BAR0: val = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 + offset)); break; } return val; } static int bnxt_fw_reset_all(struct bnxt *bp) { struct bnxt_error_recovery_info *info = bp->recovery_info; uint32_t i; int rc = 0; if (info->flags & BNXT_FLAG_ERROR_RECOVERY_HOST) { /* Reset through master function driver */ for (i = 0; i < info->reg_array_cnt; i++) bnxt_write_fw_reset_reg(bp, i); /* Wait for time specified by FW after triggering reset */ rte_delay_ms(info->master_func_wait_period_after_reset); } else if (info->flags & BNXT_FLAG_ERROR_RECOVERY_CO_CPU) { /* Reset with the help of Kong processor */ rc = bnxt_hwrm_fw_reset(bp); if (rc) PMD_DRV_LOG(ERR, "Failed to reset FW\n"); } return rc; } static void bnxt_fw_reset_cb(void *arg) { struct bnxt *bp = arg; struct bnxt_error_recovery_info *info = bp->recovery_info; int rc = 0; /* Only Master function can do FW reset */ if (bnxt_is_master_func(bp) && bnxt_is_recovery_enabled(bp)) { rc = bnxt_fw_reset_all(bp); if (rc) { PMD_DRV_LOG(ERR, "Adapter recovery failed\n"); return; } } /* if recovery method is ERROR_RECOVERY_CO_CPU, KONG will send * EXCEPTION_FATAL_ASYNC event to all the functions * (including MASTER FUNC). After receiving this Async, all the active * drivers should treat this case as FW initiated recovery */ if (info->flags & BNXT_FLAG_ERROR_RECOVERY_HOST) { bp->fw_reset_min_msecs = BNXT_MIN_FW_READY_TIMEOUT; bp->fw_reset_max_msecs = BNXT_MAX_FW_RESET_TIMEOUT; /* To recover from error */ rte_eal_alarm_set(US_PER_MS, bnxt_dev_reset_and_resume, (void *)bp); } } /* Driver should poll FW heartbeat, reset_counter with the frequency * advertised by FW in HWRM_ERROR_RECOVERY_QCFG. * When the driver detects heartbeat stop or change in reset_counter, * it has to trigger a reset to recover from the error condition. * A “master PF” is the function who will have the privilege to * initiate the chimp reset. The master PF will be elected by the * firmware and will be notified through async message. */ static void bnxt_check_fw_health(void *arg) { struct bnxt *bp = arg; struct bnxt_error_recovery_info *info = bp->recovery_info; uint32_t val = 0, wait_msec; if (!info || !bnxt_is_recovery_enabled(bp) || is_bnxt_in_error(bp)) return; val = bnxt_read_fw_status_reg(bp, BNXT_FW_HEARTBEAT_CNT_REG); if (val == info->last_heart_beat) goto reset; info->last_heart_beat = val; val = bnxt_read_fw_status_reg(bp, BNXT_FW_RECOVERY_CNT_REG); if (val != info->last_reset_counter) goto reset; info->last_reset_counter = val; rte_eal_alarm_set(US_PER_MS * info->driver_polling_freq, bnxt_check_fw_health, (void *)bp); return; reset: /* Stop DMA to/from device */ bp->flags |= BNXT_FLAG_FATAL_ERROR; bp->flags |= BNXT_FLAG_FW_RESET; bnxt_stop_rxtx(bp); PMD_DRV_LOG(ERR, "Detected FW dead condition\n"); if (bnxt_is_master_func(bp)) wait_msec = info->master_func_wait_period; else wait_msec = info->normal_func_wait_period; rte_eal_alarm_set(US_PER_MS * wait_msec, bnxt_fw_reset_cb, (void *)bp); } void bnxt_schedule_fw_health_check(struct bnxt *bp) { uint32_t polling_freq; pthread_mutex_lock(&bp->health_check_lock); if (!bnxt_is_recovery_enabled(bp)) goto done; if (bp->flags & BNXT_FLAG_FW_HEALTH_CHECK_SCHEDULED) goto done; polling_freq = bp->recovery_info->driver_polling_freq; rte_eal_alarm_set(US_PER_MS * polling_freq, bnxt_check_fw_health, (void *)bp); bp->flags |= BNXT_FLAG_FW_HEALTH_CHECK_SCHEDULED; done: pthread_mutex_unlock(&bp->health_check_lock); } static void bnxt_cancel_fw_health_check(struct bnxt *bp) { rte_eal_alarm_cancel(bnxt_check_fw_health, (void *)bp); bp->flags &= ~BNXT_FLAG_FW_HEALTH_CHECK_SCHEDULED; } static bool bnxt_vf_pciid(uint16_t device_id) { switch (device_id) { case BROADCOM_DEV_ID_57304_VF: case BROADCOM_DEV_ID_57406_VF: case BROADCOM_DEV_ID_5731X_VF: case BROADCOM_DEV_ID_5741X_VF: case BROADCOM_DEV_ID_57414_VF: case BROADCOM_DEV_ID_STRATUS_NIC_VF1: case BROADCOM_DEV_ID_STRATUS_NIC_VF2: case BROADCOM_DEV_ID_58802_VF: case BROADCOM_DEV_ID_57500_VF1: case BROADCOM_DEV_ID_57500_VF2: /* FALLTHROUGH */ return true; default: return false; } } static bool bnxt_thor_device(uint16_t device_id) { switch (device_id) { case BROADCOM_DEV_ID_57508: case BROADCOM_DEV_ID_57504: case BROADCOM_DEV_ID_57502: case BROADCOM_DEV_ID_57508_MF1: case BROADCOM_DEV_ID_57504_MF1: case BROADCOM_DEV_ID_57502_MF1: case BROADCOM_DEV_ID_57508_MF2: case BROADCOM_DEV_ID_57504_MF2: case BROADCOM_DEV_ID_57502_MF2: case BROADCOM_DEV_ID_57500_VF1: case BROADCOM_DEV_ID_57500_VF2: /* FALLTHROUGH */ return true; default: return false; } } bool bnxt_stratus_device(struct bnxt *bp) { uint16_t device_id = bp->pdev->id.device_id; switch (device_id) { case BROADCOM_DEV_ID_STRATUS_NIC: case BROADCOM_DEV_ID_STRATUS_NIC_VF1: case BROADCOM_DEV_ID_STRATUS_NIC_VF2: /* FALLTHROUGH */ return true; default: return false; } } static int bnxt_map_pci_bars(struct rte_eth_dev *eth_dev) { struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); struct bnxt *bp = eth_dev->data->dev_private; /* enable device (incl. PCI PM wakeup), and bus-mastering */ bp->bar0 = (void *)pci_dev->mem_resource[0].addr; bp->doorbell_base = (void *)pci_dev->mem_resource[2].addr; if (!bp->bar0 || !bp->doorbell_base) { PMD_DRV_LOG(ERR, "Unable to access Hardware\n"); return -ENODEV; } bp->eth_dev = eth_dev; bp->pdev = pci_dev; return 0; } static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp, struct bnxt_ctx_pg_info *ctx_pg, uint32_t mem_size, const char *suffix, uint16_t idx) { struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; const struct rte_memzone *mz = NULL; char mz_name[RTE_MEMZONE_NAMESIZE]; rte_iova_t mz_phys_addr; uint64_t valid_bits = 0; uint32_t sz; int i; if (!mem_size) return 0; rmem->nr_pages = RTE_ALIGN_MUL_CEIL(mem_size, BNXT_PAGE_SIZE) / BNXT_PAGE_SIZE; rmem->page_size = BNXT_PAGE_SIZE; rmem->pg_arr = ctx_pg->ctx_pg_arr; rmem->dma_arr = ctx_pg->ctx_dma_arr; rmem->flags = BNXT_RMEM_VALID_PTE_FLAG; valid_bits = PTU_PTE_VALID; if (rmem->nr_pages > 1) { snprintf(mz_name, RTE_MEMZONE_NAMESIZE, "bnxt_ctx_pg_tbl%s_%x_%d", suffix, idx, bp->eth_dev->data->port_id); mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0; mz = rte_memzone_lookup(mz_name); if (!mz) { mz = rte_memzone_reserve_aligned(mz_name, rmem->nr_pages * 8, bp->eth_dev->device->numa_node, RTE_MEMZONE_2MB | RTE_MEMZONE_SIZE_HINT_ONLY | RTE_MEMZONE_IOVA_CONTIG, BNXT_PAGE_SIZE); if (mz == NULL) return -ENOMEM; } memset(mz->addr, 0, mz->len); mz_phys_addr = mz->iova; rmem->pg_tbl = mz->addr; rmem->pg_tbl_map = mz_phys_addr; rmem->pg_tbl_mz = mz; } snprintf(mz_name, RTE_MEMZONE_NAMESIZE, "bnxt_ctx_%s_%x_%d", suffix, idx, bp->eth_dev->data->port_id); mz = rte_memzone_lookup(mz_name); if (!mz) { mz = rte_memzone_reserve_aligned(mz_name, mem_size, bp->eth_dev->device->numa_node, RTE_MEMZONE_1GB | RTE_MEMZONE_SIZE_HINT_ONLY | RTE_MEMZONE_IOVA_CONTIG, BNXT_PAGE_SIZE); if (mz == NULL) return -ENOMEM; } memset(mz->addr, 0, mz->len); mz_phys_addr = mz->iova; for (sz = 0, i = 0; sz < mem_size; sz += BNXT_PAGE_SIZE, i++) { rmem->pg_arr[i] = ((char *)mz->addr) + sz; rmem->dma_arr[i] = mz_phys_addr + sz; if (rmem->nr_pages > 1) { if (i == rmem->nr_pages - 2 && (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) valid_bits |= PTU_PTE_NEXT_TO_LAST; else if (i == rmem->nr_pages - 1 && (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) valid_bits |= PTU_PTE_LAST; rmem->pg_tbl[i] = rte_cpu_to_le_64(rmem->dma_arr[i] | valid_bits); } } rmem->mz = mz; if (rmem->vmem_size) rmem->vmem = (void **)mz->addr; rmem->dma_arr[0] = mz_phys_addr; return 0; } static void bnxt_free_ctx_mem(struct bnxt *bp) { int i; if (!bp->ctx || !(bp->ctx->flags & BNXT_CTX_FLAG_INITED)) return; bp->ctx->flags &= ~BNXT_CTX_FLAG_INITED; rte_memzone_free(bp->ctx->qp_mem.ring_mem.mz); rte_memzone_free(bp->ctx->srq_mem.ring_mem.mz); rte_memzone_free(bp->ctx->cq_mem.ring_mem.mz); rte_memzone_free(bp->ctx->vnic_mem.ring_mem.mz); rte_memzone_free(bp->ctx->stat_mem.ring_mem.mz); rte_memzone_free(bp->ctx->qp_mem.ring_mem.pg_tbl_mz); rte_memzone_free(bp->ctx->srq_mem.ring_mem.pg_tbl_mz); rte_memzone_free(bp->ctx->cq_mem.ring_mem.pg_tbl_mz); rte_memzone_free(bp->ctx->vnic_mem.ring_mem.pg_tbl_mz); rte_memzone_free(bp->ctx->stat_mem.ring_mem.pg_tbl_mz); for (i = 0; i < bp->ctx->tqm_fp_rings_count + 1; i++) { if (bp->ctx->tqm_mem[i]) rte_memzone_free(bp->ctx->tqm_mem[i]->ring_mem.mz); } rte_free(bp->ctx); bp->ctx = NULL; } #define bnxt_roundup(x, y) ((((x) + ((y) - 1)) / (y)) * (y)) #define min_t(type, x, y) ({ \ type __min1 = (x); \ type __min2 = (y); \ __min1 < __min2 ? __min1 : __min2; }) #define max_t(type, x, y) ({ \ type __max1 = (x); \ type __max2 = (y); \ __max1 > __max2 ? __max1 : __max2; }) #define clamp_t(type, _x, min, max) min_t(type, max_t(type, _x, min), max) int bnxt_alloc_ctx_mem(struct bnxt *bp) { struct bnxt_ctx_pg_info *ctx_pg; struct bnxt_ctx_mem_info *ctx; uint32_t mem_size, ena, entries; uint32_t entries_sp, min; int i, rc; rc = bnxt_hwrm_func_backing_store_qcaps(bp); if (rc) { PMD_DRV_LOG(ERR, "Query context mem capability failed\n"); return rc; } ctx = bp->ctx; if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED)) return 0; ctx_pg = &ctx->qp_mem; ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries; mem_size = ctx->qp_entry_size * ctx_pg->entries; rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "qp_mem", 0); if (rc) return rc; ctx_pg = &ctx->srq_mem; ctx_pg->entries = ctx->srq_max_l2_entries; mem_size = ctx->srq_entry_size * ctx_pg->entries; rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "srq_mem", 0); if (rc) return rc; ctx_pg = &ctx->cq_mem; ctx_pg->entries = ctx->cq_max_l2_entries; mem_size = ctx->cq_entry_size * ctx_pg->entries; rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "cq_mem", 0); if (rc) return rc; ctx_pg = &ctx->vnic_mem; ctx_pg->entries = ctx->vnic_max_vnic_entries + ctx->vnic_max_ring_table_entries; mem_size = ctx->vnic_entry_size * ctx_pg->entries; rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "vnic_mem", 0); if (rc) return rc; ctx_pg = &ctx->stat_mem; ctx_pg->entries = ctx->stat_max_entries; mem_size = ctx->stat_entry_size * ctx_pg->entries; rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "stat_mem", 0); if (rc) return rc; min = ctx->tqm_min_entries_per_ring; entries_sp = ctx->qp_max_l2_entries + ctx->vnic_max_vnic_entries + 2 * ctx->qp_min_qp1_entries + min; entries_sp = bnxt_roundup(entries_sp, ctx->tqm_entries_multiple); entries = ctx->qp_max_l2_entries + ctx->qp_min_qp1_entries; entries = bnxt_roundup(entries, ctx->tqm_entries_multiple); entries = clamp_t(uint32_t, entries, min, ctx->tqm_max_entries_per_ring); for (i = 0, ena = 0; i < ctx->tqm_fp_rings_count + 1; i++) { ctx_pg = ctx->tqm_mem[i]; ctx_pg->entries = i ? entries : entries_sp; mem_size = ctx->tqm_entry_size * ctx_pg->entries; rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "tqm_mem", i); if (rc) return rc; ena |= HWRM_FUNC_BACKING_STORE_CFG_INPUT_ENABLES_TQM_SP << i; } ena |= FUNC_BACKING_STORE_CFG_INPUT_DFLT_ENABLES; rc = bnxt_hwrm_func_backing_store_cfg(bp, ena); if (rc) PMD_DRV_LOG(ERR, "Failed to configure context mem: rc = %d\n", rc); else ctx->flags |= BNXT_CTX_FLAG_INITED; return rc; } static int bnxt_alloc_stats_mem(struct bnxt *bp) { struct rte_pci_device *pci_dev = bp->pdev; char mz_name[RTE_MEMZONE_NAMESIZE]; const struct rte_memzone *mz = NULL; uint32_t total_alloc_len; rte_iova_t mz_phys_addr; if (pci_dev->id.device_id == BROADCOM_DEV_ID_NS2) return 0; snprintf(mz_name, RTE_MEMZONE_NAMESIZE, "bnxt_" PCI_PRI_FMT "-%s", pci_dev->addr.domain, pci_dev->addr.bus, pci_dev->addr.devid, pci_dev->addr.function, "rx_port_stats"); mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0; mz = rte_memzone_lookup(mz_name); total_alloc_len = RTE_CACHE_LINE_ROUNDUP(sizeof(struct rx_port_stats) + sizeof(struct rx_port_stats_ext) + 512); if (!mz) { mz = rte_memzone_reserve(mz_name, total_alloc_len, SOCKET_ID_ANY, RTE_MEMZONE_2MB | RTE_MEMZONE_SIZE_HINT_ONLY | RTE_MEMZONE_IOVA_CONTIG); if (mz == NULL) return -ENOMEM; } memset(mz->addr, 0, mz->len); mz_phys_addr = mz->iova; bp->rx_mem_zone = (const void *)mz; bp->hw_rx_port_stats = mz->addr; bp->hw_rx_port_stats_map = mz_phys_addr; snprintf(mz_name, RTE_MEMZONE_NAMESIZE, "bnxt_" PCI_PRI_FMT "-%s", pci_dev->addr.domain, pci_dev->addr.bus, pci_dev->addr.devid, pci_dev->addr.function, "tx_port_stats"); mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0; mz = rte_memzone_lookup(mz_name); total_alloc_len = RTE_CACHE_LINE_ROUNDUP(sizeof(struct tx_port_stats) + sizeof(struct tx_port_stats_ext) + 512); if (!mz) { mz = rte_memzone_reserve(mz_name, total_alloc_len, SOCKET_ID_ANY, RTE_MEMZONE_2MB | RTE_MEMZONE_SIZE_HINT_ONLY | RTE_MEMZONE_IOVA_CONTIG); if (mz == NULL) return -ENOMEM; } memset(mz->addr, 0, mz->len); mz_phys_addr = mz->iova; bp->tx_mem_zone = (const void *)mz; bp->hw_tx_port_stats = mz->addr; bp->hw_tx_port_stats_map = mz_phys_addr; bp->flags |= BNXT_FLAG_PORT_STATS; /* Display extended statistics if FW supports it */ if (bp->hwrm_spec_code < HWRM_SPEC_CODE_1_8_4 || bp->hwrm_spec_code == HWRM_SPEC_CODE_1_9_0 || !(bp->flags & BNXT_FLAG_EXT_STATS_SUPPORTED)) return 0; bp->hw_rx_port_stats_ext = (void *) ((uint8_t *)bp->hw_rx_port_stats + sizeof(struct rx_port_stats)); bp->hw_rx_port_stats_ext_map = bp->hw_rx_port_stats_map + sizeof(struct rx_port_stats); bp->flags |= BNXT_FLAG_EXT_RX_PORT_STATS; if (bp->hwrm_spec_code < HWRM_SPEC_CODE_1_9_2 || bp->flags & BNXT_FLAG_EXT_STATS_SUPPORTED) { bp->hw_tx_port_stats_ext = (void *) ((uint8_t *)bp->hw_tx_port_stats + sizeof(struct tx_port_stats)); bp->hw_tx_port_stats_ext_map = bp->hw_tx_port_stats_map + sizeof(struct tx_port_stats); bp->flags |= BNXT_FLAG_EXT_TX_PORT_STATS; } return 0; } static int bnxt_setup_mac_addr(struct rte_eth_dev *eth_dev) { struct bnxt *bp = eth_dev->data->dev_private; size_t max_mac_addr = RTE_MIN(bp->max_l2_ctx, ETH_NUM_RECEIVE_MAC_ADDR); int rc = 0; if (bp->max_l2_ctx > ETH_NUM_RECEIVE_MAC_ADDR) PMD_DRV_LOG(INFO, "Max number of MAC addrs supported is %d, but will be limited to %d\n", bp->max_l2_ctx, ETH_NUM_RECEIVE_MAC_ADDR); eth_dev->data->mac_addrs = rte_zmalloc("bnxt_mac_addr_tbl", RTE_ETHER_ADDR_LEN * max_mac_addr, 0); if (eth_dev->data->mac_addrs == NULL) { PMD_DRV_LOG(ERR, "Failed to alloc MAC addr tbl\n"); return -ENOMEM; } if (!BNXT_HAS_DFLT_MAC_SET(bp)) { if (BNXT_PF(bp)) return -EINVAL; /* Generate a random MAC address, if none was assigned by PF */ PMD_DRV_LOG(INFO, "VF MAC address not assigned by Host PF\n"); bnxt_eth_hw_addr_random(bp->mac_addr); PMD_DRV_LOG(INFO, "Assign random MAC:%02X:%02X:%02X:%02X:%02X:%02X\n", bp->mac_addr[0], bp->mac_addr[1], bp->mac_addr[2], bp->mac_addr[3], bp->mac_addr[4], bp->mac_addr[5]); rc = bnxt_hwrm_set_mac(bp); if (rc) return rc; } /* Copy the permanent MAC from the FUNC_QCAPS response */ memcpy(ð_dev->data->mac_addrs[0], bp->mac_addr, RTE_ETHER_ADDR_LEN); /* * Allocate memory to hold multicast mac addresses added. * Used to restore them during reset recovery */ bp->mcast_addr_list = rte_zmalloc("bnxt_mcast_addr_tbl", sizeof(struct rte_ether_addr) * BNXT_MAX_MC_ADDRS, 0); if (bp->mcast_addr_list == NULL) { PMD_DRV_LOG(ERR, "Failed to allocate multicast addr table\n"); return -ENOMEM; } bp->mc_list_dma_addr = rte_malloc_virt2iova(bp->mcast_addr_list); if (bp->mc_list_dma_addr == RTE_BAD_IOVA) { PMD_DRV_LOG(ERR, "Fail to map mcast_addr_list to physical memory\n"); return -ENOMEM; } return rc; } static int bnxt_restore_dflt_mac(struct bnxt *bp) { int rc = 0; /* MAC is already configured in FW */ if (BNXT_HAS_DFLT_MAC_SET(bp)) return 0; /* Restore the old MAC configured */ rc = bnxt_hwrm_set_mac(bp); if (rc) PMD_DRV_LOG(ERR, "Failed to restore MAC address\n"); return rc; } static void bnxt_config_vf_req_fwd(struct bnxt *bp) { if (!BNXT_PF(bp)) return; memset(bp->pf->vf_req_fwd, 0, sizeof(bp->pf->vf_req_fwd)); if (!(bp->fw_cap & BNXT_FW_CAP_LINK_ADMIN)) BNXT_HWRM_CMD_TO_FORWARD(HWRM_PORT_PHY_QCFG); BNXT_HWRM_CMD_TO_FORWARD(HWRM_FUNC_CFG); BNXT_HWRM_CMD_TO_FORWARD(HWRM_FUNC_VF_CFG); BNXT_HWRM_CMD_TO_FORWARD(HWRM_CFA_L2_FILTER_ALLOC); BNXT_HWRM_CMD_TO_FORWARD(HWRM_OEM_CMD); } uint16_t bnxt_get_svif(uint16_t port_id, bool func_svif, enum bnxt_ulp_intf_type type) { struct rte_eth_dev *eth_dev; struct bnxt *bp; eth_dev = &rte_eth_devices[port_id]; if (BNXT_ETH_DEV_IS_REPRESENTOR(eth_dev)) { struct bnxt_representor *vfr = eth_dev->data->dev_private; if (!vfr) return 0; if (type == BNXT_ULP_INTF_TYPE_VF_REP) return vfr->svif; eth_dev = vfr->parent_dev; } bp = eth_dev->data->dev_private; return func_svif ? bp->func_svif : bp->port_svif; } uint16_t bnxt_get_vnic_id(uint16_t port, enum bnxt_ulp_intf_type type) { struct rte_eth_dev *eth_dev; struct bnxt_vnic_info *vnic; struct bnxt *bp; eth_dev = &rte_eth_devices[port]; if (BNXT_ETH_DEV_IS_REPRESENTOR(eth_dev)) { struct bnxt_representor *vfr = eth_dev->data->dev_private; if (!vfr) return 0; if (type == BNXT_ULP_INTF_TYPE_VF_REP) return vfr->dflt_vnic_id; eth_dev = vfr->parent_dev; } bp = eth_dev->data->dev_private; vnic = BNXT_GET_DEFAULT_VNIC(bp); return vnic->fw_vnic_id; } uint16_t bnxt_get_fw_func_id(uint16_t port, enum bnxt_ulp_intf_type type) { struct rte_eth_dev *eth_dev; struct bnxt *bp; eth_dev = &rte_eth_devices[port]; if (BNXT_ETH_DEV_IS_REPRESENTOR(eth_dev)) { struct bnxt_representor *vfr = eth_dev->data->dev_private; if (!vfr) return 0; if (type == BNXT_ULP_INTF_TYPE_VF_REP) return vfr->fw_fid; eth_dev = vfr->parent_dev; } bp = eth_dev->data->dev_private; return bp->fw_fid; } enum bnxt_ulp_intf_type bnxt_get_interface_type(uint16_t port) { struct rte_eth_dev *eth_dev; struct bnxt *bp; eth_dev = &rte_eth_devices[port]; if (BNXT_ETH_DEV_IS_REPRESENTOR(eth_dev)) return BNXT_ULP_INTF_TYPE_VF_REP; bp = eth_dev->data->dev_private; if (BNXT_PF(bp)) return BNXT_ULP_INTF_TYPE_PF; else if (BNXT_VF_IS_TRUSTED(bp)) return BNXT_ULP_INTF_TYPE_TRUSTED_VF; else if (BNXT_VF(bp)) return BNXT_ULP_INTF_TYPE_VF; return BNXT_ULP_INTF_TYPE_INVALID; } uint16_t bnxt_get_phy_port_id(uint16_t port_id) { struct bnxt_representor *vfr; struct rte_eth_dev *eth_dev; struct bnxt *bp; eth_dev = &rte_eth_devices[port_id]; if (BNXT_ETH_DEV_IS_REPRESENTOR(eth_dev)) { vfr = eth_dev->data->dev_private; if (!vfr) return 0; eth_dev = vfr->parent_dev; } bp = eth_dev->data->dev_private; return BNXT_PF(bp) ? bp->pf->port_id : bp->parent->port_id; } uint16_t bnxt_get_parif(uint16_t port_id, enum bnxt_ulp_intf_type type) { struct rte_eth_dev *eth_dev; struct bnxt *bp; eth_dev = &rte_eth_devices[port_id]; if (BNXT_ETH_DEV_IS_REPRESENTOR(eth_dev)) { struct bnxt_representor *vfr = eth_dev->data->dev_private; if (!vfr) return 0; if (type == BNXT_ULP_INTF_TYPE_VF_REP) return vfr->fw_fid - 1; eth_dev = vfr->parent_dev; } bp = eth_dev->data->dev_private; return BNXT_PF(bp) ? bp->fw_fid - 1 : bp->parent->fid - 1; } uint16_t bnxt_get_vport(uint16_t port_id) { return (1 << bnxt_get_phy_port_id(port_id)); } static void bnxt_alloc_error_recovery_info(struct bnxt *bp) { struct bnxt_error_recovery_info *info = bp->recovery_info; if (info) { if (!(bp->fw_cap & BNXT_FW_CAP_HCOMM_FW_STATUS)) memset(info, 0, sizeof(*info)); return; } if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) return; info = rte_zmalloc("bnxt_hwrm_error_recovery_qcfg", sizeof(*info), 0); if (!info) bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; bp->recovery_info = info; } static void bnxt_check_fw_status(struct bnxt *bp) { uint32_t fw_status; if (!(bp->recovery_info && (bp->fw_cap & BNXT_FW_CAP_HCOMM_FW_STATUS))) return; fw_status = bnxt_read_fw_status_reg(bp, BNXT_FW_STATUS_REG); if (fw_status != BNXT_FW_STATUS_HEALTHY) PMD_DRV_LOG(ERR, "Firmware not responding, status: %#x\n", fw_status); } static int bnxt_map_hcomm_fw_status_reg(struct bnxt *bp) { struct bnxt_error_recovery_info *info = bp->recovery_info; uint32_t status_loc; uint32_t sig_ver; rte_write32(HCOMM_STATUS_STRUCT_LOC, (uint8_t *)bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4); sig_ver = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 + BNXT_GRCP_WINDOW_2_BASE + offsetof(struct hcomm_status, sig_ver))); /* If the signature is absent, then FW does not support this feature */ if ((sig_ver & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) return 0; if (!info) { info = rte_zmalloc("bnxt_hwrm_error_recovery_qcfg", sizeof(*info), 0); if (!info) return -ENOMEM; bp->recovery_info = info; } else { memset(info, 0, sizeof(*info)); } status_loc = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 + BNXT_GRCP_WINDOW_2_BASE + offsetof(struct hcomm_status, fw_status_loc))); /* Only pre-map the FW health status GRC register */ if (BNXT_FW_STATUS_REG_TYPE(status_loc) != BNXT_FW_STATUS_REG_TYPE_GRC) return 0; info->status_regs[BNXT_FW_STATUS_REG] = status_loc; info->mapped_status_regs[BNXT_FW_STATUS_REG] = BNXT_GRCP_WINDOW_2_BASE + (status_loc & BNXT_GRCP_OFFSET_MASK); rte_write32((status_loc & BNXT_GRCP_BASE_MASK), (uint8_t *)bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4); bp->fw_cap |= BNXT_FW_CAP_HCOMM_FW_STATUS; return 0; } /* This function gets the FW version along with the * capabilities(MAX and current) of the function, vnic, * error recovery, phy and other chip related info */ static int bnxt_get_config(struct bnxt *bp) { uint16_t mtu; int rc = 0; bp->fw_cap = 0; rc = bnxt_map_hcomm_fw_status_reg(bp); if (rc) return rc; rc = bnxt_hwrm_ver_get(bp, DFLT_HWRM_CMD_TIMEOUT); if (rc) { bnxt_check_fw_status(bp); return rc; } rc = bnxt_hwrm_func_reset(bp); if (rc) return -EIO; rc = bnxt_hwrm_vnic_qcaps(bp); if (rc) return rc; rc = bnxt_hwrm_queue_qportcfg(bp); if (rc) return rc; /* Get the MAX capabilities for this function. * This function also allocates context memory for TQM rings and * informs the firmware about this allocated backing store memory. */ rc = bnxt_hwrm_func_qcaps(bp); if (rc) return rc; rc = bnxt_hwrm_func_qcfg(bp, &mtu); if (rc) return rc; bnxt_hwrm_port_mac_qcfg(bp); bnxt_hwrm_parent_pf_qcfg(bp); bnxt_hwrm_port_phy_qcaps(bp); bnxt_alloc_error_recovery_info(bp); /* Get the adapter error recovery support info */ rc = bnxt_hwrm_error_recovery_qcfg(bp); if (rc) bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; bnxt_hwrm_port_led_qcaps(bp); return 0; } static int bnxt_init_locks(struct bnxt *bp) { int err; err = pthread_mutex_init(&bp->flow_lock, NULL); if (err) { PMD_DRV_LOG(ERR, "Unable to initialize flow_lock\n"); return err; } err = pthread_mutex_init(&bp->def_cp_lock, NULL); if (err) { PMD_DRV_LOG(ERR, "Unable to initialize def_cp_lock\n"); return err; } err = pthread_mutex_init(&bp->health_check_lock, NULL); if (err) PMD_DRV_LOG(ERR, "Unable to initialize health_check_lock\n"); return err; } /* This should be called after we have queried trusted VF cap */ static int bnxt_alloc_switch_domain(struct bnxt *bp) { int rc = 0; if (BNXT_PF(bp) || BNXT_VF_IS_TRUSTED(bp)) { rc = rte_eth_switch_domain_alloc(&bp->switch_domain_id); if (rc) PMD_DRV_LOG(ERR, "Failed to alloc switch domain: %d\n", rc); else PMD_DRV_LOG(INFO, "Switch domain allocated %d\n", bp->switch_domain_id); } return rc; } static int bnxt_init_resources(struct bnxt *bp, bool reconfig_dev) { int rc = 0; rc = bnxt_get_config(bp); if (rc) return rc; rc = bnxt_alloc_switch_domain(bp); if (rc) return rc; if (!reconfig_dev) { rc = bnxt_setup_mac_addr(bp->eth_dev); if (rc) return rc; } else { rc = bnxt_restore_dflt_mac(bp); if (rc) return rc; } bnxt_config_vf_req_fwd(bp); rc = bnxt_hwrm_func_driver_register(bp); if (rc) { PMD_DRV_LOG(ERR, "Failed to register driver"); return -EBUSY; } if (BNXT_PF(bp)) { if (bp->pdev->max_vfs) { rc = bnxt_hwrm_allocate_vfs(bp, bp->pdev->max_vfs); if (rc) { PMD_DRV_LOG(ERR, "Failed to allocate VFs\n"); return rc; } } else { rc = bnxt_hwrm_allocate_pf_only(bp); if (rc) { PMD_DRV_LOG(ERR, "Failed to allocate PF resources"); return rc; } } } if (!reconfig_dev) { bp->rss_conf.rss_key = rte_zmalloc("bnxt_rss_key", HW_HASH_KEY_SIZE, 0); if (bp->rss_conf.rss_key == NULL) { PMD_DRV_LOG(ERR, "port %u cannot allocate RSS hash key memory", bp->eth_dev->data->port_id); return -ENOMEM; } } rc = bnxt_alloc_mem(bp, reconfig_dev); if (rc) return rc; rc = bnxt_setup_int(bp); if (rc) return rc; rc = bnxt_request_int(bp); if (rc) return rc; rc = bnxt_init_ctx_mem(bp); if (rc) { PMD_DRV_LOG(ERR, "Failed to init adv_flow_counters\n"); return rc; } return 0; } static int bnxt_parse_devarg_truflow(__rte_unused const char *key, const char *value, void *opaque_arg) { struct bnxt *bp = opaque_arg; unsigned long truflow; char *end = NULL; if (!value || !opaque_arg) { PMD_DRV_LOG(ERR, "Invalid parameter passed to truflow devargs.\n"); return -EINVAL; } truflow = strtoul(value, &end, 10); if (end == NULL || *end != '\0' || (truflow == ULONG_MAX && errno == ERANGE)) { PMD_DRV_LOG(ERR, "Invalid parameter passed to truflow devargs.\n"); return -EINVAL; } if (BNXT_DEVARG_TRUFLOW_INVALID(truflow)) { PMD_DRV_LOG(ERR, "Invalid value passed to truflow devargs.\n"); return -EINVAL; } if (truflow) { bp->flags |= BNXT_FLAG_TRUFLOW_EN; PMD_DRV_LOG(INFO, "Host-based truflow feature enabled.\n"); } else { bp->flags &= ~BNXT_FLAG_TRUFLOW_EN; PMD_DRV_LOG(INFO, "Host-based truflow feature disabled.\n"); } return 0; } static int bnxt_parse_devarg_flow_xstat(__rte_unused const char *key, const char *value, void *opaque_arg) { struct bnxt *bp = opaque_arg; unsigned long flow_xstat; char *end = NULL; if (!value || !opaque_arg) { PMD_DRV_LOG(ERR, "Invalid parameter passed to flow_xstat devarg.\n"); return -EINVAL; } flow_xstat = strtoul(value, &end, 10); if (end == NULL || *end != '\0' || (flow_xstat == ULONG_MAX && errno == ERANGE)) { PMD_DRV_LOG(ERR, "Invalid parameter passed to flow_xstat devarg.\n"); return -EINVAL; } if (BNXT_DEVARG_FLOW_XSTAT_INVALID(flow_xstat)) { PMD_DRV_LOG(ERR, "Invalid value passed to flow_xstat devarg.\n"); return -EINVAL; } bp->flags |= BNXT_FLAG_FLOW_XSTATS_EN; if (BNXT_FLOW_XSTATS_EN(bp)) PMD_DRV_LOG(INFO, "flow_xstat feature enabled.\n"); return 0; } static int bnxt_parse_devarg_max_num_kflows(__rte_unused const char *key, const char *value, void *opaque_arg) { struct bnxt *bp = opaque_arg; unsigned long max_num_kflows; char *end = NULL; if (!value || !opaque_arg) { PMD_DRV_LOG(ERR, "Invalid parameter passed to max_num_kflows devarg.\n"); return -EINVAL; } max_num_kflows = strtoul(value, &end, 10); if (end == NULL || *end != '\0' || (max_num_kflows == ULONG_MAX && errno == ERANGE)) { PMD_DRV_LOG(ERR, "Invalid parameter passed to max_num_kflows devarg.\n"); return -EINVAL; } if (bnxt_devarg_max_num_kflow_invalid(max_num_kflows)) { PMD_DRV_LOG(ERR, "Invalid value passed to max_num_kflows devarg.\n"); return -EINVAL; } bp->max_num_kflows = max_num_kflows; if (bp->max_num_kflows) PMD_DRV_LOG(INFO, "max_num_kflows set as %ldK.\n", max_num_kflows); return 0; } static int bnxt_parse_devarg_rep_is_pf(__rte_unused const char *key, const char *value, void *opaque_arg) { struct bnxt_representor *vfr_bp = opaque_arg; unsigned long rep_is_pf; char *end = NULL; if (!value || !opaque_arg) { PMD_DRV_LOG(ERR, "Invalid parameter passed to rep_is_pf devargs.\n"); return -EINVAL; } rep_is_pf = strtoul(value, &end, 10); if (end == NULL || *end != '\0' || (rep_is_pf == ULONG_MAX && errno == ERANGE)) { PMD_DRV_LOG(ERR, "Invalid parameter passed to rep_is_pf devargs.\n"); return -EINVAL; } if (BNXT_DEVARG_REP_IS_PF_INVALID(rep_is_pf)) { PMD_DRV_LOG(ERR, "Invalid value passed to rep_is_pf devargs.\n"); return -EINVAL; } vfr_bp->flags |= rep_is_pf; if (BNXT_REP_PF(vfr_bp)) PMD_DRV_LOG(INFO, "PF representor\n"); else PMD_DRV_LOG(INFO, "VF representor\n"); return 0; } static int bnxt_parse_devarg_rep_based_pf(__rte_unused const char *key, const char *value, void *opaque_arg) { struct bnxt_representor *vfr_bp = opaque_arg; unsigned long rep_based_pf; char *end = NULL; if (!value || !opaque_arg) { PMD_DRV_LOG(ERR, "Invalid parameter passed to rep_based_pf " "devargs.\n"); return -EINVAL; } rep_based_pf = strtoul(value, &end, 10); if (end == NULL || *end != '\0' || (rep_based_pf == ULONG_MAX && errno == ERANGE)) { PMD_DRV_LOG(ERR, "Invalid parameter passed to rep_based_pf " "devargs.\n"); return -EINVAL; } if (BNXT_DEVARG_REP_BASED_PF_INVALID(rep_based_pf)) { PMD_DRV_LOG(ERR, "Invalid value passed to rep_based_pf devargs.\n"); return -EINVAL; } vfr_bp->rep_based_pf = rep_based_pf; vfr_bp->flags |= BNXT_REP_BASED_PF_VALID; PMD_DRV_LOG(INFO, "rep-based-pf = %d\n", vfr_bp->rep_based_pf); return 0; } static int bnxt_parse_devarg_rep_q_r2f(__rte_unused const char *key, const char *value, void *opaque_arg) { struct bnxt_representor *vfr_bp = opaque_arg; unsigned long rep_q_r2f; char *end = NULL; if (!value || !opaque_arg) { PMD_DRV_LOG(ERR, "Invalid parameter passed to rep_q_r2f " "devargs.\n"); return -EINVAL; } rep_q_r2f = strtoul(value, &end, 10); if (end == NULL || *end != '\0' || (rep_q_r2f == ULONG_MAX && errno == ERANGE)) { PMD_DRV_LOG(ERR, "Invalid parameter passed to rep_q_r2f " "devargs.\n"); return -EINVAL; } if (BNXT_DEVARG_REP_Q_R2F_INVALID(rep_q_r2f)) { PMD_DRV_LOG(ERR, "Invalid value passed to rep_q_r2f devargs.\n"); return -EINVAL; } vfr_bp->rep_q_r2f = rep_q_r2f; vfr_bp->flags |= BNXT_REP_Q_R2F_VALID; PMD_DRV_LOG(INFO, "rep-q-r2f = %d\n", vfr_bp->rep_q_r2f); return 0; } static int bnxt_parse_devarg_rep_q_f2r(__rte_unused const char *key, const char *value, void *opaque_arg) { struct bnxt_representor *vfr_bp = opaque_arg; unsigned long rep_q_f2r; char *end = NULL; if (!value || !opaque_arg) { PMD_DRV_LOG(ERR, "Invalid parameter passed to rep_q_f2r " "devargs.\n"); return -EINVAL; } rep_q_f2r = strtoul(value, &end, 10); if (end == NULL || *end != '\0' || (rep_q_f2r == ULONG_MAX && errno == ERANGE)) { PMD_DRV_LOG(ERR, "Invalid parameter passed to rep_q_f2r " "devargs.\n"); return -EINVAL; } if (BNXT_DEVARG_REP_Q_F2R_INVALID(rep_q_f2r)) { PMD_DRV_LOG(ERR, "Invalid value passed to rep_q_f2r devargs.\n"); return -EINVAL; } vfr_bp->rep_q_f2r = rep_q_f2r; vfr_bp->flags |= BNXT_REP_Q_F2R_VALID; PMD_DRV_LOG(INFO, "rep-q-f2r = %d\n", vfr_bp->rep_q_f2r); return 0; } static int bnxt_parse_devarg_rep_fc_r2f(__rte_unused const char *key, const char *value, void *opaque_arg) { struct bnxt_representor *vfr_bp = opaque_arg; unsigned long rep_fc_r2f; char *end = NULL; if (!value || !opaque_arg) { PMD_DRV_LOG(ERR, "Invalid parameter passed to rep_fc_r2f " "devargs.\n"); return -EINVAL; } rep_fc_r2f = strtoul(value, &end, 10); if (end == NULL || *end != '\0' || (rep_fc_r2f == ULONG_MAX && errno == ERANGE)) { PMD_DRV_LOG(ERR, "Invalid parameter passed to rep_fc_r2f " "devargs.\n"); return -EINVAL; } if (BNXT_DEVARG_REP_FC_R2F_INVALID(rep_fc_r2f)) { PMD_DRV_LOG(ERR, "Invalid value passed to rep_fc_r2f devargs.\n"); return -EINVAL; } vfr_bp->flags |= BNXT_REP_FC_R2F_VALID; vfr_bp->rep_fc_r2f = rep_fc_r2f; PMD_DRV_LOG(INFO, "rep-fc-r2f = %lu\n", rep_fc_r2f); return 0; } static int bnxt_parse_devarg_rep_fc_f2r(__rte_unused const char *key, const char *value, void *opaque_arg) { struct bnxt_representor *vfr_bp = opaque_arg; unsigned long rep_fc_f2r; char *end = NULL; if (!value || !opaque_arg) { PMD_DRV_LOG(ERR, "Invalid parameter passed to rep_fc_f2r " "devargs.\n"); return -EINVAL; } rep_fc_f2r = strtoul(value, &end, 10); if (end == NULL || *end != '\0' || (rep_fc_f2r == ULONG_MAX && errno == ERANGE)) { PMD_DRV_LOG(ERR, "Invalid parameter passed to rep_fc_f2r " "devargs.\n"); return -EINVAL; } if (BNXT_DEVARG_REP_FC_F2R_INVALID(rep_fc_f2r)) { PMD_DRV_LOG(ERR, "Invalid value passed to rep_fc_f2r devargs.\n"); return -EINVAL; } vfr_bp->flags |= BNXT_REP_FC_F2R_VALID; vfr_bp->rep_fc_f2r = rep_fc_f2r; PMD_DRV_LOG(INFO, "rep-fc-f2r = %lu\n", rep_fc_f2r); return 0; } static int bnxt_parse_dev_args(struct bnxt *bp, struct rte_devargs *devargs) { struct rte_kvargs *kvlist; int ret; if (devargs == NULL) return 0; kvlist = rte_kvargs_parse(devargs->args, bnxt_dev_args); if (kvlist == NULL) return -EINVAL; /* * Handler for "truflow" devarg. * Invoked as for ex: "-a 0000:00:0d.0,host-based-truflow=1" */ ret = rte_kvargs_process(kvlist, BNXT_DEVARG_TRUFLOW, bnxt_parse_devarg_truflow, bp); if (ret) goto err; /* * Handler for "flow_xstat" devarg. * Invoked as for ex: "-a 0000:00:0d.0,flow_xstat=1" */ ret = rte_kvargs_process(kvlist, BNXT_DEVARG_FLOW_XSTAT, bnxt_parse_devarg_flow_xstat, bp); if (ret) goto err; /* * Handler for "max_num_kflows" devarg. * Invoked as for ex: "-a 000:00:0d.0,max_num_kflows=32" */ ret = rte_kvargs_process(kvlist, BNXT_DEVARG_MAX_NUM_KFLOWS, bnxt_parse_devarg_max_num_kflows, bp); if (ret) goto err; err: rte_kvargs_free(kvlist); return ret; } /* Allocate and initialize various fields in bnxt struct that * need to be allocated/destroyed only once in the lifetime of the driver */ static int bnxt_drv_init(struct rte_eth_dev *eth_dev) { struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); struct bnxt *bp = eth_dev->data->dev_private; int rc = 0; bp->flags &= ~BNXT_FLAG_RX_VECTOR_PKT_MODE; if (bnxt_vf_pciid(pci_dev->id.device_id)) bp->flags |= BNXT_FLAG_VF; if (bnxt_thor_device(pci_dev->id.device_id)) bp->flags |= BNXT_FLAG_THOR_CHIP; if (pci_dev->id.device_id == BROADCOM_DEV_ID_58802 || pci_dev->id.device_id == BROADCOM_DEV_ID_58804 || pci_dev->id.device_id == BROADCOM_DEV_ID_58808 || pci_dev->id.device_id == BROADCOM_DEV_ID_58802_VF) bp->flags |= BNXT_FLAG_STINGRAY; if (BNXT_TRUFLOW_EN(bp)) { /* extra mbuf field is required to store CFA code from mark */ static const struct rte_mbuf_dynfield bnxt_cfa_code_dynfield_desc = { .name = RTE_PMD_BNXT_CFA_CODE_DYNFIELD_NAME, .size = sizeof(bnxt_cfa_code_dynfield_t), .align = __alignof__(bnxt_cfa_code_dynfield_t), }; bnxt_cfa_code_dynfield_offset = rte_mbuf_dynfield_register(&bnxt_cfa_code_dynfield_desc); if (bnxt_cfa_code_dynfield_offset < 0) { PMD_DRV_LOG(ERR, "Failed to register mbuf field for TruFlow mark\n"); return -rte_errno; } } rc = bnxt_map_pci_bars(eth_dev); if (rc) { PMD_DRV_LOG(ERR, "Failed to initialize board rc: %x\n", rc); return rc; } rc = bnxt_alloc_pf_info(bp); if (rc) return rc; rc = bnxt_alloc_link_info(bp); if (rc) return rc; rc = bnxt_alloc_parent_info(bp); if (rc) return rc; rc = bnxt_alloc_hwrm_resources(bp); if (rc) { PMD_DRV_LOG(ERR, "Failed to allocate response buffer rc: %x\n", rc); return rc; } rc = bnxt_alloc_leds_info(bp); if (rc) return rc; rc = bnxt_alloc_cos_queues(bp); if (rc) return rc; rc = bnxt_init_locks(bp); if (rc) return rc; return rc; } static int bnxt_dev_init(struct rte_eth_dev *eth_dev, void *params __rte_unused) { struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); static int version_printed; struct bnxt *bp; int rc; if (version_printed++ == 0) PMD_DRV_LOG(INFO, "%s\n", bnxt_version); eth_dev->dev_ops = &bnxt_dev_ops; eth_dev->rx_queue_count = bnxt_rx_queue_count_op; eth_dev->rx_descriptor_status = bnxt_rx_descriptor_status_op; eth_dev->tx_descriptor_status = bnxt_tx_descriptor_status_op; eth_dev->rx_pkt_burst = &bnxt_recv_pkts; eth_dev->tx_pkt_burst = &bnxt_xmit_pkts; /* * For secondary processes, we don't initialise any further * as primary has already done this work. */ if (rte_eal_process_type() != RTE_PROC_PRIMARY) return 0; rte_eth_copy_pci_info(eth_dev, pci_dev); eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS; bp = eth_dev->data->dev_private; /* Parse dev arguments passed on when starting the DPDK application. */ rc = bnxt_parse_dev_args(bp, pci_dev->device.devargs); if (rc) goto error_free; rc = bnxt_drv_init(eth_dev); if (rc) goto error_free; rc = bnxt_init_resources(bp, false); if (rc) goto error_free; rc = bnxt_alloc_stats_mem(bp); if (rc) goto error_free; PMD_DRV_LOG(INFO, "Found %s device at mem %" PRIX64 ", node addr %pM\n", DRV_MODULE_NAME, pci_dev->mem_resource[0].phys_addr, pci_dev->mem_resource[0].addr); return 0; error_free: bnxt_dev_uninit(eth_dev); return rc; } static void bnxt_free_ctx_mem_buf(struct bnxt_ctx_mem_buf_info *ctx) { if (!ctx) return; if (ctx->va) rte_free(ctx->va); ctx->va = NULL; ctx->dma = RTE_BAD_IOVA; ctx->ctx_id = BNXT_CTX_VAL_INVAL; } static void bnxt_unregister_fc_ctx_mem(struct bnxt *bp) { bnxt_hwrm_cfa_counter_cfg(bp, BNXT_DIR_RX, CFA_COUNTER_CFG_IN_COUNTER_TYPE_FC, bp->flow_stat->rx_fc_out_tbl.ctx_id, bp->flow_stat->max_fc, false); bnxt_hwrm_cfa_counter_cfg(bp, BNXT_DIR_TX, CFA_COUNTER_CFG_IN_COUNTER_TYPE_FC, bp->flow_stat->tx_fc_out_tbl.ctx_id, bp->flow_stat->max_fc, false); if (bp->flow_stat->rx_fc_in_tbl.ctx_id != BNXT_CTX_VAL_INVAL) bnxt_hwrm_ctx_unrgtr(bp, bp->flow_stat->rx_fc_in_tbl.ctx_id); bp->flow_stat->rx_fc_in_tbl.ctx_id = BNXT_CTX_VAL_INVAL; if (bp->flow_stat->rx_fc_out_tbl.ctx_id != BNXT_CTX_VAL_INVAL) bnxt_hwrm_ctx_unrgtr(bp, bp->flow_stat->rx_fc_out_tbl.ctx_id); bp->flow_stat->rx_fc_out_tbl.ctx_id = BNXT_CTX_VAL_INVAL; if (bp->flow_stat->tx_fc_in_tbl.ctx_id != BNXT_CTX_VAL_INVAL) bnxt_hwrm_ctx_unrgtr(bp, bp->flow_stat->tx_fc_in_tbl.ctx_id); bp->flow_stat->tx_fc_in_tbl.ctx_id = BNXT_CTX_VAL_INVAL; if (bp->flow_stat->tx_fc_out_tbl.ctx_id != BNXT_CTX_VAL_INVAL) bnxt_hwrm_ctx_unrgtr(bp, bp->flow_stat->tx_fc_out_tbl.ctx_id); bp->flow_stat->tx_fc_out_tbl.ctx_id = BNXT_CTX_VAL_INVAL; } static void bnxt_uninit_fc_ctx_mem(struct bnxt *bp) { bnxt_unregister_fc_ctx_mem(bp); bnxt_free_ctx_mem_buf(&bp->flow_stat->rx_fc_in_tbl); bnxt_free_ctx_mem_buf(&bp->flow_stat->rx_fc_out_tbl); bnxt_free_ctx_mem_buf(&bp->flow_stat->tx_fc_in_tbl); bnxt_free_ctx_mem_buf(&bp->flow_stat->tx_fc_out_tbl); } static void bnxt_uninit_ctx_mem(struct bnxt *bp) { if (BNXT_FLOW_XSTATS_EN(bp)) bnxt_uninit_fc_ctx_mem(bp); } static void bnxt_free_error_recovery_info(struct bnxt *bp) { rte_free(bp->recovery_info); bp->recovery_info = NULL; bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; } static int bnxt_uninit_resources(struct bnxt *bp, bool reconfig_dev) { int rc; bnxt_free_int(bp); bnxt_free_mem(bp, reconfig_dev); bnxt_hwrm_func_buf_unrgtr(bp); if (bp->pf != NULL) { rte_free(bp->pf->vf_req_buf); bp->pf->vf_req_buf = NULL; } rc = bnxt_hwrm_func_driver_unregister(bp); bp->flags &= ~BNXT_FLAG_REGISTERED; bnxt_free_ctx_mem(bp); if (!reconfig_dev) { bnxt_free_hwrm_resources(bp); bnxt_free_error_recovery_info(bp); rte_free(bp->mcast_addr_list); bp->mcast_addr_list = NULL; rte_free(bp->rss_conf.rss_key); bp->rss_conf.rss_key = NULL; } bnxt_uninit_ctx_mem(bp); bnxt_free_flow_stats_info(bp); if (bp->rep_info != NULL) bnxt_free_switch_domain(bp); bnxt_free_rep_info(bp); rte_free(bp->ptp_cfg); bp->ptp_cfg = NULL; return rc; } static int bnxt_dev_uninit(struct rte_eth_dev *eth_dev) { if (rte_eal_process_type() != RTE_PROC_PRIMARY) return -EPERM; PMD_DRV_LOG(DEBUG, "Calling Device uninit\n"); if (eth_dev->state != RTE_ETH_DEV_UNUSED) bnxt_dev_close_op(eth_dev); return 0; } static int bnxt_pci_remove_dev_with_reps(struct rte_eth_dev *eth_dev) { struct bnxt *bp = eth_dev->data->dev_private; struct rte_eth_dev *vf_rep_eth_dev; int ret = 0, i; if (!bp) return -EINVAL; for (i = 0; i < bp->num_reps; i++) { vf_rep_eth_dev = bp->rep_info[i].vfr_eth_dev; if (!vf_rep_eth_dev) continue; PMD_DRV_LOG(DEBUG, "BNXT Port:%d VFR pci remove\n", vf_rep_eth_dev->data->port_id); rte_eth_dev_destroy(vf_rep_eth_dev, bnxt_representor_uninit); } PMD_DRV_LOG(DEBUG, "BNXT Port:%d pci remove\n", eth_dev->data->port_id); ret = rte_eth_dev_destroy(eth_dev, bnxt_dev_uninit); return ret; } static void bnxt_free_rep_info(struct bnxt *bp) { rte_free(bp->rep_info); bp->rep_info = NULL; rte_free(bp->cfa_code_map); bp->cfa_code_map = NULL; } static int bnxt_init_rep_info(struct bnxt *bp) { int i = 0, rc; if (bp->rep_info) return 0; bp->rep_info = rte_zmalloc("bnxt_rep_info", sizeof(bp->rep_info[0]) * BNXT_MAX_VF_REPS, 0); if (!bp->rep_info) { PMD_DRV_LOG(ERR, "Failed to alloc memory for rep info\n"); return -ENOMEM; } bp->cfa_code_map = rte_zmalloc("bnxt_cfa_code_map", sizeof(*bp->cfa_code_map) * BNXT_MAX_CFA_CODE, 0); if (!bp->cfa_code_map) { PMD_DRV_LOG(ERR, "Failed to alloc memory for cfa_code_map\n"); bnxt_free_rep_info(bp); return -ENOMEM; } for (i = 0; i < BNXT_MAX_CFA_CODE; i++) bp->cfa_code_map[i] = BNXT_VF_IDX_INVALID; rc = pthread_mutex_init(&bp->rep_info->vfr_lock, NULL); if (rc) { PMD_DRV_LOG(ERR, "Unable to initialize vfr_lock\n"); bnxt_free_rep_info(bp); return rc; } rc = pthread_mutex_init(&bp->rep_info->vfr_start_lock, NULL); if (rc) { PMD_DRV_LOG(ERR, "Unable to initialize vfr_start_lock\n"); bnxt_free_rep_info(bp); return rc; } return rc; } static int bnxt_rep_port_probe(struct rte_pci_device *pci_dev, struct rte_eth_devargs *eth_da, struct rte_eth_dev *backing_eth_dev, const char *dev_args) { struct rte_eth_dev *vf_rep_eth_dev; char name[RTE_ETH_NAME_MAX_LEN]; struct bnxt *backing_bp; uint16_t num_rep; int i, ret = 0; struct rte_kvargs *kvlist = NULL; num_rep = eth_da->nb_representor_ports; if (num_rep > BNXT_MAX_VF_REPS) { PMD_DRV_LOG(ERR, "nb_representor_ports = %d > %d MAX VF REPS\n", num_rep, BNXT_MAX_VF_REPS); return -EINVAL; } if (num_rep >= RTE_MAX_ETHPORTS) { PMD_DRV_LOG(ERR, "nb_representor_ports = %d > %d MAX ETHPORTS\n", num_rep, RTE_MAX_ETHPORTS); return -EINVAL; } backing_bp = backing_eth_dev->data->dev_private; if (!(BNXT_PF(backing_bp) || BNXT_VF_IS_TRUSTED(backing_bp))) { PMD_DRV_LOG(ERR, "Not a PF or trusted VF. No Representor support\n"); /* Returning an error is not an option. * Applications are not handling this correctly */ return 0; } if (bnxt_init_rep_info(backing_bp)) return 0; for (i = 0; i < num_rep; i++) { struct bnxt_representor representor = { .vf_id = eth_da->representor_ports[i], .switch_domain_id = backing_bp->switch_domain_id, .parent_dev = backing_eth_dev }; if (representor.vf_id >= BNXT_MAX_VF_REPS) { PMD_DRV_LOG(ERR, "VF-Rep id %d >= %d MAX VF ID\n", representor.vf_id, BNXT_MAX_VF_REPS); continue; } /* representor port net_bdf_port */ snprintf(name, sizeof(name), "net_%s_representor_%d", pci_dev->device.name, eth_da->representor_ports[i]); kvlist = rte_kvargs_parse(dev_args, bnxt_dev_args); if (kvlist) { /* * Handler for "rep_is_pf" devarg. * Invoked as for ex: "-a 000:00:0d.0, * rep-based-pf= rep-is-pf=" */ ret = rte_kvargs_process(kvlist, BNXT_DEVARG_REP_IS_PF, bnxt_parse_devarg_rep_is_pf, (void *)&representor); if (ret) { ret = -EINVAL; goto err; } /* * Handler for "rep_based_pf" devarg. * Invoked as for ex: "-a 000:00:0d.0, * rep-based-pf= rep-is-pf=" */ ret = rte_kvargs_process(kvlist, BNXT_DEVARG_REP_BASED_PF, bnxt_parse_devarg_rep_based_pf, (void *)&representor); if (ret) { ret = -EINVAL; goto err; } /* * Handler for "rep_based_pf" devarg. * Invoked as for ex: "-a 000:00:0d.0, * rep-based-pf= rep-is-pf=" */ ret = rte_kvargs_process(kvlist, BNXT_DEVARG_REP_Q_R2F, bnxt_parse_devarg_rep_q_r2f, (void *)&representor); if (ret) { ret = -EINVAL; goto err; } /* * Handler for "rep_based_pf" devarg. * Invoked as for ex: "-a 000:00:0d.0, * rep-based-pf= rep-is-pf=" */ ret = rte_kvargs_process(kvlist, BNXT_DEVARG_REP_Q_F2R, bnxt_parse_devarg_rep_q_f2r, (void *)&representor); if (ret) { ret = -EINVAL; goto err; } /* * Handler for "rep_based_pf" devarg. * Invoked as for ex: "-a 000:00:0d.0, * rep-based-pf= rep-is-pf=" */ ret = rte_kvargs_process(kvlist, BNXT_DEVARG_REP_FC_R2F, bnxt_parse_devarg_rep_fc_r2f, (void *)&representor); if (ret) { ret = -EINVAL; goto err; } /* * Handler for "rep_based_pf" devarg. * Invoked as for ex: "-a 000:00:0d.0, * rep-based-pf= rep-is-pf=" */ ret = rte_kvargs_process(kvlist, BNXT_DEVARG_REP_FC_F2R, bnxt_parse_devarg_rep_fc_f2r, (void *)&representor); if (ret) { ret = -EINVAL; goto err; } } ret = rte_eth_dev_create(&pci_dev->device, name, sizeof(struct bnxt_representor), NULL, NULL, bnxt_representor_init, &representor); if (ret) { PMD_DRV_LOG(ERR, "failed to create bnxt vf " "representor %s.", name); goto err; } vf_rep_eth_dev = rte_eth_dev_allocated(name); if (!vf_rep_eth_dev) { PMD_DRV_LOG(ERR, "Failed to find the eth_dev" " for VF-Rep: %s.", name); ret = -ENODEV; goto err; } PMD_DRV_LOG(DEBUG, "BNXT Port:%d VFR pci probe\n", backing_eth_dev->data->port_id); backing_bp->rep_info[representor.vf_id].vfr_eth_dev = vf_rep_eth_dev; backing_bp->num_reps++; } rte_kvargs_free(kvlist); return 0; err: /* If num_rep > 1, then rollback already created * ports, since we'll be failing the probe anyway */ if (num_rep > 1) bnxt_pci_remove_dev_with_reps(backing_eth_dev); rte_errno = -ret; rte_kvargs_free(kvlist); return ret; } static int bnxt_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, struct rte_pci_device *pci_dev) { struct rte_eth_devargs eth_da = { .nb_representor_ports = 0 }; struct rte_eth_dev *backing_eth_dev; uint16_t num_rep; int ret = 0; if (pci_dev->device.devargs) { ret = rte_eth_devargs_parse(pci_dev->device.devargs->args, ð_da); if (ret) return ret; } num_rep = eth_da.nb_representor_ports; PMD_DRV_LOG(DEBUG, "nb_representor_ports = %d\n", num_rep); /* We could come here after first level of probe is already invoked * as part of an application bringup(OVS-DPDK vswitchd), so first check * for already allocated eth_dev for the backing device (PF/Trusted VF) */ backing_eth_dev = rte_eth_dev_allocated(pci_dev->device.name); if (backing_eth_dev == NULL) { ret = rte_eth_dev_create(&pci_dev->device, pci_dev->device.name, sizeof(struct bnxt), eth_dev_pci_specific_init, pci_dev, bnxt_dev_init, NULL); if (ret || !num_rep) return ret; backing_eth_dev = rte_eth_dev_allocated(pci_dev->device.name); } PMD_DRV_LOG(DEBUG, "BNXT Port:%d pci probe\n", backing_eth_dev->data->port_id); if (!num_rep) return ret; /* probe representor ports now */ ret = bnxt_rep_port_probe(pci_dev, ð_da, backing_eth_dev, pci_dev->device.devargs->args); return ret; } static int bnxt_pci_remove(struct rte_pci_device *pci_dev) { struct rte_eth_dev *eth_dev; eth_dev = rte_eth_dev_allocated(pci_dev->device.name); if (!eth_dev) return 0; /* Invoked typically only by OVS-DPDK, by the * time it comes here the eth_dev is already * deleted by rte_eth_dev_close(), so returning * +ve value will at least help in proper cleanup */ PMD_DRV_LOG(DEBUG, "BNXT Port:%d pci remove\n", eth_dev->data->port_id); if (rte_eal_process_type() == RTE_PROC_PRIMARY) { if (eth_dev->data->dev_flags & RTE_ETH_DEV_REPRESENTOR) return rte_eth_dev_destroy(eth_dev, bnxt_representor_uninit); else return rte_eth_dev_destroy(eth_dev, bnxt_dev_uninit); } else { return rte_eth_dev_pci_generic_remove(pci_dev, NULL); } } static struct rte_pci_driver bnxt_rte_pmd = { .id_table = bnxt_pci_id_map, .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC | RTE_PCI_DRV_INTR_RMV | RTE_PCI_DRV_PROBE_AGAIN, /* Needed in case of VF-REPs * and OVS-DPDK */ .probe = bnxt_pci_probe, .remove = bnxt_pci_remove, }; static bool is_device_supported(struct rte_eth_dev *dev, struct rte_pci_driver *drv) { if (strcmp(dev->device->driver->name, drv->driver.name)) return false; return true; } bool is_bnxt_supported(struct rte_eth_dev *dev) { return is_device_supported(dev, &bnxt_rte_pmd); } RTE_LOG_REGISTER(bnxt_logtype_driver, pmd.net.bnxt.driver, NOTICE); RTE_PMD_REGISTER_PCI(net_bnxt, bnxt_rte_pmd); RTE_PMD_REGISTER_PCI_TABLE(net_bnxt, bnxt_pci_id_map); RTE_PMD_REGISTER_KMOD_DEP(net_bnxt, "* igb_uio | uio_pci_generic | vfio-pci");