/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2016-2017 Intel Corporation */ #ifndef _SW_EVDEV_H_ #define _SW_EVDEV_H_ #include "sw_evdev_log.h" #include #include #include #define SW_DEFAULT_CREDIT_QUANTA 32 #define SW_DEFAULT_SCHED_QUANTA 128 #define SW_QID_NUM_FIDS 16384 #define SW_IQS_MAX 4 #define SW_Q_PRIORITY_MAX 255 #define SW_PORTS_MAX 64 #define MAX_SW_CONS_Q_DEPTH 128 #define SW_INFLIGHT_EVENTS_TOTAL 4096 /* allow for lots of over-provisioning */ #define MAX_SW_PROD_Q_DEPTH 4096 #define SW_FRAGMENTS_MAX 16 /* Should be power-of-two minus one, to leave room for the next pointer */ #define SW_EVS_PER_Q_CHUNK 255 #define SW_Q_CHUNK_SIZE ((SW_EVS_PER_Q_CHUNK + 1) * sizeof(struct rte_event)) /* report dequeue burst sizes in buckets */ #define SW_DEQ_STAT_BUCKET_SHIFT 2 /* how many packets pulled from port by sched */ #define SCHED_DEQUEUE_DEFAULT_BURST_SIZE 32 /* max buffer size */ #define SCHED_DEQUEUE_MAX_BURST_SIZE 256 /* Flush the pipeline after this many no enq to cq */ #define SCHED_NO_ENQ_CYCLE_FLUSH 256 #define SW_PORT_HIST_LIST (MAX_SW_PROD_Q_DEPTH) /* size of our history list */ #define NUM_SAMPLES 64 /* how many data points use for average stats */ #define EVENTDEV_NAME_SW_PMD event_sw #define SW_PMD_NAME RTE_STR(event_sw) #define SW_PMD_NAME_MAX 64 #define SW_SCHED_TYPE_DIRECT (RTE_SCHED_TYPE_PARALLEL + 1) #define SW_NUM_POLL_BUCKETS (MAX_SW_CONS_Q_DEPTH >> SW_DEQ_STAT_BUCKET_SHIFT) enum { QE_FLAG_VALID_SHIFT = 0, QE_FLAG_COMPLETE_SHIFT, QE_FLAG_NOT_EOP_SHIFT, _QE_FLAG_COUNT }; #define QE_FLAG_VALID (1 << QE_FLAG_VALID_SHIFT) /* for NEW FWD, FRAG */ #define QE_FLAG_COMPLETE (1 << QE_FLAG_COMPLETE_SHIFT) /* set for FWD, DROP */ #define QE_FLAG_NOT_EOP (1 << QE_FLAG_NOT_EOP_SHIFT) /* set for FRAG only */ static const uint8_t sw_qe_flag_map[] = { QE_FLAG_VALID /* NEW Event */, QE_FLAG_VALID | QE_FLAG_COMPLETE /* FWD Event */, QE_FLAG_COMPLETE /* RELEASE Event */, /* Values which can be used for future support for partial * events, i.e. where one event comes back to the scheduler * as multiple which need to be tracked together */ QE_FLAG_VALID | QE_FLAG_COMPLETE | QE_FLAG_NOT_EOP, }; /* Records basic event stats at a given point. Used in port and qid structs */ struct sw_point_stats { uint64_t rx_pkts; uint64_t rx_dropped; uint64_t tx_pkts; }; /* structure used to track what port a flow (FID) is pinned to */ struct sw_fid_t { /* which CQ this FID is currently pinned to */ int32_t cq; /* number of packets gone to the CQ with this FID */ uint32_t pcount; }; struct reorder_buffer_entry { uint16_t num_fragments; /**< Number of packet fragments */ uint16_t fragment_index; /**< Points to the oldest valid frag */ uint8_t ready; /**< Entry is ready to be reordered */ struct rte_event fragments[SW_FRAGMENTS_MAX]; }; struct sw_iq { struct sw_queue_chunk *head; struct sw_queue_chunk *tail; uint16_t head_idx; uint16_t tail_idx; uint16_t count; }; struct sw_qid { /* set when the QID has been initialized */ uint8_t initialized; /* The type of this QID */ int8_t type; /* Integer ID representing the queue. This is used in history lists, * to identify the stage of processing. */ uint32_t id; struct sw_point_stats stats; /* Internal priority rings for packets */ struct sw_iq iq[SW_IQS_MAX]; uint32_t iq_pkt_mask; /* A mask to indicate packets in an IQ */ uint64_t iq_pkt_count[SW_IQS_MAX]; /* Information on what CQs are polling this IQ */ uint32_t cq_num_mapped_cqs; uint32_t cq_next_tx; /* cq to write next (non-atomic) packet */ uint32_t cq_map[SW_PORTS_MAX]; uint64_t to_port[SW_PORTS_MAX]; /* Track flow ids for atomic load balancing */ struct sw_fid_t fids[SW_QID_NUM_FIDS]; /* Track packet order for reordering when needed */ struct reorder_buffer_entry *reorder_buffer; /*< pkts await reorder */ struct rob_ring *reorder_buffer_freelist; /* available reorder slots */ uint32_t reorder_buffer_index; /* oldest valid reorder buffer entry */ uint32_t window_size; /* Used to wrap reorder_buffer_index */ uint8_t priority; }; struct sw_hist_list_entry { int32_t qid; int32_t fid; struct reorder_buffer_entry *rob_entry; }; struct sw_evdev; struct sw_port { /* new enqueue / dequeue API doesn't have an instance pointer, only the * pointer to the port being enqueue/dequeued from */ struct sw_evdev *sw; /* set when the port is initialized */ uint8_t initialized; /* A numeric ID for the port */ uint8_t id; /* An atomic counter for when the port has been unlinked, and the * scheduler has not yet acked this unlink - hence there may still be * events in the buffers going to the port. When the unlinks in * progress is read by the scheduler, no more events will be pushed to * the port - hence the scheduler core can just assign zero. */ uint8_t unlinks_in_progress; int16_t is_directed; /** Takes from a single directed QID */ /** * For loadbalanced we can optimise pulling packets from * producers if there is no reordering involved */ int16_t num_ordered_qids; /** Ring and buffer for pulling events from workers for scheduling */ struct rte_event_ring *rx_worker_ring __rte_cache_aligned; /** Ring and buffer for pushing packets to workers after scheduling */ struct rte_event_ring *cq_worker_ring; /* hole */ /* num releases yet to be completed on this port */ uint16_t outstanding_releases __rte_cache_aligned; uint16_t inflight_max; /* app requested max inflights for this port */ uint16_t inflight_credits; /* num credits this port has right now */ uint8_t implicit_release; /* release events before dequeuing */ uint16_t last_dequeue_burst_sz; /* how big the burst was */ uint64_t last_dequeue_ticks; /* used to track burst processing time */ uint64_t avg_pkt_ticks; /* tracks average over NUM_SAMPLES burst */ uint64_t total_polls; /* how many polls were counted in stats */ uint64_t zero_polls; /* tracks polls returning nothing */ uint32_t poll_buckets[SW_NUM_POLL_BUCKETS]; /* bucket values in 4s for shorter reporting */ /* History list structs, containing info on pkts egressed to worker */ uint16_t hist_head __rte_cache_aligned; uint16_t hist_tail; uint16_t inflights; struct sw_hist_list_entry hist_list[SW_PORT_HIST_LIST]; /* track packets in and out of this port */ struct sw_point_stats stats; uint32_t pp_buf_start; uint32_t pp_buf_count; uint16_t cq_buf_count; struct rte_event pp_buf[SCHED_DEQUEUE_MAX_BURST_SIZE]; struct rte_event cq_buf[MAX_SW_CONS_Q_DEPTH]; uint8_t num_qids_mapped; }; struct sw_evdev { struct rte_eventdev_data *data; uint32_t port_count; uint32_t qid_count; uint32_t xstats_count; struct sw_xstats_entry *xstats; uint32_t xstats_count_mode_dev; uint32_t xstats_count_mode_port; uint32_t xstats_count_mode_queue; /* Minimum burst size*/ uint32_t sched_min_burst_size __rte_cache_aligned; /* Port dequeue burst size*/ uint32_t sched_deq_burst_size; /* Refill pp buffers only once per scheduler call*/ uint32_t refill_once_per_iter; /* Current values */ uint32_t sched_flush_count; uint32_t sched_min_burst; /* Contains all ports - load balanced and directed */ struct sw_port ports[SW_PORTS_MAX] __rte_cache_aligned; rte_atomic32_t inflights __rte_cache_aligned; /* * max events in this instance. Cached here for performance. * (also available in data->conf.nb_events_limit) */ uint32_t nb_events_limit; /* Internal queues - one per logical queue */ struct sw_qid qids[RTE_EVENT_MAX_QUEUES_PER_DEV] __rte_cache_aligned; struct sw_queue_chunk *chunk_list_head; struct sw_queue_chunk *chunks; /* Cache how many packets are in each cq */ uint16_t cq_ring_space[SW_PORTS_MAX] __rte_cache_aligned; /* Array of pointers to load-balanced QIDs sorted by priority level */ struct sw_qid *qids_prioritized[RTE_EVENT_MAX_QUEUES_PER_DEV]; /* Stats */ struct sw_point_stats stats __rte_cache_aligned; uint64_t sched_called; int32_t sched_quanta; uint64_t sched_no_iq_enqueues; uint64_t sched_no_cq_enqueues; uint64_t sched_cq_qid_called; uint8_t started; uint32_t credit_update_quanta; /* store num stats and offset of the stats for each port */ uint16_t xstats_count_per_port[SW_PORTS_MAX]; uint16_t xstats_offset_for_port[SW_PORTS_MAX]; /* store num stats and offset of the stats for each queue */ uint16_t xstats_count_per_qid[RTE_EVENT_MAX_QUEUES_PER_DEV]; uint16_t xstats_offset_for_qid[RTE_EVENT_MAX_QUEUES_PER_DEV]; uint32_t service_id; char service_name[SW_PMD_NAME_MAX]; }; static inline struct sw_evdev * sw_pmd_priv(const struct rte_eventdev *eventdev) { return eventdev->data->dev_private; } static inline const struct sw_evdev * sw_pmd_priv_const(const struct rte_eventdev *eventdev) { return eventdev->data->dev_private; } uint16_t sw_event_enqueue(void *port, const struct rte_event *ev); uint16_t sw_event_enqueue_burst(void *port, const struct rte_event ev[], uint16_t num); uint16_t sw_event_dequeue(void *port, struct rte_event *ev, uint64_t wait); uint16_t sw_event_dequeue_burst(void *port, struct rte_event *ev, uint16_t num, uint64_t wait); void sw_event_schedule(struct rte_eventdev *dev); int sw_xstats_init(struct sw_evdev *dev); int sw_xstats_uninit(struct sw_evdev *dev); int sw_xstats_get_names(const struct rte_eventdev *dev, enum rte_event_dev_xstats_mode mode, uint8_t queue_port_id, struct rte_event_dev_xstats_name *xstats_names, unsigned int *ids, unsigned int size); int sw_xstats_get(const struct rte_eventdev *dev, enum rte_event_dev_xstats_mode mode, uint8_t queue_port_id, const unsigned int ids[], uint64_t values[], unsigned int n); uint64_t sw_xstats_get_by_name(const struct rte_eventdev *dev, const char *name, unsigned int *id); int sw_xstats_reset(struct rte_eventdev *dev, enum rte_event_dev_xstats_mode mode, int16_t queue_port_id, const uint32_t ids[], uint32_t nb_ids); int test_sw_eventdev(void); #endif /* _SW_EVDEV_H_ */