/* SPDX-License-Identifier: BSD-3-Clause * Copyright (c) 2007-2013 Broadcom Corporation. * * Eric Davis * David Christensen * Gary Zambrano * * Copyright (c) 2013-2015 Brocade Communications Systems, Inc. * Copyright (c) 2015-2018 Cavium Inc. * All rights reserved. * www.cavium.com */ #ifndef __BNX2X_H__ #define __BNX2X_H__ #include #include #include #include #include "bnx2x_osal.h" #include "bnx2x_ethdev.h" #include "ecore_mfw_req.h" #include "ecore_fw_defs.h" #include "ecore_hsi.h" #include "ecore_reg.h" #include "bnx2x_stats.h" #include "bnx2x_vfpf.h" #include "elink.h" #ifndef RTE_EXEC_ENV_FREEBSD #include #define PCIY_PMG PCI_CAP_ID_PM #define PCIY_MSI PCI_CAP_ID_MSI #define PCIY_EXPRESS PCI_CAP_ID_EXP #define PCIY_MSIX PCI_CAP_ID_MSIX #define PCIR_EXPRESS_DEVICE_STA PCI_EXP_TYPE_RC_EC #define PCIM_EXP_STA_TRANSACTION_PND PCI_EXP_DEVSTA_TRPND #define PCIR_EXPRESS_LINK_STA PCI_EXP_LNKSTA #define PCIM_LINK_STA_WIDTH PCI_EXP_LNKSTA_NLW #define PCIM_LINK_STA_SPEED PCI_EXP_LNKSTA_CLS #define PCIR_EXPRESS_DEVICE_CTL PCI_EXP_DEVCTL #define PCIM_EXP_CTL_MAX_PAYLOAD PCI_EXP_DEVCTL_PAYLOAD #define PCIM_EXP_CTL_MAX_READ_REQUEST PCI_EXP_DEVCTL_READRQ #define PCIR_POWER_STATUS PCI_PM_CTRL #define PCIM_PSTAT_DMASK PCI_PM_CTRL_STATE_MASK #define PCIM_PSTAT_PME PCI_PM_CTRL_PME_STATUS #define PCIM_PSTAT_D3 0x3 #define PCIM_PSTAT_PMEENABLE PCI_PM_CTRL_PME_ENABLE #define PCIR_MSIX_CTRL PCI_MSIX_FLAGS #define PCIM_MSIXCTRL_TABLE_SIZE PCI_MSIX_FLAGS_QSIZE #else #include #endif #define IFM_10G_CX4 20 /* 10GBase CX4 copper */ #define IFM_10G_TWINAX 22 /* 10GBase Twinax copper */ #define IFM_10G_T 26 /* 10GBase-T - RJ45 */ #ifndef RTE_EXEC_ENV_FREEBSD #define PCIR_EXPRESS_DEVICE_STA PCI_EXP_TYPE_RC_EC #define PCIM_EXP_STA_TRANSACTION_PND PCI_EXP_DEVSTA_TRPND #define PCIR_EXPRESS_LINK_STA PCI_EXP_LNKSTA #define PCIM_LINK_STA_WIDTH PCI_EXP_LNKSTA_NLW #define PCIM_LINK_STA_SPEED PCI_EXP_LNKSTA_CLS #define PCIR_EXPRESS_DEVICE_CTL PCI_EXP_DEVCTL #define PCIM_EXP_CTL_MAX_PAYLOAD PCI_EXP_DEVCTL_PAYLOAD #define PCIM_EXP_CTL_MAX_READ_REQUEST PCI_EXP_DEVCTL_READRQ #else #define PCIR_EXPRESS_DEVICE_STA PCIER_DEVICE_STA #define PCIM_EXP_STA_TRANSACTION_PND PCIEM_STA_TRANSACTION_PND #define PCIR_EXPRESS_LINK_STA PCIER_LINK_STA #define PCIM_LINK_STA_WIDTH PCIEM_LINK_STA_WIDTH #define PCIM_LINK_STA_SPEED PCIEM_LINK_STA_SPEED #define PCIR_EXPRESS_DEVICE_CTL PCIER_DEVICE_CTL #define PCIM_EXP_CTL_MAX_PAYLOAD PCIEM_CTL_MAX_PAYLOAD #define PCIM_EXP_CTL_MAX_READ_REQUEST PCIEM_CTL_MAX_READ_REQUEST #endif #ifndef ARRAY_SIZE #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0])) #endif #ifndef DIV_ROUND_UP #define DIV_ROUND_UP(n, d) (((n) + (d) - 1) / (d)) #endif #ifndef roundup #define roundup(x, y) ((((x) + ((y) - 1)) / (y)) * (y)) #endif #ifndef ilog2 static inline int bnx2x_ilog2(int x) { int log = 0; x >>= 1; while(x) { log++; x >>= 1; } return log; } #define ilog2(x) bnx2x_ilog2(x) #endif #define BNX2X_BC_VER 0x040200 #include "ecore_sp.h" struct bnx2x_device_type { uint16_t bnx2x_vid; uint16_t bnx2x_did; uint16_t bnx2x_svid; uint16_t bnx2x_sdid; char *bnx2x_name; }; #define BNX2X_PAGE_SHIFT 12 #define BNX2X_PAGE_SIZE (1 << BNX2X_PAGE_SHIFT) #define BNX2X_PAGE_MASK (~(BNX2X_PAGE_SIZE - 1)) #define BNX2X_PAGE_ALIGN(addr) ((addr + BNX2X_PAGE_SIZE - 1) & BNX2X_PAGE_MASK) #if BNX2X_PAGE_SIZE != 4096 #error Page sizes other than 4KB are unsupported! #endif #define U64_LO(addr) ((uint32_t)(((uint64_t)(addr)) & 0xFFFFFFFF)) #define U64_HI(addr) ((uint32_t)(((uint64_t)(addr)) >> 32)) #define HILO_U64(hi, lo) ((((uint64_t)(hi)) << 32) + (lo)) /* dropless fc FW/HW related params */ #define BRB_SIZE(sc) (CHIP_IS_E3(sc) ? 1024 : 512) #define MAX_AGG_QS(sc) ETH_MAX_AGGREGATION_QUEUES_E1H_E2 #define FW_DROP_LEVEL(sc) (3 + MAX_SPQ_PENDING + MAX_AGG_QS(sc)) #define FW_PREFETCH_CNT 16U #define DROPLESS_FC_HEADROOM 100 /* * Transmit Buffer Descriptor (tx_bd) definitions* */ /* NUM_TX_PAGES must be a power of 2. */ #define NUM_TX_PAGES 16 #define TOTAL_TX_BD_PER_PAGE (BNX2X_PAGE_SIZE / sizeof(union eth_tx_bd_types)) /* 256 */ #define USABLE_TX_BD_PER_PAGE (TOTAL_TX_BD_PER_PAGE - 1) /* 255 */ #define TOTAL_TX_BD(q) (TOTAL_TX_BD_PER_PAGE * q->nb_tx_pages) /* 512 */ #define USABLE_TX_BD(q) (USABLE_TX_BD_PER_PAGE * q->nb_tx_pages) /* 510 */ #define MAX_TX_BD(q) (TOTAL_TX_BD(q) - 1) /* 511 */ #define MAX_TX_AVAIL (USABLE_TX_BD_PER_PAGE * NUM_TX_PAGES - 2) #define NEXT_TX_BD(x) \ ((((x) & USABLE_TX_BD_PER_PAGE) == \ (USABLE_TX_BD_PER_PAGE - 1)) ? (x) + 2 : (x) + 1) #define TX_BD(x, q) ((x) & MAX_TX_BD(q)) #define TX_PAGE(x) (((x) & ~USABLE_TX_BD_PER_PAGE) >> 8) #define TX_IDX(x) ((x) & USABLE_TX_BD_PER_PAGE) #define BDS_PER_TX_PKT (3) /* * Trigger pending transmits when the number of available BDs is greater * than 1/8 of the total number of usable BDs. */ #define BNX2X_TX_CLEANUP_THRESHOLD(q) (USABLE_TX_BD(q) / 8) #define BNX2X_TX_TIMEOUT 5 /* * Receive Buffer Descriptor (rx_bd) definitions* */ #define MAX_RX_PAGES 8 #define TOTAL_RX_BD_PER_PAGE (BNX2X_PAGE_SIZE / sizeof(struct eth_rx_bd)) /* 512 */ #define USABLE_RX_BD_PER_PAGE (TOTAL_RX_BD_PER_PAGE - 2) /* 510 */ #define RX_BD_PER_PAGE_MASK (TOTAL_RX_BD_PER_PAGE - 1) /* 511 */ #define TOTAL_RX_BD(q) (TOTAL_RX_BD_PER_PAGE * q->nb_rx_pages) /* 512 */ #define USABLE_RX_BD(q) (USABLE_RX_BD_PER_PAGE * q->nb_rx_pages) /* 510 */ #define MAX_RX_BD(q) (TOTAL_RX_BD(q) - 1) /* 511 */ #define MAX_RX_AVAIL (USABLE_RX_BD_PER_PAGE * MAX_RX_PAGES - 2) #define RX_BD_NEXT_PAGE_DESC_CNT 2 #define NEXT_RX_BD(x) \ ((((x) & RX_BD_PER_PAGE_MASK) == \ (USABLE_RX_BD_PER_PAGE - 1)) ? (x) + 3 : (x) + 1) /* x & 0x3ff */ #define RX_BD(x, q) ((x) & MAX_RX_BD(q)) #define RX_PAGE(x) (((x) & ~RX_BD_PER_PAGE_MASK) >> 9) #define RX_IDX(x) ((x) & RX_BD_PER_PAGE_MASK) /* * Receive Completion Queue definitions* */ //#define NUM_RCQ_PAGES (NUM_RX_PAGES * 4) #define TOTAL_RCQ_ENTRIES_PER_PAGE (BNX2X_PAGE_SIZE / sizeof(union eth_rx_cqe)) /* 128 */ #define USABLE_RCQ_ENTRIES_PER_PAGE (TOTAL_RCQ_ENTRIES_PER_PAGE - 1) /* 127 */ #define TOTAL_RCQ_ENTRIES(q) (TOTAL_RCQ_ENTRIES_PER_PAGE * q->nb_cq_pages) /* 512 */ #define USABLE_RCQ_ENTRIES(q) (USABLE_RCQ_ENTRIES_PER_PAGE * q->nb_cq_pages) /* 508 */ #define MAX_RCQ_ENTRIES(q) (TOTAL_RCQ_ENTRIES(q) - 1) /* 511 */ #define RCQ_NEXT_PAGE_DESC_CNT 1 #define NEXT_RCQ_IDX(x) \ ((((x) & USABLE_RCQ_ENTRIES_PER_PAGE) == \ (USABLE_RCQ_ENTRIES_PER_PAGE - 1)) ? (x) + 2 : (x) + 1) #define CQE_BD_REL \ (sizeof(union eth_rx_cqe) / sizeof(struct eth_rx_bd)) #define RCQ_BD_PAGES(q) \ (q->nb_rx_pages * CQE_BD_REL) #define RCQ_ENTRY(x, q) ((x) & MAX_RCQ_ENTRIES(q)) #define RCQ_PAGE(x) (((x) & ~USABLE_RCQ_ENTRIES_PER_PAGE) >> 7) #define RCQ_IDX(x) ((x) & USABLE_RCQ_ENTRIES_PER_PAGE) /* * dropless fc calculations for BDs * Number of BDs should be as number of buffers in BRB: * Low threshold takes into account RX_BD_NEXT_PAGE_DESC_CNT * "next" elements on each page */ #define NUM_BD_REQ(sc) \ BRB_SIZE(sc) #define NUM_BD_PG_REQ(sc) \ ((NUM_BD_REQ(sc) + USABLE_RX_BD_PER_PAGE - 1) / USABLE_RX_BD_PER_PAGE) #define BD_TH_LO(sc) \ (NUM_BD_REQ(sc) + \ NUM_BD_PG_REQ(sc) * RX_BD_NEXT_PAGE_DESC_CNT + \ FW_DROP_LEVEL(sc)) #define BD_TH_HI(sc) \ (BD_TH_LO(sc) + DROPLESS_FC_HEADROOM) #define MIN_RX_AVAIL(sc) \ ((sc)->dropless_fc ? BD_TH_HI(sc) + 128 : 128) #define MIN_RX_SIZE_NONTPA_HW ETH_MIN_RX_CQES_WITHOUT_TPA #define MIN_RX_SIZE_NONTPA (RTE_MAX((uint32_t)MIN_RX_SIZE_NONTPA_HW,\ (uint32_t)MIN_RX_AVAIL(sc))) /* * dropless fc calculations for RCQs * Number of RCQs should be as number of buffers in BRB: * Low threshold takes into account RCQ_NEXT_PAGE_DESC_CNT * "next" elements on each page */ #define NUM_RCQ_REQ(sc) \ BRB_SIZE(sc) #define NUM_RCQ_PG_REQ(sc) \ ((NUM_RCQ_REQ(sc) + USABLE_RCQ_ENTRIES_PER_PAGE - 1) / USABLE_RCQ_ENTRIES_PER_PAGE) #define RCQ_TH_LO(sc) \ (NUM_RCQ_REQ(sc) + \ NUM_RCQ_PG_REQ(sc) * RCQ_NEXT_PAGE_DESC_CNT + \ FW_DROP_LEVEL(sc)) #define RCQ_TH_HI(sc) \ (RCQ_TH_LO(sc) + DROPLESS_FC_HEADROOM) /* Load / Unload modes */ #define LOAD_NORMAL 0 #define LOAD_OPEN 1 #define LOAD_DIAG 2 #define LOAD_LOOPBACK_EXT 3 #define UNLOAD_NORMAL 0 #define UNLOAD_CLOSE 1 #define UNLOAD_RECOVERY 2 /* Some constants... */ //#define MAX_PATH_NUM 2 //#define E2_MAX_NUM_OF_VFS 64 //#define E1H_FUNC_MAX 8 //#define E2_FUNC_MAX 4 /* per path */ #define MAX_VNIC_NUM 4 #define MAX_FUNC_NUM 8 /* common to all chips */ //#define MAX_NDSB HC_SB_MAX_SB_E2 /* max non-default status block */ #define MAX_RSS_CHAINS 16 /* a constant for HW limit */ #define MAX_MSI_VECTOR 8 /* a constant for HW limit */ #define ILT_NUM_PAGE_ENTRIES 3072 /* * 57711 we use whole table since we have 8 functions. * 57712 we have only 4 functions, but use same size per func, so only half * of the table is used. */ #define ILT_PER_FUNC (ILT_NUM_PAGE_ENTRIES / 8) #define FUNC_ILT_BASE(func) (func * ILT_PER_FUNC) /* * the phys address is shifted right 12 bits and has an added * 1=valid bit added to the 53rd bit * then since this is a wide register(TM) * we split it into two 32 bit writes */ #define ONCHIP_ADDR1(x) ((uint32_t)(((uint64_t)x >> 12) & 0xFFFFFFFF)) #define ONCHIP_ADDR2(x) ((uint32_t)((1 << 20) | ((uint64_t)x >> 44))) /* L2 header size + 2*VLANs (8 bytes) + LLC SNAP (8 bytes) */ #define ETH_HLEN 14 #define ETH_OVERHEAD (ETH_HLEN + 8 + 8) #define ETH_MIN_PACKET_SIZE 60 #define ETH_MAX_PACKET_SIZE ETHERMTU /* 1500 */ #define ETH_MAX_JUMBO_PACKET_SIZE 9600 /* TCP with Timestamp Option (32) + IPv6 (40) */ /* max supported alignment is 256 (8 shift) */ #define BNX2X_RX_ALIGN_SHIFT RTE_MAX(6, min(8, RTE_CACHE_LINE_SIZE_LOG2)) #define BNX2X_PXP_DRAM_ALIGN (BNX2X_RX_ALIGN_SHIFT - 5) struct bnx2x_bar { void *base_addr; }; /* Used to manage DMA allocations. */ struct bnx2x_dma { struct bnx2x_softc *sc; rte_iova_t paddr; void *vaddr; int nseg; const void *mzone; char msg[RTE_MEMZONE_NAMESIZE - 6]; }; /* attn group wiring */ #define MAX_DYNAMIC_ATTN_GRPS 8 struct attn_route { uint32_t sig[5]; }; struct iro { uint32_t base; uint16_t m1; uint16_t m2; uint16_t m3; uint16_t size; }; union bnx2x_host_hc_status_block { /* pointer to fp status block e2 */ struct host_hc_status_block_e2 *e2_sb; /* pointer to fp status block e1x */ struct host_hc_status_block_e1x *e1x_sb; }; union bnx2x_db_prod { struct doorbell_set_prod data; uint32_t raw; }; struct bnx2x_sw_tx_bd { struct mbuf *m; uint16_t first_bd; uint8_t flags; /* set on the first BD descriptor when there is a split BD */ #define BNX2X_TSO_SPLIT_BD (1 << 0) }; /* * This is the HSI fastpath data structure. There can be up to MAX_RSS_CHAIN * instances of the fastpath structure when using multiple queues. */ struct bnx2x_fastpath { /* pointer back to parent structure */ struct bnx2x_softc *sc; /* Used to synchronize fastpath Rx access */ rte_spinlock_t rx_mtx; /* status block */ struct bnx2x_dma sb_dma; union bnx2x_host_hc_status_block status_block; rte_iova_t tx_desc_mapping; rte_iova_t rx_desc_mapping; rte_iova_t rx_comp_mapping; uint16_t *sb_index_values; uint16_t *sb_running_index; uint32_t ustorm_rx_prods_offset; uint8_t igu_sb_id; /* status block number in HW */ uint8_t fw_sb_id; /* status block number in FW */ uint32_t rx_buf_size; int state; #define BNX2X_FP_STATE_CLOSED 0x01 #define BNX2X_FP_STATE_IRQ 0x02 #define BNX2X_FP_STATE_OPENING 0x04 #define BNX2X_FP_STATE_OPEN 0x08 #define BNX2X_FP_STATE_HALTING 0x10 #define BNX2X_FP_STATE_HALTED 0x20 /* reference back to this fastpath queue number */ uint8_t index; /* this is also the 'cid' */ #define FP_IDX(fp) (fp->index) /* ethernet client ID (each fastpath set of RX/TX/CQE is a client) */ uint8_t cl_id; #define FP_CL_ID(fp) (fp->cl_id) uint8_t cl_qzone_id; uint16_t fp_hc_idx; union bnx2x_db_prod tx_db; struct tstorm_per_queue_stats old_tclient; struct ustorm_per_queue_stats old_uclient; struct xstorm_per_queue_stats old_xclient; struct bnx2x_eth_q_stats eth_q_stats; struct bnx2x_eth_q_stats_old eth_q_stats_old; /* Pointer to the receive consumer in the status block */ uint16_t *rx_cq_cons_sb; /* Pointer to the transmit consumer in the status block */ uint16_t *tx_cons_sb; /* transmit timeout until chip reset */ int watchdog_timer; }; /* struct bnx2x_fastpath */ #define BNX2X_MAX_NUM_OF_VFS 64 #define BNX2X_VF_ID_INVALID 0xFF /* maximum number of fast-path interrupt contexts */ #define FP_SB_MAX_E1x 16 #define FP_SB_MAX_E2 HC_SB_MAX_SB_E2 union cdu_context { struct eth_context eth; char pad[1024]; }; /* CDU host DB constants */ #define CDU_ILT_PAGE_SZ_HW 2 #define CDU_ILT_PAGE_SZ (8192 << CDU_ILT_PAGE_SZ_HW) /* 32K */ #define ILT_PAGE_CIDS (CDU_ILT_PAGE_SZ / sizeof(union cdu_context)) #define CNIC_ISCSI_CID_MAX 256 #define CNIC_FCOE_CID_MAX 2048 #define CNIC_CID_MAX (CNIC_ISCSI_CID_MAX + CNIC_FCOE_CID_MAX) #define CNIC_ILT_LINES DIV_ROUND_UP(CNIC_CID_MAX, ILT_PAGE_CIDS) #define QM_ILT_PAGE_SZ_HW 0 #define QM_ILT_PAGE_SZ (4096 << QM_ILT_PAGE_SZ_HW) /* 4K */ #define QM_CID_ROUND 1024 /* TM (timers) host DB constants */ #define TM_ILT_PAGE_SZ_HW 0 #define TM_ILT_PAGE_SZ (4096 << TM_ILT_PAGE_SZ_HW) /* 4K */ /*#define TM_CONN_NUM (CNIC_STARTING_CID+CNIC_ISCSI_CXT_MAX) */ #define TM_CONN_NUM 1024 #define TM_ILT_SZ (8 * TM_CONN_NUM) #define TM_ILT_LINES DIV_ROUND_UP(TM_ILT_SZ, TM_ILT_PAGE_SZ) /* SRC (Searcher) host DB constants */ #define SRC_ILT_PAGE_SZ_HW 0 #define SRC_ILT_PAGE_SZ (4096 << SRC_ILT_PAGE_SZ_HW) /* 4K */ #define SRC_HASH_BITS 10 #define SRC_CONN_NUM (1 << SRC_HASH_BITS) /* 1024 */ #define SRC_ILT_SZ (sizeof(struct src_ent) * SRC_CONN_NUM) #define SRC_T2_SZ SRC_ILT_SZ #define SRC_ILT_LINES DIV_ROUND_UP(SRC_ILT_SZ, SRC_ILT_PAGE_SZ) struct hw_context { struct bnx2x_dma vcxt_dma; union cdu_context *vcxt; //rte_iova_t cxt_mapping; size_t size; }; #define SM_RX_ID 0 #define SM_TX_ID 1 /* defines for multiple tx priority indices */ #define FIRST_TX_ONLY_COS_INDEX 1 #define FIRST_TX_COS_INDEX 0 #define CID_TO_FP(cid, sc) ((cid) % BNX2X_NUM_NON_CNIC_QUEUES(sc)) #define HC_INDEX_ETH_RX_CQ_CONS 1 #define HC_INDEX_OOO_TX_CQ_CONS 4 #define HC_INDEX_ETH_TX_CQ_CONS_COS0 5 #define HC_INDEX_ETH_TX_CQ_CONS_COS1 6 #define HC_INDEX_ETH_TX_CQ_CONS_COS2 7 #define HC_INDEX_ETH_FIRST_TX_CQ_CONS HC_INDEX_ETH_TX_CQ_CONS_COS0 /* congestion management fairness mode */ #define CMNG_FNS_NONE 0 #define CMNG_FNS_MINMAX 1 /* CMNG constants, as derived from system spec calculations */ /* default MIN rate in case VNIC min rate is configured to zero - 100Mbps */ #define DEF_MIN_RATE 100 /* resolution of the rate shaping timer - 400 usec */ #define RS_PERIODIC_TIMEOUT_USEC 400 /* number of bytes in single QM arbitration cycle - * coefficient for calculating the fairness timer */ #define QM_ARB_BYTES 160000 /* resolution of Min algorithm 1:100 */ #define MIN_RES 100 /* how many bytes above threshold for the minimal credit of Min algorithm*/ #define MIN_ABOVE_THRESH 32768 /* fairness algorithm integration time coefficient - * for calculating the actual Tfair */ #define T_FAIR_COEF ((MIN_ABOVE_THRESH + QM_ARB_BYTES) * 8 * MIN_RES) /* memory of fairness algorithm - 2 cycles */ #define FAIR_MEM 2 #define HC_SEG_ACCESS_DEF 0 /* Driver decision 0-3 */ #define HC_SEG_ACCESS_ATTN 4 #define HC_SEG_ACCESS_NORM 0 /* Driver decision 0-1 */ /* * The total number of L2 queues, MSIX vectors and HW contexts (CIDs) is * control by the number of fast-path status blocks supported by the * device (HW/FW). Each fast-path status block (FP-SB) aka non-default * status block represents an independent interrupts context that can * serve a regular L2 networking queue. However special L2 queues such * as the FCoE queue do not require a FP-SB and other components like * the CNIC may consume FP-SB reducing the number of possible L2 queues * * If the maximum number of FP-SB available is X then: * a. If CNIC is supported it consumes 1 FP-SB thus the max number of * regular L2 queues is Y=X-1 * b. in MF mode the actual number of L2 queues is Y= (X-1/MF_factor) * c. If the FCoE L2 queue is supported the actual number of L2 queues * is Y+1 * d. The number of irqs (MSIX vectors) is either Y+1 (one extra for * slow-path interrupts) or Y+2 if CNIC is supported (one additional * FP interrupt context for the CNIC). * e. The number of HW context (CID count) is always X or X+1 if FCoE * L2 queue is supported. the cid for the FCoE L2 queue is always X. * * So this is quite simple for now as no ULPs are supported yet. :-) */ #define BNX2X_NUM_QUEUES(sc) ((sc)->num_queues) #define BNX2X_NUM_ETH_QUEUES(sc) BNX2X_NUM_QUEUES(sc) #define BNX2X_NUM_NON_CNIC_QUEUES(sc) BNX2X_NUM_QUEUES(sc) #define BNX2X_NUM_RX_QUEUES(sc) BNX2X_NUM_QUEUES(sc) #define FOR_EACH_QUEUE(sc, var) \ for ((var) = 0; (var) < BNX2X_NUM_QUEUES(sc); (var)++) #define FOR_EACH_NONDEFAULT_QUEUE(sc, var) \ for ((var) = 1; (var) < BNX2X_NUM_QUEUES(sc); (var)++) #define FOR_EACH_ETH_QUEUE(sc, var) \ for ((var) = 0; (var) < BNX2X_NUM_ETH_QUEUES(sc); (var)++) #define FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, var) \ for ((var) = 1; (var) < BNX2X_NUM_ETH_QUEUES(sc); (var)++) #define FOR_EACH_COS_IN_TX_QUEUE(sc, var) \ for ((var) = 0; (var) < (sc)->max_cos; (var)++) #define FOR_EACH_CNIC_QUEUE(sc, var) \ for ((var) = BNX2X_NUM_ETH_QUEUES(sc); \ (var) < BNX2X_NUM_QUEUES(sc); \ (var)++) enum { OOO_IDX_OFFSET, FCOE_IDX_OFFSET, FWD_IDX_OFFSET, }; #define FCOE_IDX(sc) (BNX2X_NUM_NON_CNIC_QUEUES(sc) + FCOE_IDX_OFFSET) #define bnx2x_fcoe_fp(sc) (&sc->fp[FCOE_IDX(sc)]) #define bnx2x_fcoe(sc, var) (bnx2x_fcoe_fp(sc)->var) #define bnx2x_fcoe_inner_sp_obj(sc) (&sc->sp_objs[FCOE_IDX(sc)]) #define bnx2x_fcoe_sp_obj(sc, var) (bnx2x_fcoe_inner_sp_obj(sc)->var) #define bnx2x_fcoe_tx(sc, var) (bnx2x_fcoe_fp(sc)->txdata_ptr[FIRST_TX_COS_INDEX]->var) #define OOO_IDX(sc) (BNX2X_NUM_NON_CNIC_QUEUES(sc) + OOO_IDX_OFFSET) #define bnx2x_ooo_fp(sc) (&sc->fp[OOO_IDX(sc)]) #define bnx2x_ooo(sc, var) (bnx2x_ooo_fp(sc)->var) #define bnx2x_ooo_inner_sp_obj(sc) (&sc->sp_objs[OOO_IDX(sc)]) #define bnx2x_ooo_sp_obj(sc, var) (bnx2x_ooo_inner_sp_obj(sc)->var) #define FWD_IDX(sc) (BNX2X_NUM_NON_CNIC_QUEUES(sc) + FWD_IDX_OFFSET) #define bnx2x_fwd_fp(sc) (&sc->fp[FWD_IDX(sc)]) #define bnx2x_fwd(sc, var) (bnx2x_fwd_fp(sc)->var) #define bnx2x_fwd_inner_sp_obj(sc) (&sc->sp_objs[FWD_IDX(sc)]) #define bnx2x_fwd_sp_obj(sc, var) (bnx2x_fwd_inner_sp_obj(sc)->var) #define bnx2x_fwd_txdata(fp) (fp->txdata_ptr[FIRST_TX_COS_INDEX]) #define IS_ETH_FP(fp) ((fp)->index < BNX2X_NUM_ETH_QUEUES((fp)->sc)) #define IS_FCOE_FP(fp) ((fp)->index == FCOE_IDX((fp)->sc)) #define IS_FCOE_IDX(idx) ((idx) == FCOE_IDX(sc)) #define IS_FWD_FP(fp) ((fp)->index == FWD_IDX((fp)->sc)) #define IS_FWD_IDX(idx) ((idx) == FWD_IDX(sc)) #define IS_OOO_FP(fp) ((fp)->index == OOO_IDX((fp)->sc)) #define IS_OOO_IDX(idx) ((idx) == OOO_IDX(sc)) enum { BNX2X_PORT_QUERY_IDX, BNX2X_PF_QUERY_IDX, BNX2X_FCOE_QUERY_IDX, BNX2X_FIRST_QUEUE_QUERY_IDX, }; struct bnx2x_fw_stats_req { struct stats_query_header hdr; struct stats_query_entry query[FP_SB_MAX_E1x + BNX2X_FIRST_QUEUE_QUERY_IDX]; }; struct bnx2x_fw_stats_data { struct stats_counter storm_counters; struct per_port_stats port; struct per_pf_stats pf; struct per_queue_stats queue_stats[1]; }; /* IGU MSIX STATISTICS on 57712: 64 for VFs; 4 for PFs; 4 for Attentions */ #define BNX2X_IGU_STAS_MSG_VF_CNT 64 #define BNX2X_IGU_STAS_MSG_PF_CNT 4 #define MAX_DMAE_C 8 /* * This is the slowpath data structure. It is mapped into non-paged memory * so that the hardware can access it's contents directly and must be page * aligned. */ struct bnx2x_slowpath { /* used by the DMAE command executer */ struct dmae_command dmae[MAX_DMAE_C]; /* statistics completion */ uint32_t stats_comp; /* firmware defined statistics blocks */ union mac_stats mac_stats; struct nig_stats nig_stats; struct host_port_stats port_stats; struct host_func_stats func_stats; /* DMAE completion value and data source/sink */ uint32_t wb_comp; uint32_t wb_data[4]; union { struct mac_configuration_cmd e1x; struct eth_classify_rules_ramrod_data e2; } mac_rdata; union { struct tstorm_eth_mac_filter_config e1x; struct eth_filter_rules_ramrod_data e2; } rx_mode_rdata; struct eth_rss_update_ramrod_data rss_rdata; union { struct mac_configuration_cmd e1; struct eth_multicast_rules_ramrod_data e2; } mcast_rdata; union { struct function_start_data func_start; struct flow_control_configuration pfc_config; /* for DCBX ramrod */ } func_rdata; /* Queue State related ramrods */ union { struct client_init_ramrod_data init_data; struct client_update_ramrod_data update_data; } q_rdata; /* * AFEX ramrod can not be a part of func_rdata union because these * events might arrive in parallel to other events from func_rdata. * If they were defined in the same union the data can get corrupted. */ struct afex_vif_list_ramrod_data func_afex_rdata; union drv_info_to_mcp drv_info_to_mcp; }; /* struct bnx2x_slowpath */ /* * Port specific data structure. */ struct bnx2x_port { /* * Port Management Function (for 57711E only). * When this field is set the driver instance is * responsible for managing port specific * configurations such as handling link attentions. */ uint32_t pmf; /* Ethernet maximum transmission unit. */ uint16_t ether_mtu; uint32_t link_config[ELINK_LINK_CONFIG_SIZE]; uint32_t ext_phy_config; /* Port feature config.*/ uint32_t config; /* Defines the features supported by the PHY. */ uint32_t supported[ELINK_LINK_CONFIG_SIZE]; /* Defines the features advertised by the PHY. */ uint32_t advertising[ELINK_LINK_CONFIG_SIZE]; #define ADVERTISED_10baseT_Half (1 << 1) #define ADVERTISED_10baseT_Full (1 << 2) #define ADVERTISED_100baseT_Half (1 << 3) #define ADVERTISED_100baseT_Full (1 << 4) #define ADVERTISED_1000baseT_Half (1 << 5) #define ADVERTISED_1000baseT_Full (1 << 6) #define ADVERTISED_TP (1 << 7) #define ADVERTISED_FIBRE (1 << 8) #define ADVERTISED_Autoneg (1 << 9) #define ADVERTISED_Asym_Pause (1 << 10) #define ADVERTISED_Pause (1 << 11) #define ADVERTISED_2500baseX_Full (1 << 15) #define ADVERTISED_10000baseT_Full (1 << 16) uint32_t phy_addr; /* Used to synchronize phy accesses. */ rte_spinlock_t phy_mtx; char phy_mtx_name[32]; #define BNX2X_PHY_LOCK(sc) rte_spinlock_lock(&sc->port.phy_mtx) #define BNX2X_PHY_UNLOCK(sc) rte_spinlock_unlock(&sc->port.phy_mtx) /* * MCP scratchpad address for port specific statistics. * The device is responsible for writing statistics * back to the MCP for use with management firmware such * as UMP/NC-SI. */ uint32_t port_stx; struct nig_stats old_nig_stats; }; /* struct bnx2x_port */ struct bnx2x_mf_info { uint32_t mf_config[E1HVN_MAX]; uint32_t vnics_per_port; /* 1, 2 or 4 */ uint32_t multi_vnics_mode; /* can be set even if vnics_per_port = 1 */ uint32_t path_has_ovlan; /* MF mode in the path (can be different than the MF mode of the function */ #define IS_MULTI_VNIC(sc) ((sc)->devinfo.mf_info.multi_vnics_mode) #define VNICS_PER_PORT(sc) ((sc)->devinfo.mf_info.vnics_per_port) #define VNICS_PER_PATH(sc) \ ((sc)->devinfo.mf_info.vnics_per_port * \ ((CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 1 )) uint8_t min_bw[MAX_VNIC_NUM]; uint8_t max_bw[MAX_VNIC_NUM]; uint16_t ext_id; /* vnic outer vlan or VIF ID */ #define VALID_OVLAN(ovlan) ((ovlan) <= 4096) #define INVALID_VIF_ID 0xFFFF #define OVLAN(sc) ((sc)->devinfo.mf_info.ext_id) #define VIF_ID(sc) ((sc)->devinfo.mf_info.ext_id) uint16_t default_vlan; #define NIV_DEFAULT_VLAN(sc) ((sc)->devinfo.mf_info.default_vlan) uint8_t niv_allowed_priorities; #define NIV_ALLOWED_PRIORITIES(sc) ((sc)->devinfo.mf_info.niv_allowed_priorities) uint8_t niv_default_cos; #define NIV_DEFAULT_COS(sc) ((sc)->devinfo.mf_info.niv_default_cos) uint8_t niv_mba_enabled; enum mf_cfg_afex_vlan_mode afex_vlan_mode; #define AFEX_VLAN_MODE(sc) ((sc)->devinfo.mf_info.afex_vlan_mode) int afex_def_vlan_tag; uint32_t pending_max; uint16_t flags; #define MF_INFO_VALID_MAC 0x0001 uint16_t mf_ov; uint8_t mf_mode; /* Switch-Dependent or Switch-Independent */ #define IS_MF(sc) \ (IS_MULTI_VNIC(sc) && \ ((sc)->devinfo.mf_info.mf_mode != 0)) #define IS_MF_SD(sc) \ (IS_MULTI_VNIC(sc) && \ ((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD)) #define IS_MF_SI(sc) \ (IS_MULTI_VNIC(sc) && \ ((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI)) #define IS_MF_AFEX(sc) \ (IS_MULTI_VNIC(sc) && \ ((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX)) #define IS_MF_SD_MODE(sc) IS_MF_SD(sc) #define IS_MF_SI_MODE(sc) IS_MF_SI(sc) #define IS_MF_AFEX_MODE(sc) IS_MF_AFEX(sc) uint32_t mf_protos_supported; #define MF_PROTO_SUPPORT_ETHERNET 0x1 #define MF_PROTO_SUPPORT_ISCSI 0x2 #define MF_PROTO_SUPPORT_FCOE 0x4 }; /* struct bnx2x_mf_info */ /* Device information data structure. */ struct bnx2x_devinfo { #if 1 #define NAME_SIZE 128 char name[NAME_SIZE]; #endif /* PCIe info */ uint16_t vendor_id; uint16_t device_id; uint16_t subvendor_id; uint16_t subdevice_id; /* * chip_id = 0b'CCCCCCCCCCCCCCCCRRRRMMMMMMMMBBBB' * C = Chip Number (bits 16-31) * R = Chip Revision (bits 12-15) * M = Chip Metal (bits 4-11) * B = Chip Bond ID (bits 0-3) */ uint32_t chip_id; #define CHIP_ID(sc) ((sc)->devinfo.chip_id & 0xffff0000) #define CHIP_NUM(sc) ((sc)->devinfo.chip_id >> 16) /* device ids */ #define CHIP_NUM_57710 0x164e #define CHIP_NUM_57711 0x164f #define CHIP_NUM_57711E 0x1650 #define CHIP_NUM_57712 0x1662 #define CHIP_NUM_57712_MF 0x1663 #define CHIP_NUM_57712_VF 0x166f #define CHIP_NUM_57800 0x168a #define CHIP_NUM_57800_MF 0x16a5 #define CHIP_NUM_57800_VF 0x16a9 #define CHIP_NUM_57810 0x168e #define CHIP_NUM_57810_MF 0x16ae #define CHIP_NUM_57810_VF 0x16af #define CHIP_NUM_57811 0x163d #define CHIP_NUM_57811_MF 0x163e #define CHIP_NUM_57811_VF 0x163f #define CHIP_NUM_57840_OBS 0x168d #define CHIP_NUM_57840_OBS_MF 0x16ab #define CHIP_NUM_57840_4_10 0x16a1 #define CHIP_NUM_57840_2_20 0x16a2 #define CHIP_NUM_57840_MF 0x16a4 #define CHIP_NUM_57840_VF 0x16ad #define CHIP_REV_SHIFT 12 #define CHIP_REV_MASK (0xF << CHIP_REV_SHIFT) #define CHIP_REV(sc) ((sc)->devinfo.chip_id & CHIP_REV_MASK) #define CHIP_REV_Ax (0x0 << CHIP_REV_SHIFT) #define CHIP_REV_Bx (0x1 << CHIP_REV_SHIFT) #define CHIP_REV_Cx (0x2 << CHIP_REV_SHIFT) #define CHIP_REV_IS_SLOW(sc) \ (CHIP_REV(sc) > 0x00005000) #define CHIP_REV_IS_FPGA(sc) \ (CHIP_REV_IS_SLOW(sc) && (CHIP_REV(sc) & 0x00001000)) #define CHIP_REV_IS_EMUL(sc) \ (CHIP_REV_IS_SLOW(sc) && !(CHIP_REV(sc) & 0x00001000)) #define CHIP_REV_IS_ASIC(sc) \ (!CHIP_REV_IS_SLOW(sc)) #define CHIP_METAL(sc) ((sc->devinfo.chip_id) & 0x00000ff0) #define CHIP_BOND_ID(sc) ((sc->devinfo.chip_id) & 0x0000000f) #define CHIP_IS_E1(sc) (CHIP_NUM(sc) == CHIP_NUM_57710) #define CHIP_IS_57710(sc) (CHIP_NUM(sc) == CHIP_NUM_57710) #define CHIP_IS_57711(sc) (CHIP_NUM(sc) == CHIP_NUM_57711) #define CHIP_IS_57711E(sc) (CHIP_NUM(sc) == CHIP_NUM_57711E) #define CHIP_IS_E1H(sc) ((CHIP_IS_57711(sc)) || \ (CHIP_IS_57711E(sc))) #define CHIP_IS_E1x(sc) CHIP_IS_E1H(sc) #define CHIP_IS_57712(sc) (CHIP_NUM(sc) == CHIP_NUM_57712) #define CHIP_IS_57712_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57712_MF) #define CHIP_IS_57712_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57712_VF) #define CHIP_IS_E2(sc) (CHIP_IS_57712(sc) || \ CHIP_IS_57712_MF(sc)) #define CHIP_IS_57800(sc) (CHIP_NUM(sc) == CHIP_NUM_57800) #define CHIP_IS_57800_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57800_MF) #define CHIP_IS_57800_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57800_VF) #define CHIP_IS_57810(sc) (CHIP_NUM(sc) == CHIP_NUM_57810) #define CHIP_IS_57810_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57810_MF) #define CHIP_IS_57810_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57810_VF) #define CHIP_IS_57811(sc) (CHIP_NUM(sc) == CHIP_NUM_57811) #define CHIP_IS_57811_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57811_MF) #define CHIP_IS_57811_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57811_VF) #define CHIP_IS_57840(sc) ((CHIP_NUM(sc) == CHIP_NUM_57840_OBS) || \ (CHIP_NUM(sc) == CHIP_NUM_57840_4_10) || \ (CHIP_NUM(sc) == CHIP_NUM_57840_2_20)) #define CHIP_IS_57840_MF(sc) ((CHIP_NUM(sc) == CHIP_NUM_57840_OBS_MF) || \ (CHIP_NUM(sc) == CHIP_NUM_57840_MF)) #define CHIP_IS_57840_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57840_VF) #define CHIP_IS_E3(sc) (CHIP_IS_57800(sc) || \ CHIP_IS_57800_MF(sc) || \ CHIP_IS_57800_VF(sc) || \ CHIP_IS_57810(sc) || \ CHIP_IS_57810_MF(sc) || \ CHIP_IS_57810_VF(sc) || \ CHIP_IS_57811(sc) || \ CHIP_IS_57811_MF(sc) || \ CHIP_IS_57811_VF(sc) || \ CHIP_IS_57840(sc) || \ CHIP_IS_57840_MF(sc) || \ CHIP_IS_57840_VF(sc)) #define CHIP_IS_E3A0(sc) (CHIP_IS_E3(sc) && \ (CHIP_REV(sc) == CHIP_REV_Ax)) #define CHIP_IS_E3B0(sc) (CHIP_IS_E3(sc) && \ (CHIP_REV(sc) == CHIP_REV_Bx)) #define USES_WARPCORE(sc) (CHIP_IS_E3(sc)) #define CHIP_IS_E2E3(sc) (CHIP_IS_E2(sc) || \ CHIP_IS_E3(sc)) #define CHIP_IS_MF_CAP(sc) (CHIP_IS_57711E(sc) || \ CHIP_IS_57712_MF(sc) || \ CHIP_IS_E3(sc)) #define IS_VF(sc) ((sc)->flags & BNX2X_IS_VF_FLAG) #define IS_PF(sc) (!IS_VF(sc)) /* * This define is used in two main places: * 1. In the early stages of nic_load, to know if to configure Parser/Searcher * to nic-only mode or to offload mode. Offload mode is configured if either * the chip is E1x (where NIC_MODE register is not applicable), or if cnic * already registered for this port (which means that the user wants storage * services). * 2. During cnic-related load, to know if offload mode is already configured * in the HW or needs to be configured. Since the transition from nic-mode to * offload-mode in HW causes traffic corruption, nic-mode is configured only * in ports on which storage services where never requested. */ #define CONFIGURE_NIC_MODE(sc) (!CHIP_IS_E1x(sc) && !CNIC_ENABLED(sc)) uint8_t chip_port_mode; #define CHIP_4_PORT_MODE 0x0 #define CHIP_2_PORT_MODE 0x1 #define CHIP_PORT_MODE_NONE 0x2 #define CHIP_PORT_MODE(sc) ((sc)->devinfo.chip_port_mode) #define CHIP_IS_MODE_4_PORT(sc) (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) uint8_t int_block; #define INT_BLOCK_HC 0 #define INT_BLOCK_IGU 1 #define INT_BLOCK_MODE_NORMAL 0 #define INT_BLOCK_MODE_BW_COMP 2 #define CHIP_INT_MODE_IS_NBC(sc) \ (!CHIP_IS_E1x(sc) && \ !((sc)->devinfo.int_block & INT_BLOCK_MODE_BW_COMP)) #define CHIP_INT_MODE_IS_BC(sc) (!CHIP_INT_MODE_IS_NBC(sc)) uint32_t shmem_base; uint32_t shmem2_base; uint32_t bc_ver; char bc_ver_str[32]; uint32_t mf_cfg_base; /* bootcode shmem address in BAR memory */ struct bnx2x_mf_info mf_info; uint32_t flash_size; #define NVRAM_1MB_SIZE 0x20000 #define NVRAM_TIMEOUT_COUNT 30000 #define NVRAM_PAGE_SIZE 256 /* PCIe capability information */ uint32_t pcie_cap_flags; #define BNX2X_PM_CAPABLE_FLAG 0x00000001 #define BNX2X_PCIE_CAPABLE_FLAG 0x00000002 #define BNX2X_MSI_CAPABLE_FLAG 0x00000004 #define BNX2X_MSIX_CAPABLE_FLAG 0x00000008 uint16_t pcie_pm_cap_reg; uint16_t pcie_link_width; uint16_t pcie_link_speed; uint16_t pcie_msi_cap_reg; uint16_t pcie_msix_cap_reg; /* device configuration read from bootcode shared memory */ uint32_t hw_config; uint32_t hw_config2; }; /* struct bnx2x_devinfo */ struct bnx2x_sp_objs { struct ecore_vlan_mac_obj mac_obj; /* MACs object */ struct ecore_queue_sp_obj q_obj; /* Queue State object */ }; /* struct bnx2x_sp_objs */ /* * Data that will be used to create a link report message. We will keep the * data used for the last link report in order to prevent reporting the same * link parameters twice. */ struct bnx2x_link_report_data { uint16_t line_speed; /* Effective line speed */ uint32_t link_report_flags; /* BNX2X_LINK_REPORT_XXX flags */ }; enum { BNX2X_LINK_REPORT_FULL_DUPLEX, BNX2X_LINK_REPORT_LINK_DOWN, BNX2X_LINK_REPORT_RX_FC_ON, BNX2X_LINK_REPORT_TX_FC_ON }; #define BNX2X_RX_CHAIN_PAGE_SZ BNX2X_PAGE_SIZE struct bnx2x_pci_cap { struct bnx2x_pci_cap *next; uint16_t id; uint16_t type; uint16_t addr; }; struct ecore_ilt; struct bnx2x_vfdb; /* Top level device private data structure. */ struct bnx2x_softc { void **rx_queues; void **tx_queues; uint32_t max_tx_queues; uint32_t max_rx_queues; const struct rte_pci_device *pci_dev; uint32_t pci_val; struct bnx2x_pci_cap *pci_caps; #define BNX2X_INTRS_POLL_PERIOD 1 void *firmware; uint64_t fw_len; /* MAC address operations */ struct bnx2x_mac_ops mac_ops; /* structures for VF mbox/response/bulletin */ struct bnx2x_vf_mbx_msg *vf2pf_mbox; struct bnx2x_dma vf2pf_mbox_mapping; struct vf_acquire_resp_tlv acquire_resp; struct bnx2x_vf_bulletin *pf2vf_bulletin; struct bnx2x_dma pf2vf_bulletin_mapping; struct bnx2x_vf_bulletin old_bulletin; rte_spinlock_t vf2pf_lock; int media; int state; /* device state */ #define BNX2X_STATE_CLOSED 0x0000 #define BNX2X_STATE_OPENING_WAITING_LOAD 0x1000 #define BNX2X_STATE_OPENING_WAITING_PORT 0x2000 #define BNX2X_STATE_OPEN 0x3000 #define BNX2X_STATE_CLOSING_WAITING_HALT 0x4000 #define BNX2X_STATE_CLOSING_WAITING_DELETE 0x5000 #define BNX2X_STATE_CLOSING_WAITING_UNLOAD 0x6000 #define BNX2X_STATE_DISABLED 0xD000 #define BNX2X_STATE_DIAG 0xE000 #define BNX2X_STATE_ERROR 0xF000 int flags; #define BNX2X_ONE_PORT_FLAG 0x1 #define BNX2X_NO_FCOE_FLAG 0x2 #define BNX2X_NO_WOL_FLAG 0x4 #define BNX2X_NO_MCP_FLAG 0x8 #define BNX2X_NO_ISCSI_OOO_FLAG 0x10 #define BNX2X_NO_ISCSI_FLAG 0x20 #define BNX2X_MF_FUNC_DIS 0x40 #define BNX2X_TX_SWITCHING 0x80 #define BNX2X_IS_VF_FLAG 0x100 #define BNX2X_ONE_PORT(sc) (sc->flags & BNX2X_ONE_PORT_FLAG) #define BNX2X_NOFCOE(sc) (sc->flags & BNX2X_NO_FCOE_FLAG) #define BNX2X_NOMCP(sc) (sc->flags & BNX2X_NO_MCP_FLAG) #define MAX_BARS 5 struct bnx2x_bar bar[MAX_BARS]; /* map BARs 0, 2, 4 */ uint16_t doorbell_size; /* periodic timer callout */ #define PERIODIC_STOP 0 #define PERIODIC_GO 1 volatile unsigned long periodic_flags; rte_atomic32_t scan_fp; struct bnx2x_fastpath fp[MAX_RSS_CHAINS]; struct bnx2x_sp_objs sp_objs[MAX_RSS_CHAINS]; uint8_t unit; /* driver instance number */ int pcie_bus; /* PCIe bus number */ int pcie_device; /* PCIe device/slot number */ int pcie_func; /* PCIe function number */ uint8_t pfunc_rel; /* function relative */ uint8_t pfunc_abs; /* function absolute */ uint8_t path_id; /* function absolute */ #define SC_PATH(sc) (sc->path_id) #define SC_PORT(sc) (sc->pfunc_rel & 1) #define SC_FUNC(sc) (sc->pfunc_rel) #define SC_ABS_FUNC(sc) (sc->pfunc_abs) #define SC_VN(sc) (sc->pfunc_rel >> 1) #define SC_L_ID(sc) (SC_VN(sc) << 2) #define PORT_ID(sc) SC_PORT(sc) #define PATH_ID(sc) SC_PATH(sc) #define VNIC_ID(sc) SC_VN(sc) #define FUNC_ID(sc) SC_FUNC(sc) #define ABS_FUNC_ID(sc) SC_ABS_FUNC(sc) #define SC_FW_MB_IDX_VN(sc, vn) \ (SC_PORT(sc) + (vn) * \ ((CHIP_IS_E1x(sc) || (CHIP_IS_MODE_4_PORT(sc))) ? 2 : 1)) #define SC_FW_MB_IDX(sc) SC_FW_MB_IDX_VN(sc, SC_VN(sc)) int if_capen; /* enabled interface capabilities */ struct bnx2x_devinfo devinfo; char fw_ver_str[32]; char mf_mode_str[32]; char pci_link_str[32]; struct iro *iro_array; int dmae_ready; #define DMAE_READY(sc) (sc->dmae_ready) struct ecore_credit_pool_obj vlans_pool; struct ecore_credit_pool_obj macs_pool; struct ecore_rx_mode_obj rx_mode_obj; struct ecore_mcast_obj mcast_obj; struct ecore_rss_config_obj rss_conf_obj; struct ecore_func_sp_obj func_obj; uint16_t fw_seq; uint16_t fw_drv_pulse_wr_seq; uint32_t func_stx; struct elink_params link_params; struct elink_vars link_vars; uint32_t link_cnt; struct bnx2x_link_report_data last_reported_link; char mac_addr_str[32]; uint32_t tx_ring_size; uint32_t rx_ring_size; int wol; int is_leader; int recovery_state; #define BNX2X_RECOVERY_DONE 1 #define BNX2X_RECOVERY_INIT 2 #define BNX2X_RECOVERY_WAIT 3 #define BNX2X_RECOVERY_FAILED 4 #define BNX2X_RECOVERY_NIC_LOADING 5 uint32_t rx_mode; #define BNX2X_RX_MODE_NONE 0 #define BNX2X_RX_MODE_NORMAL 1 #define BNX2X_RX_MODE_ALLMULTI 2 #define BNX2X_RX_MODE_ALLMULTI_PROMISC 3 #define BNX2X_RX_MODE_PROMISC 4 #define BNX2X_MAX_MULTICAST 64 struct bnx2x_port port; struct cmng_init cmng; /* user configs */ uint8_t num_queues; int hc_rx_ticks; int hc_tx_ticks; uint32_t rx_budget; int interrupt_mode; #define INTR_MODE_INTX 0 #define INTR_MODE_MSI 1 #define INTR_MODE_MSIX 2 #define INTR_MODE_SINGLE_MSIX 3 int udp_rss; uint8_t igu_dsb_id; uint8_t igu_base_sb; uint8_t igu_sb_cnt; uint32_t igu_base_addr; uint8_t base_fw_ndsb; #define DEF_SB_IGU_ID 16 #define DEF_SB_ID HC_SP_SB_ID /* default status block */ struct bnx2x_dma def_sb_dma; struct host_sp_status_block *def_sb; uint16_t def_idx; uint16_t def_att_idx; uint32_t attn_state; struct attn_route attn_group[MAX_DYNAMIC_ATTN_GRPS]; /* general SP events - stats query, cfc delete, etc */ #define HC_SP_INDEX_ETH_DEF_CONS 3 /* EQ completions */ #define HC_SP_INDEX_EQ_CONS 7 /* FCoE L2 connection completions */ #define HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS 6 #define HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS 4 /* iSCSI L2 */ #define HC_SP_INDEX_ETH_ISCSI_CQ_CONS 5 #define HC_SP_INDEX_ETH_ISCSI_RX_CQ_CONS 1 /* event queue */ struct bnx2x_dma eq_dma; union event_ring_elem *eq; uint16_t eq_prod; uint16_t eq_cons; uint16_t *eq_cons_sb; #define NUM_EQ_PAGES 1 /* must be a power of 2 */ #define EQ_DESC_CNT_PAGE (BNX2X_PAGE_SIZE / sizeof(union event_ring_elem)) #define EQ_DESC_MAX_PAGE (EQ_DESC_CNT_PAGE - 1) #define NUM_EQ_DESC (EQ_DESC_CNT_PAGE * NUM_EQ_PAGES) #define EQ_DESC_MASK (NUM_EQ_DESC - 1) #define MAX_EQ_AVAIL (EQ_DESC_MAX_PAGE * NUM_EQ_PAGES - 2) /* depends on EQ_DESC_CNT_PAGE being a power of 2 */ #define NEXT_EQ_IDX(x) \ ((((x) & EQ_DESC_MAX_PAGE) == (EQ_DESC_MAX_PAGE - 1)) ? \ ((x) + 2) : ((x) + 1)) /* depends on the above and on NUM_EQ_PAGES being a power of 2 */ #define EQ_DESC(x) ((x) & EQ_DESC_MASK) /* slow path */ struct bnx2x_dma sp_dma; struct bnx2x_slowpath *sp; uint32_t sp_state; /* slow path queue */ struct bnx2x_dma spq_dma; struct eth_spe *spq; #define SP_DESC_CNT (BNX2X_PAGE_SIZE / sizeof(struct eth_spe)) #define MAX_SP_DESC_CNT (SP_DESC_CNT - 1) #define MAX_SPQ_PENDING 8 uint16_t spq_prod_idx; struct eth_spe *spq_prod_bd; struct eth_spe *spq_last_bd; uint16_t *dsb_sp_prod; volatile unsigned long eq_spq_left; /* COMMON_xxx ramrod credit */ volatile unsigned long cq_spq_left; /* ETH_xxx ramrod credit */ /* fw decompression buffer */ struct bnx2x_dma gz_buf_dma; void *gz_buf; uint32_t gz_outlen; #define GUNZIP_BUF(sc) (sc->gz_buf) #define GUNZIP_OUTLEN(sc) (sc->gz_outlen) #define GUNZIP_PHYS(sc) (rte_iova_t)(sc->gz_buf_dma.paddr) #define FW_BUF_SIZE 0x40000 struct raw_op *init_ops; uint16_t *init_ops_offsets; /* init block offsets inside init_ops */ uint32_t *init_data; /* data blob, 32 bit granularity */ uint32_t init_mode_flags; #define INIT_MODE_FLAGS(sc) (sc->init_mode_flags) /* PRAM blobs - raw data */ const uint8_t *tsem_int_table_data; const uint8_t *tsem_pram_data; const uint8_t *usem_int_table_data; const uint8_t *usem_pram_data; const uint8_t *xsem_int_table_data; const uint8_t *xsem_pram_data; const uint8_t *csem_int_table_data; const uint8_t *csem_pram_data; #define INIT_OPS(sc) (sc->init_ops) #define INIT_OPS_OFFSETS(sc) (sc->init_ops_offsets) #define INIT_DATA(sc) (sc->init_data) #define INIT_TSEM_INT_TABLE_DATA(sc) (sc->tsem_int_table_data) #define INIT_TSEM_PRAM_DATA(sc) (sc->tsem_pram_data) #define INIT_USEM_INT_TABLE_DATA(sc) (sc->usem_int_table_data) #define INIT_USEM_PRAM_DATA(sc) (sc->usem_pram_data) #define INIT_XSEM_INT_TABLE_DATA(sc) (sc->xsem_int_table_data) #define INIT_XSEM_PRAM_DATA(sc) (sc->xsem_pram_data) #define INIT_CSEM_INT_TABLE_DATA(sc) (sc->csem_int_table_data) #define INIT_CSEM_PRAM_DATA(sc) (sc->csem_pram_data) #define PHY_FW_VER_LEN 20 char fw_ver[32]; /* ILT * For max 196 cids (64*3 + non-eth), 32KB ILT page size and 1KB * context size we need 8 ILT entries. */ #define ILT_MAX_L2_LINES 8 struct hw_context context[ILT_MAX_L2_LINES]; struct ecore_ilt *ilt; #define ILT_MAX_LINES 256 /* max supported number of RSS queues: IGU SBs minus one for CNIC */ #define BNX2X_MAX_RSS_COUNT(sc) ((sc)->igu_sb_cnt - CNIC_SUPPORT(sc)) /* max CID count: Max RSS * Max_Tx_Multi_Cos + FCoE + iSCSI */ #define BNX2X_L2_MAX_CID(sc) \ (BNX2X_MAX_RSS_COUNT(sc) * ECORE_MULTI_TX_COS + 2 * CNIC_SUPPORT(sc)) #define BNX2X_L2_CID_COUNT(sc) \ (BNX2X_NUM_ETH_QUEUES(sc) * ECORE_MULTI_TX_COS + 2 * CNIC_SUPPORT(sc)) #define L2_ILT_LINES(sc) \ (DIV_ROUND_UP(BNX2X_L2_CID_COUNT(sc), ILT_PAGE_CIDS)) int qm_cid_count; uint8_t dropless_fc; /* total number of FW statistics requests */ uint8_t fw_stats_num; /* * This is a memory buffer that will contain both statistics ramrod * request and data. */ struct bnx2x_dma fw_stats_dma; /* * FW statistics request shortcut (points at the beginning of fw_stats * buffer). */ int fw_stats_req_size; struct bnx2x_fw_stats_req *fw_stats_req; rte_iova_t fw_stats_req_mapping; /* * FW statistics data shortcut (points at the beginning of fw_stats * buffer + fw_stats_req_size). */ int fw_stats_data_size; struct bnx2x_fw_stats_data *fw_stats_data; rte_iova_t fw_stats_data_mapping; /* tracking a pending STAT_QUERY ramrod */ uint16_t stats_pending; /* number of completed statistics ramrods */ uint16_t stats_comp; uint16_t stats_counter; uint8_t stats_init; int stats_state; struct bnx2x_eth_stats eth_stats; struct host_func_stats func_stats; struct bnx2x_eth_stats_old eth_stats_old; struct bnx2x_net_stats_old net_stats_old; struct bnx2x_fw_port_stats_old fw_stats_old; struct dmae_command stats_dmae; /* used by dmae command loader */ int executer_idx; int mtu; /* DCB support on/off */ int dcb_state; #define BNX2X_DCB_STATE_OFF 0 #define BNX2X_DCB_STATE_ON 1 /* DCBX engine mode */ int dcbx_enabled; #define BNX2X_DCBX_ENABLED_OFF 0 #define BNX2X_DCBX_ENABLED_ON_NEG_OFF 1 #define BNX2X_DCBX_ENABLED_ON_NEG_ON 2 #define BNX2X_DCBX_ENABLED_INVALID -1 uint8_t cnic_support; uint8_t cnic_enabled; uint8_t cnic_loaded; #define CNIC_SUPPORT(sc) 0 /* ((sc)->cnic_support) */ #define CNIC_ENABLED(sc) 0 /* ((sc)->cnic_enabled) */ #define CNIC_LOADED(sc) 0 /* ((sc)->cnic_loaded) */ /* multiple tx classes of service */ uint8_t max_cos; #define BNX2X_MAX_PRIORITY 8 /* priority to cos mapping */ uint8_t prio_to_cos[BNX2X_MAX_PRIORITY]; int panic; /* Array of Multicast addrs */ struct rte_ether_addr mc_addrs[VF_MAX_MULTICAST_PER_VF]; /* Multicast mac addresses number */ uint16_t mc_addrs_num; }; /* struct bnx2x_softc */ /* IOCTL sub-commands for edebug and firmware upgrade */ #define BNX2X_IOC_RD_NVRAM 1 #define BNX2X_IOC_WR_NVRAM 2 #define BNX2X_IOC_STATS_SHOW_NUM 3 #define BNX2X_IOC_STATS_SHOW_STR 4 #define BNX2X_IOC_STATS_SHOW_CNT 5 struct bnx2x_nvram_data { uint32_t op; /* ioctl sub-command */ uint32_t offset; uint32_t len; uint32_t value[1]; /* variable */ }; union bnx2x_stats_show_data { uint32_t op; /* ioctl sub-command */ struct { uint32_t num; /* return number of stats */ uint32_t len; /* length of each string item */ } desc; /* variable length... */ char str[1]; /* holds names of desc.num stats, each desc.len in length */ /* variable length... */ uint64_t stats[1]; /* holds all stats */ }; /* function init flags */ #define FUNC_FLG_RSS 0x0001 #define FUNC_FLG_STATS 0x0002 /* FUNC_FLG_UNMATCHED 0x0004 */ #define FUNC_FLG_SPQ 0x0010 #define FUNC_FLG_LEADING 0x0020 /* PF only */ struct bnx2x_func_init_params { rte_iova_t fw_stat_map; /* (dma) valid if FUNC_FLG_STATS */ rte_iova_t spq_map; /* (dma) valid if FUNC_FLG_SPQ */ uint16_t func_flgs; uint16_t func_id; /* abs function id */ uint16_t pf_id; uint16_t spq_prod; /* valid if FUNC_FLG_SPQ */ }; /* memory resources reside at BARs 0, 2, 4 */ /* Run `pciconf -lb` to see mappings */ #define BAR0 0 #define BAR1 2 #define BAR2 4 static inline void bnx2x_reg_write8(struct bnx2x_softc *sc, size_t offset, uint8_t val) { PMD_DEBUG_PERIODIC_LOG(DEBUG, sc, "offset=0x%08lx val=0x%02x", (unsigned long)offset, val); rte_write8(val, ((uint8_t *)sc->bar[BAR0].base_addr + offset)); } static inline void bnx2x_reg_write16(struct bnx2x_softc *sc, size_t offset, uint16_t val) { #ifdef RTE_LIBRTE_BNX2X_DEBUG_PERIODIC if ((offset % 2) != 0) PMD_DRV_LOG(NOTICE, sc, "Unaligned 16-bit write to 0x%08lx", (unsigned long)offset); #endif PMD_DEBUG_PERIODIC_LOG(DEBUG, sc, "offset=0x%08lx val=0x%04x", (unsigned long)offset, val); rte_write16(val, ((uint8_t *)sc->bar[BAR0].base_addr + offset)); } static inline void bnx2x_reg_write32(struct bnx2x_softc *sc, size_t offset, uint32_t val) { #ifdef RTE_LIBRTE_BNX2X_DEBUG_PERIODIC if ((offset % 4) != 0) PMD_DRV_LOG(NOTICE, sc, "Unaligned 32-bit write to 0x%08lx", (unsigned long)offset); #endif PMD_DEBUG_PERIODIC_LOG(DEBUG, sc, "offset=0x%08lx val=0x%08x", (unsigned long)offset, val); rte_write32(val, ((uint8_t *)sc->bar[BAR0].base_addr + offset)); } static inline uint8_t bnx2x_reg_read8(struct bnx2x_softc *sc, size_t offset) { uint8_t val; val = rte_read8((uint8_t *)sc->bar[BAR0].base_addr + offset); PMD_DEBUG_PERIODIC_LOG(DEBUG, sc, "offset=0x%08lx val=0x%02x", (unsigned long)offset, val); return val; } static inline uint16_t bnx2x_reg_read16(struct bnx2x_softc *sc, size_t offset) { uint16_t val; #ifdef RTE_LIBRTE_BNX2X_DEBUG_PERIODIC if ((offset % 2) != 0) PMD_DRV_LOG(NOTICE, sc, "Unaligned 16-bit read from 0x%08lx", (unsigned long)offset); #endif val = rte_read16(((uint8_t *)sc->bar[BAR0].base_addr + offset)); PMD_DEBUG_PERIODIC_LOG(DEBUG, sc, "offset=0x%08lx val=0x%08x", (unsigned long)offset, val); return val; } static inline uint32_t bnx2x_reg_read32(struct bnx2x_softc *sc, size_t offset) { uint32_t val; #ifdef RTE_LIBRTE_BNX2X_DEBUG_PERIODIC if ((offset % 4) != 0) PMD_DRV_LOG(NOTICE, sc, "Unaligned 32-bit read from 0x%08lx", (unsigned long)offset); #endif val = rte_read32(((uint8_t *)sc->bar[BAR0].base_addr + offset)); PMD_DEBUG_PERIODIC_LOG(DEBUG, sc, "offset=0x%08lx val=0x%08x", (unsigned long)offset, val); return val; } #define REG_ADDR(sc, offset) (((uint64_t)sc->bar[BAR0].base_addr) + (offset)) #define REG_RD8(sc, offset) bnx2x_reg_read8(sc, (offset)) #define REG_RD16(sc, offset) bnx2x_reg_read16(sc, (offset)) #define REG_RD32(sc, offset) bnx2x_reg_read32(sc, (offset)) #define REG_WR8(sc, offset, val) bnx2x_reg_write8(sc, (offset), val) #define REG_WR16(sc, offset, val) bnx2x_reg_write16(sc, (offset), val) #define REG_WR32(sc, offset, val) bnx2x_reg_write32(sc, (offset), val) #define REG_RD(sc, offset) REG_RD32(sc, offset) #define REG_WR(sc, offset, val) REG_WR32(sc, offset, val) #define BNX2X_SP(sc, var) (&(sc)->sp->var) #define BNX2X_SP_MAPPING(sc, var) \ (sc->sp_dma.paddr + offsetof(struct bnx2x_slowpath, var)) #define BNX2X_FP(sc, nr, var) ((sc)->fp[(nr)].var) #define BNX2X_SP_OBJ(sc, fp) ((sc)->sp_objs[(fp)->index]) #define bnx2x_fp(sc, nr, var) ((sc)->fp[nr].var) #define REG_RD_DMAE(sc, offset, valp, len32) \ do { \ (void)bnx2x_read_dmae(sc, offset, len32); \ rte_memcpy(valp, BNX2X_SP(sc, wb_data[0]), (len32) * 4); \ } while (0) #define REG_WR_DMAE(sc, offset, valp, len32) \ do { \ rte_memcpy(BNX2X_SP(sc, wb_data[0]), valp, (len32) * 4); \ (void)bnx2x_write_dmae(sc, BNX2X_SP_MAPPING(sc, wb_data), offset, len32); \ } while (0) #define REG_WR_DMAE_LEN(sc, offset, valp, len32) \ REG_WR_DMAE(sc, offset, valp, len32) #define REG_RD_DMAE_LEN(sc, offset, valp, len32) \ REG_RD_DMAE(sc, offset, valp, len32) #define VIRT_WR_DMAE_LEN(sc, data, addr, len32, le32_swap) \ do { \ /* if (le32_swap) { */ \ /* PMD_PWARN_LOG(sc, "VIRT_WR_DMAE_LEN with le32_swap=1"); */ \ /* } */ \ rte_memcpy(GUNZIP_BUF(sc), data, len32 * 4); \ ecore_write_big_buf_wb(sc, addr, len32); \ } while (0) #define BNX2X_DB_MIN_SHIFT 3 /* 8 bytes */ #define BNX2X_DB_SHIFT 7 /* 128 bytes */ #if (BNX2X_DB_SHIFT < BNX2X_DB_MIN_SHIFT) #error "Minimum DB doorbell stride is 8" #endif #define DPM_TRIGGER_TYPE 0x40 /* Doorbell macro */ #define BNX2X_DB_WRITE(db_bar, val) rte_write32_relaxed((val), (db_bar)) #define BNX2X_DB_READ(db_bar) rte_read32_relaxed(db_bar) #define DOORBELL_ADDR(sc, offset) \ (volatile uint32_t *)(((char *)(sc)->bar[BAR1].base_addr + (offset))) #define DOORBELL(sc, cid, val) \ if (IS_PF(sc)) \ BNX2X_DB_WRITE((DOORBELL_ADDR(sc, sc->doorbell_size * (cid) + DPM_TRIGGER_TYPE)), (val)); \ else \ BNX2X_DB_WRITE((DOORBELL_ADDR(sc, sc->doorbell_size * (cid))), (val)) \ #define SHMEM_ADDR(sc, field) \ (sc->devinfo.shmem_base + offsetof(struct shmem_region, field)) #define SHMEM_RD(sc, field) REG_RD(sc, SHMEM_ADDR(sc, field)) #define SHMEM_RD16(sc, field) REG_RD16(sc, SHMEM_ADDR(sc, field)) #define SHMEM_WR(sc, field, val) REG_WR(sc, SHMEM_ADDR(sc, field), val) #define SHMEM2_ADDR(sc, field) \ (sc->devinfo.shmem2_base + offsetof(struct shmem2_region, field)) #define SHMEM2_HAS(sc, field) \ (sc->devinfo.shmem2_base && (REG_RD(sc, SHMEM2_ADDR(sc, size)) > \ offsetof(struct shmem2_region, field))) #define SHMEM2_RD(sc, field) REG_RD(sc, SHMEM2_ADDR(sc, field)) #define SHMEM2_WR(sc, field, val) REG_WR(sc, SHMEM2_ADDR(sc, field), val) #define MFCFG_ADDR(sc, field) \ (sc->devinfo.mf_cfg_base + offsetof(struct mf_cfg, field)) #define MFCFG_RD(sc, field) REG_RD(sc, MFCFG_ADDR(sc, field)) #define MFCFG_RD16(sc, field) REG_RD16(sc, MFCFG_ADDR(sc, field)) #define MFCFG_WR(sc, field, val) REG_WR(sc, MFCFG_ADDR(sc, field), val) /* DMAE command defines */ #define DMAE_TIMEOUT -1 #define DMAE_PCI_ERROR -2 /* E2 and onward */ #define DMAE_NOT_RDY -3 #define DMAE_PCI_ERR_FLAG 0x80000000 #define DMAE_SRC_PCI 0 #define DMAE_SRC_GRC 1 #define DMAE_DST_NONE 0 #define DMAE_DST_PCI 1 #define DMAE_DST_GRC 2 #define DMAE_COMP_PCI 0 #define DMAE_COMP_GRC 1 #define DMAE_COMP_REGULAR 0 #define DMAE_COM_SET_ERR 1 #define DMAE_CMD_SRC_PCI (DMAE_SRC_PCI << DMAE_COMMAND_SRC_SHIFT) #define DMAE_CMD_SRC_GRC (DMAE_SRC_GRC << DMAE_COMMAND_SRC_SHIFT) #define DMAE_CMD_DST_PCI (DMAE_DST_PCI << DMAE_COMMAND_DST_SHIFT) #define DMAE_CMD_DST_GRC (DMAE_DST_GRC << DMAE_COMMAND_DST_SHIFT) #define DMAE_CMD_C_DST_PCI (DMAE_COMP_PCI << DMAE_COMMAND_C_DST_SHIFT) #define DMAE_CMD_C_DST_GRC (DMAE_COMP_GRC << DMAE_COMMAND_C_DST_SHIFT) #define DMAE_CMD_ENDIANITY_NO_SWAP (0 << DMAE_COMMAND_ENDIANITY_SHIFT) #define DMAE_CMD_ENDIANITY_B_SWAP (1 << DMAE_COMMAND_ENDIANITY_SHIFT) #define DMAE_CMD_ENDIANITY_DW_SWAP (2 << DMAE_COMMAND_ENDIANITY_SHIFT) #define DMAE_CMD_ENDIANITY_B_DW_SWAP (3 << DMAE_COMMAND_ENDIANITY_SHIFT) #define DMAE_CMD_PORT_0 0 #define DMAE_CMD_PORT_1 DMAE_COMMAND_PORT #define DMAE_SRC_PF 0 #define DMAE_SRC_VF 1 #define DMAE_DST_PF 0 #define DMAE_DST_VF 1 #define DMAE_C_SRC 0 #define DMAE_C_DST 1 #define DMAE_LEN32_RD_MAX 0x80 #define DMAE_LEN32_WR_MAX(sc) 0x2000 #define DMAE_COMP_VAL 0x60d0d0ae /* E2 and beyond, upper bit indicates error */ #define MAX_DMAE_C_PER_PORT 8 #define INIT_DMAE_C(sc) ((SC_PORT(sc) * MAX_DMAE_C_PER_PORT) + SC_VN(sc)) #define PMF_DMAE_C(sc) ((SC_PORT(sc) * MAX_DMAE_C_PER_PORT) + E1HVN_MAX) static const uint32_t dmae_reg_go_c[] = { DMAE_REG_GO_C0, DMAE_REG_GO_C1, DMAE_REG_GO_C2, DMAE_REG_GO_C3, DMAE_REG_GO_C4, DMAE_REG_GO_C5, DMAE_REG_GO_C6, DMAE_REG_GO_C7, DMAE_REG_GO_C8, DMAE_REG_GO_C9, DMAE_REG_GO_C10, DMAE_REG_GO_C11, DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15 }; #define ATTN_NIG_FOR_FUNC (1L << 8) #define ATTN_SW_TIMER_4_FUNC (1L << 9) #define GPIO_2_FUNC (1L << 10) #define GPIO_3_FUNC (1L << 11) #define GPIO_4_FUNC (1L << 12) #define ATTN_GENERAL_ATTN_1 (1L << 13) #define ATTN_GENERAL_ATTN_2 (1L << 14) #define ATTN_GENERAL_ATTN_3 (1L << 15) #define ATTN_GENERAL_ATTN_4 (1L << 13) #define ATTN_GENERAL_ATTN_5 (1L << 14) #define ATTN_GENERAL_ATTN_6 (1L << 15) #define ATTN_HARD_WIRED_MASK 0xff00 #define ATTENTION_ID 4 #define AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR \ AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR #define MAX_IGU_ATTN_ACK_TO 100 #define STORM_ASSERT_ARRAY_SIZE 50 #define BNX2X_PMF_LINK_ASSERT(sc) \ GENERAL_ATTEN_OFFSET(LINK_SYNC_ATTENTION_BIT_FUNC_0 + SC_FUNC(sc)) #define BNX2X_MC_ASSERT_BITS \ (GENERAL_ATTEN_OFFSET(TSTORM_FATAL_ASSERT_ATTENTION_BIT) | \ GENERAL_ATTEN_OFFSET(USTORM_FATAL_ASSERT_ATTENTION_BIT) | \ GENERAL_ATTEN_OFFSET(CSTORM_FATAL_ASSERT_ATTENTION_BIT) | \ GENERAL_ATTEN_OFFSET(XSTORM_FATAL_ASSERT_ATTENTION_BIT)) #define BNX2X_MCP_ASSERT \ GENERAL_ATTEN_OFFSET(MCP_FATAL_ASSERT_ATTENTION_BIT) #define BNX2X_GRC_TIMEOUT GENERAL_ATTEN_OFFSET(LATCHED_ATTN_TIMEOUT_GRC) #define BNX2X_GRC_RSV (GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCR) | \ GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCT) | \ GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCN) | \ GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCU) | \ GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCP) | \ GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RSVD_GRC)) #define HW_INTERRUT_ASSERT_SET_0 \ (AEU_INPUTS_ATTN_BITS_TSDM_HW_INTERRUPT | \ AEU_INPUTS_ATTN_BITS_TCM_HW_INTERRUPT | \ AEU_INPUTS_ATTN_BITS_TSEMI_HW_INTERRUPT | \ AEU_INPUTS_ATTN_BITS_BRB_HW_INTERRUPT | \ AEU_INPUTS_ATTN_BITS_PBCLIENT_HW_INTERRUPT) #define HW_PRTY_ASSERT_SET_0 (AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR | \ AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR | \ AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR | \ AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR |\ AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR |\ AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR |\ AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR) #define HW_INTERRUT_ASSERT_SET_1 \ (AEU_INPUTS_ATTN_BITS_QM_HW_INTERRUPT | \ AEU_INPUTS_ATTN_BITS_TIMERS_HW_INTERRUPT | \ AEU_INPUTS_ATTN_BITS_XSDM_HW_INTERRUPT | \ AEU_INPUTS_ATTN_BITS_XCM_HW_INTERRUPT | \ AEU_INPUTS_ATTN_BITS_XSEMI_HW_INTERRUPT | \ AEU_INPUTS_ATTN_BITS_USDM_HW_INTERRUPT | \ AEU_INPUTS_ATTN_BITS_UCM_HW_INTERRUPT | \ AEU_INPUTS_ATTN_BITS_USEMI_HW_INTERRUPT | \ AEU_INPUTS_ATTN_BITS_UPB_HW_INTERRUPT | \ AEU_INPUTS_ATTN_BITS_CSDM_HW_INTERRUPT | \ AEU_INPUTS_ATTN_BITS_CCM_HW_INTERRUPT) #define HW_PRTY_ASSERT_SET_1 (AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR |\ AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR | \ AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR |\ AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR | \ AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR |\ AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR | \ AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR |\ AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR |\ AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR |\ AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR | \ AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR | \ AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR |\ AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR | \ AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR | \ AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR |\ AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR) #define HW_INTERRUT_ASSERT_SET_2 \ (AEU_INPUTS_ATTN_BITS_CSEMI_HW_INTERRUPT | \ AEU_INPUTS_ATTN_BITS_CDU_HW_INTERRUPT | \ AEU_INPUTS_ATTN_BITS_DMAE_HW_INTERRUPT | \ AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT |\ AEU_INPUTS_ATTN_BITS_MISC_HW_INTERRUPT) #define HW_PRTY_ASSERT_SET_2 (AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR | \ AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR | \ AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR |\ AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR | \ AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR | \ AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR |\ AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR | \ AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR) #define HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD \ (AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY | \ AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY | \ AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY) #define HW_PRTY_ASSERT_SET_3 (HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD | \ AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY) #define HW_PRTY_ASSERT_SET_4 (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | \ AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR) #define MULTI_MASK 0x7f #define PFS_PER_PORT(sc) \ ((CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4) #define SC_MAX_VN_NUM(sc) PFS_PER_PORT(sc) #define FIRST_ABS_FUNC_IN_PORT(sc) \ ((CHIP_PORT_MODE(sc) == CHIP_PORT_MODE_NONE) ? \ PORT_ID(sc) : (PATH_ID(sc) + (2 * PORT_ID(sc)))) #define FOREACH_ABS_FUNC_IN_PORT(sc, i) \ for ((i) = FIRST_ABS_FUNC_IN_PORT(sc); \ (i) < MAX_FUNC_NUM; \ (i) += (MAX_FUNC_NUM / PFS_PER_PORT(sc))) #define BNX2X_SWCID_SHIFT 17 #define BNX2X_SWCID_MASK ((0x1 << BNX2X_SWCID_SHIFT) - 1) #define SW_CID(x) (le32toh(x) & BNX2X_SWCID_MASK) #define CQE_CMD(x) (le32toh(x) >> COMMON_RAMROD_ETH_RX_CQE_CMD_ID_SHIFT) #define CQE_TYPE(cqe_fp_flags) ((cqe_fp_flags) & ETH_FAST_PATH_RX_CQE_TYPE) #define CQE_TYPE_START(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_START_AGG) #define CQE_TYPE_STOP(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_STOP_AGG) #define CQE_TYPE_SLOW(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_RAMROD) #define CQE_TYPE_FAST(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_FASTPATH) /* must be used on a CID before placing it on a HW ring */ #define HW_CID(sc, x) \ ((SC_PORT(sc) << 23) | (SC_VN(sc) << BNX2X_SWCID_SHIFT) | (x)) #define SPEED_10 10 #define SPEED_100 100 #define SPEED_1000 1000 #define SPEED_2500 2500 #define SPEED_10000 10000 #define PCI_PM_D0 1 #define PCI_PM_D3hot 2 int bnx2x_cmpxchg(volatile int *addr, int old, int new); int bnx2x_dma_alloc(struct bnx2x_softc *sc, size_t size, struct bnx2x_dma *dma, const char *msg, uint32_t align); void bnx2x_dma_free(struct bnx2x_dma *dma); uint32_t bnx2x_dmae_opcode_add_comp(uint32_t opcode, uint8_t comp_type); uint32_t bnx2x_dmae_opcode_clr_src_reset(uint32_t opcode); uint32_t bnx2x_dmae_opcode(struct bnx2x_softc *sc, uint8_t src_type, uint8_t dst_type, uint8_t with_comp, uint8_t comp_type); void bnx2x_post_dmae(struct bnx2x_softc *sc, struct dmae_command *dmae, int idx); void bnx2x_read_dmae(struct bnx2x_softc *sc, uint32_t src_addr, uint32_t len32); void bnx2x_write_dmae(struct bnx2x_softc *sc, rte_iova_t dma_addr, uint32_t dst_addr, uint32_t len32); void bnx2x_set_ctx_validation(struct bnx2x_softc *sc, struct eth_context *cxt, uint32_t cid); void bnx2x_update_coalesce_sb_index(struct bnx2x_softc *sc, uint8_t fw_sb_id, uint8_t sb_index, uint8_t disable, uint16_t usec); int bnx2x_sp_post(struct bnx2x_softc *sc, int command, int cid, uint32_t data_hi, uint32_t data_lo, int cmd_type); void ecore_init_e1h_firmware(struct bnx2x_softc *sc); void ecore_init_e2_firmware(struct bnx2x_softc *sc); void ecore_storm_memset_struct(struct bnx2x_softc *sc, uint32_t addr, size_t size, uint32_t *data); #define CATC_TRIGGER(sc, data) REG_WR((sc), 0x2000, (data)); #define CATC_TRIGGER_START(sc) CATC_TRIGGER((sc), 0xcafecafe) #define BNX2X_MAC_FMT "%pM" #define BNX2X_MAC_PRN_LIST(mac) (mac) /***********/ /* INLINES */ /***********/ static inline uint32_t reg_poll(struct bnx2x_softc *sc, uint32_t reg, uint32_t expected, int ms, int wait) { uint32_t val; do { val = REG_RD(sc, reg); if (val == expected) { break; } ms -= wait; DELAY(wait * 1000); } while (ms > 0); return val; } static inline void bnx2x_update_fp_sb_idx(struct bnx2x_fastpath *fp) { mb(); /* status block is written to by the chip */ fp->fp_hc_idx = fp->sb_running_index[SM_RX_ID]; } static inline void bnx2x_igu_ack_sb_gen(struct bnx2x_softc *sc, uint8_t segment, uint16_t index, uint8_t op, uint8_t update, uint32_t igu_addr) { struct igu_regular cmd_data = {0}; cmd_data.sb_id_and_flags = ((index << IGU_REGULAR_SB_INDEX_SHIFT) | (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) | (update << IGU_REGULAR_BUPDATE_SHIFT) | (op << IGU_REGULAR_ENABLE_INT_SHIFT)); REG_WR(sc, igu_addr, cmd_data.sb_id_and_flags); /* Make sure that ACK is written */ mb(); } static inline void bnx2x_hc_ack_sb(struct bnx2x_softc *sc, uint8_t sb_id, uint8_t storm, uint16_t index, uint8_t op, uint8_t update) { uint32_t hc_addr = (HC_REG_COMMAND_REG + SC_PORT(sc) * 32 + COMMAND_REG_INT_ACK); union { struct igu_ack_register igu_ack; uint32_t val; } val; val.igu_ack.status_block_index = index; val.igu_ack.sb_id_and_flags = ((sb_id << IGU_ACK_REGISTER_STATUS_BLOCK_ID_SHIFT) | (storm << IGU_ACK_REGISTER_STORM_ID_SHIFT) | (update << IGU_ACK_REGISTER_UPDATE_INDEX_SHIFT) | (op << IGU_ACK_REGISTER_INTERRUPT_MODE_SHIFT)); REG_WR(sc, hc_addr, val.val); /* Make sure that ACK is written */ mb(); } static inline uint32_t bnx2x_hc_ack_int(struct bnx2x_softc *sc) { uint32_t hc_addr = (HC_REG_COMMAND_REG + SC_PORT(sc) * 32 + COMMAND_REG_SIMD_MASK); uint32_t result = REG_RD(sc, hc_addr); mb(); return result; } static inline uint32_t bnx2x_igu_ack_int(struct bnx2x_softc *sc) { uint32_t igu_addr = (BAR_IGU_INTMEM + IGU_REG_SISR_MDPC_WMASK_LSB_UPPER * 8); uint32_t result = REG_RD(sc, igu_addr); /* PMD_PDEBUG_LOG(sc, DBG_INTR, "read 0x%08x from IGU addr 0x%x", result, igu_addr); */ mb(); return result; } static inline uint32_t bnx2x_ack_int(struct bnx2x_softc *sc) { mb(); if (sc->devinfo.int_block == INT_BLOCK_HC) { return bnx2x_hc_ack_int(sc); } else { return bnx2x_igu_ack_int(sc); } } static inline int func_by_vn(struct bnx2x_softc *sc, int vn) { return 2 * vn + SC_PORT(sc); } /* * send notification to other functions. */ static inline void bnx2x_link_sync_notify(struct bnx2x_softc *sc) { int func, vn; /* Set the attention towards other drivers on the same port */ for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { if (vn == SC_VN(sc)) continue; func = func_by_vn(sc, vn); REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_0 + (LINK_SYNC_ATTENTION_BIT_FUNC_0 + func) * 4, 1); } } /* * Statistics ID are global per chip/path, while Client IDs for E1x * are per port. */ static inline uint8_t bnx2x_stats_id(struct bnx2x_fastpath *fp) { struct bnx2x_softc *sc = fp->sc; if (!CHIP_IS_E1x(sc)) { return fp->cl_id; } return fp->cl_id + SC_PORT(sc) * FP_SB_MAX_E1x; } int bnx2x_init(struct bnx2x_softc *sc); void bnx2x_load_firmware(struct bnx2x_softc *sc); int bnx2x_attach(struct bnx2x_softc *sc); int bnx2x_nic_unload(struct bnx2x_softc *sc, uint32_t unload_mode, uint8_t keep_link); int bnx2x_alloc_hsi_mem(struct bnx2x_softc *sc); int bnx2x_alloc_ilt_mem(struct bnx2x_softc *sc); void bnx2x_free_ilt_mem(struct bnx2x_softc *sc); void bnx2x_dump_tx_chain(struct bnx2x_fastpath * fp, int bd_prod, int count); int bnx2x_tx_encap(struct bnx2x_tx_queue *txq, struct rte_mbuf *m0); uint8_t bnx2x_txeof(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp); void bnx2x_print_adapter_info(struct bnx2x_softc *sc); void bnx2x_print_device_info(struct bnx2x_softc *sc); int bnx2x_intr_legacy(struct bnx2x_softc *sc); void bnx2x_link_status_update(struct bnx2x_softc *sc); int bnx2x_complete_sp(struct bnx2x_softc *sc); int bnx2x_set_storm_rx_mode(struct bnx2x_softc *sc); void bnx2x_periodic_callout(struct bnx2x_softc *sc); void bnx2x_periodic_stop(void *param); int bnx2x_vf_get_resources(struct bnx2x_softc *sc, uint8_t tx_count, uint8_t rx_count); void bnx2x_vf_close(struct bnx2x_softc *sc); int bnx2x_vf_init(struct bnx2x_softc *sc); void bnx2x_vf_unload(struct bnx2x_softc *sc); int bnx2x_vf_setup_queue(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp, int leading); void bnx2x_free_hsi_mem(struct bnx2x_softc *sc); int bnx2x_vf_set_rx_mode(struct bnx2x_softc *sc); int bnx2x_check_bull(struct bnx2x_softc *sc); //#define BNX2X_PULSE #define BNX2X_PCI_CAP 1 #define BNX2X_PCI_ECAP 2 static inline struct bnx2x_pci_cap* pci_find_cap(struct bnx2x_softc *sc, uint8_t id, uint8_t type) { struct bnx2x_pci_cap *cap = sc->pci_caps; while (cap) { if (cap->id == id && cap->type == type) return cap; cap = cap->next; } return NULL; } static inline void bnx2x_set_rx_mode(struct bnx2x_softc *sc) { if (sc->state == BNX2X_STATE_OPEN) { if (IS_PF(sc)) { bnx2x_set_storm_rx_mode(sc); } else { sc->rx_mode = BNX2X_RX_MODE_PROMISC; bnx2x_vf_set_rx_mode(sc); } } else { PMD_DRV_LOG(INFO, sc, "Card is not ready to change mode"); } } static inline int pci_read(struct bnx2x_softc *sc, size_t addr, void *val, uint8_t size) { if (rte_pci_read_config(sc->pci_dev, val, size, addr) <= 0) { PMD_DRV_LOG(ERR, sc, "Can't read from PCI config space"); return ENXIO; } return 0; } static inline int pci_write_word(struct bnx2x_softc *sc, size_t addr, off_t val) { uint16_t val16 = val; if (rte_pci_write_config(sc->pci_dev, &val16, sizeof(val16), addr) <= 0) { PMD_DRV_LOG(ERR, sc, "Can't write to PCI config space"); return ENXIO; } return 0; } static inline int pci_write_long(struct bnx2x_softc *sc, size_t addr, off_t val) { uint32_t val32 = val; if (rte_pci_write_config(sc->pci_dev, &val32, sizeof(val32), addr) <= 0) { PMD_DRV_LOG(ERR, sc, "Can't write to PCI config space"); return ENXIO; } return 0; } #endif /* __BNX2X_H__ */