/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2016-2018 Intel Corporation */ #include #include #include #include #include #include #include #include "zuc_pmd_private.h" #define BYTE_LEN 8 static uint8_t cryptodev_driver_id; /** Get xform chain order. */ static enum zuc_operation zuc_get_mode(const struct rte_crypto_sym_xform *xform) { if (xform == NULL) return ZUC_OP_NOT_SUPPORTED; if (xform->next) if (xform->next->next != NULL) return ZUC_OP_NOT_SUPPORTED; if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH) { if (xform->next == NULL) return ZUC_OP_ONLY_AUTH; else if (xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER) return ZUC_OP_AUTH_CIPHER; else return ZUC_OP_NOT_SUPPORTED; } if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER) { if (xform->next == NULL) return ZUC_OP_ONLY_CIPHER; else if (xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH) return ZUC_OP_CIPHER_AUTH; else return ZUC_OP_NOT_SUPPORTED; } return ZUC_OP_NOT_SUPPORTED; } /** Parse crypto xform chain and set private session parameters. */ int zuc_set_session_parameters(struct zuc_session *sess, const struct rte_crypto_sym_xform *xform) { const struct rte_crypto_sym_xform *auth_xform = NULL; const struct rte_crypto_sym_xform *cipher_xform = NULL; enum zuc_operation mode; /* Select Crypto operation - hash then cipher / cipher then hash */ mode = zuc_get_mode(xform); switch (mode) { case ZUC_OP_CIPHER_AUTH: auth_xform = xform->next; /* Fall-through */ case ZUC_OP_ONLY_CIPHER: cipher_xform = xform; break; case ZUC_OP_AUTH_CIPHER: cipher_xform = xform->next; /* Fall-through */ case ZUC_OP_ONLY_AUTH: auth_xform = xform; break; case ZUC_OP_NOT_SUPPORTED: default: ZUC_LOG(ERR, "Unsupported operation chain order parameter"); return -ENOTSUP; } if (cipher_xform) { /* Only ZUC EEA3 supported */ if (cipher_xform->cipher.algo != RTE_CRYPTO_CIPHER_ZUC_EEA3) return -ENOTSUP; if (cipher_xform->cipher.iv.length != ZUC_IV_KEY_LENGTH) { ZUC_LOG(ERR, "Wrong IV length"); return -EINVAL; } sess->cipher_iv_offset = cipher_xform->cipher.iv.offset; /* Copy the key */ memcpy(sess->pKey_cipher, cipher_xform->cipher.key.data, ZUC_IV_KEY_LENGTH); } if (auth_xform) { /* Only ZUC EIA3 supported */ if (auth_xform->auth.algo != RTE_CRYPTO_AUTH_ZUC_EIA3) return -ENOTSUP; if (auth_xform->auth.digest_length != ZUC_DIGEST_LENGTH) { ZUC_LOG(ERR, "Wrong digest length"); return -EINVAL; } sess->auth_op = auth_xform->auth.op; if (auth_xform->auth.iv.length != ZUC_IV_KEY_LENGTH) { ZUC_LOG(ERR, "Wrong IV length"); return -EINVAL; } sess->auth_iv_offset = auth_xform->auth.iv.offset; /* Copy the key */ memcpy(sess->pKey_hash, auth_xform->auth.key.data, ZUC_IV_KEY_LENGTH); } sess->op = mode; return 0; } /** Get ZUC session. */ static struct zuc_session * zuc_get_session(struct zuc_qp *qp, struct rte_crypto_op *op) { struct zuc_session *sess = NULL; if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION) { if (likely(op->sym->session != NULL)) sess = (struct zuc_session *)get_sym_session_private_data( op->sym->session, cryptodev_driver_id); } else { void *_sess = NULL; void *_sess_private_data = NULL; if (rte_mempool_get(qp->sess_mp, (void **)&_sess)) return NULL; if (rte_mempool_get(qp->sess_mp_priv, (void **)&_sess_private_data)) return NULL; sess = (struct zuc_session *)_sess_private_data; if (unlikely(zuc_set_session_parameters(sess, op->sym->xform) != 0)) { rte_mempool_put(qp->sess_mp, _sess); rte_mempool_put(qp->sess_mp_priv, _sess_private_data); sess = NULL; } op->sym->session = (struct rte_cryptodev_sym_session *)_sess; set_sym_session_private_data(op->sym->session, cryptodev_driver_id, _sess_private_data); } if (unlikely(sess == NULL)) op->status = RTE_CRYPTO_OP_STATUS_INVALID_SESSION; return sess; } /** Encrypt/decrypt mbufs. */ static uint8_t process_zuc_cipher_op(struct zuc_qp *qp, struct rte_crypto_op **ops, struct zuc_session **sessions, uint8_t num_ops) { unsigned i; uint8_t processed_ops = 0; const void *src[ZUC_MAX_BURST]; void *dst[ZUC_MAX_BURST]; const void *iv[ZUC_MAX_BURST]; uint32_t num_bytes[ZUC_MAX_BURST]; const void *cipher_keys[ZUC_MAX_BURST]; struct zuc_session *sess; for (i = 0; i < num_ops; i++) { if (((ops[i]->sym->cipher.data.length % BYTE_LEN) != 0) || ((ops[i]->sym->cipher.data.offset % BYTE_LEN) != 0)) { ops[i]->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS; ZUC_LOG(ERR, "Data Length or offset"); break; } sess = sessions[i]; #ifdef RTE_LIBRTE_PMD_ZUC_DEBUG if (!rte_pktmbuf_is_contiguous(ops[i]->sym->m_src) || (ops[i]->sym->m_dst != NULL && !rte_pktmbuf_is_contiguous( ops[i]->sym->m_dst))) { ZUC_LOG(ERR, "PMD supports only contiguous mbufs, " "op (%p) provides noncontiguous mbuf as " "source/destination buffer.\n", ops[i]); ops[i]->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS; break; } #endif src[i] = rte_pktmbuf_mtod(ops[i]->sym->m_src, uint8_t *) + (ops[i]->sym->cipher.data.offset >> 3); dst[i] = ops[i]->sym->m_dst ? rte_pktmbuf_mtod(ops[i]->sym->m_dst, uint8_t *) + (ops[i]->sym->cipher.data.offset >> 3) : rte_pktmbuf_mtod(ops[i]->sym->m_src, uint8_t *) + (ops[i]->sym->cipher.data.offset >> 3); iv[i] = rte_crypto_op_ctod_offset(ops[i], uint8_t *, sess->cipher_iv_offset); num_bytes[i] = ops[i]->sym->cipher.data.length >> 3; cipher_keys[i] = sess->pKey_cipher; processed_ops++; } IMB_ZUC_EEA3_N_BUFFER(qp->mb_mgr, (const void **)cipher_keys, (const void **)iv, (const void **)src, (void **)dst, num_bytes, processed_ops); return processed_ops; } /** Generate/verify hash from mbufs. */ static int process_zuc_hash_op(struct zuc_qp *qp, struct rte_crypto_op **ops, struct zuc_session **sessions, uint8_t num_ops) { unsigned int i; uint8_t processed_ops = 0; uint8_t *src[ZUC_MAX_BURST] = { 0 }; uint32_t *dst[ZUC_MAX_BURST]; uint32_t length_in_bits[ZUC_MAX_BURST] = { 0 }; uint8_t *iv[ZUC_MAX_BURST] = { 0 }; const void *hash_keys[ZUC_MAX_BURST] = { 0 }; struct zuc_session *sess; for (i = 0; i < num_ops; i++) { /* Data must be byte aligned */ if ((ops[i]->sym->auth.data.offset % BYTE_LEN) != 0) { ops[i]->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS; ZUC_LOG(ERR, "Offset"); break; } sess = sessions[i]; length_in_bits[i] = ops[i]->sym->auth.data.length; src[i] = rte_pktmbuf_mtod(ops[i]->sym->m_src, uint8_t *) + (ops[i]->sym->auth.data.offset >> 3); iv[i] = rte_crypto_op_ctod_offset(ops[i], uint8_t *, sess->auth_iv_offset); hash_keys[i] = sess->pKey_hash; if (sess->auth_op == RTE_CRYPTO_AUTH_OP_VERIFY) dst[i] = (uint32_t *)qp->temp_digest[i]; else dst[i] = (uint32_t *)ops[i]->sym->auth.digest.data; #if IMB_VERSION_NUM < IMB_VERSION(0, 53, 3) IMB_ZUC_EIA3_1_BUFFER(qp->mb_mgr, hash_keys[i], iv[i], src[i], length_in_bits[i], dst[i]); #endif processed_ops++; } #if IMB_VERSION_NUM >= IMB_VERSION(0, 53, 3) IMB_ZUC_EIA3_N_BUFFER(qp->mb_mgr, (const void **)hash_keys, (const void * const *)iv, (const void * const *)src, length_in_bits, dst, processed_ops); #endif /* * If tag needs to be verified, compare generated tag * with attached tag */ for (i = 0; i < processed_ops; i++) if (sessions[i]->auth_op == RTE_CRYPTO_AUTH_OP_VERIFY) if (memcmp(dst[i], ops[i]->sym->auth.digest.data, ZUC_DIGEST_LENGTH) != 0) ops[i]->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED; return processed_ops; } /** Process a batch of crypto ops which shares the same operation type. */ static int process_ops(struct rte_crypto_op **ops, enum zuc_operation op_type, struct zuc_session **sessions, struct zuc_qp *qp, uint8_t num_ops, uint16_t *accumulated_enqueued_ops) { unsigned i; unsigned enqueued_ops, processed_ops; switch (op_type) { case ZUC_OP_ONLY_CIPHER: processed_ops = process_zuc_cipher_op(qp, ops, sessions, num_ops); break; case ZUC_OP_ONLY_AUTH: processed_ops = process_zuc_hash_op(qp, ops, sessions, num_ops); break; case ZUC_OP_CIPHER_AUTH: processed_ops = process_zuc_cipher_op(qp, ops, sessions, num_ops); process_zuc_hash_op(qp, ops, sessions, processed_ops); break; case ZUC_OP_AUTH_CIPHER: processed_ops = process_zuc_hash_op(qp, ops, sessions, num_ops); process_zuc_cipher_op(qp, ops, sessions, processed_ops); break; default: /* Operation not supported. */ processed_ops = 0; } for (i = 0; i < num_ops; i++) { /* * If there was no error/authentication failure, * change status to successful. */ if (ops[i]->status == RTE_CRYPTO_OP_STATUS_NOT_PROCESSED) ops[i]->status = RTE_CRYPTO_OP_STATUS_SUCCESS; /* Free session if a session-less crypto op. */ if (ops[i]->sess_type == RTE_CRYPTO_OP_SESSIONLESS) { memset(sessions[i], 0, sizeof(struct zuc_session)); memset(ops[i]->sym->session, 0, rte_cryptodev_sym_get_existing_header_session_size( ops[i]->sym->session)); rte_mempool_put(qp->sess_mp_priv, sessions[i]); rte_mempool_put(qp->sess_mp, ops[i]->sym->session); ops[i]->sym->session = NULL; } } enqueued_ops = rte_ring_enqueue_burst(qp->processed_ops, (void **)ops, processed_ops, NULL); qp->qp_stats.enqueued_count += enqueued_ops; *accumulated_enqueued_ops += enqueued_ops; return enqueued_ops; } static uint16_t zuc_pmd_enqueue_burst(void *queue_pair, struct rte_crypto_op **ops, uint16_t nb_ops) { struct rte_crypto_op *curr_c_op; struct zuc_session *curr_sess; struct zuc_session *sessions[ZUC_MAX_BURST]; struct rte_crypto_op *int_c_ops[ZUC_MAX_BURST]; enum zuc_operation prev_zuc_op = ZUC_OP_NOT_SUPPORTED; enum zuc_operation curr_zuc_op; struct zuc_qp *qp = queue_pair; unsigned i; uint8_t burst_size = 0; uint16_t enqueued_ops = 0; uint8_t processed_ops; for (i = 0; i < nb_ops; i++) { curr_c_op = ops[i]; curr_sess = zuc_get_session(qp, curr_c_op); if (unlikely(curr_sess == NULL)) { curr_c_op->status = RTE_CRYPTO_OP_STATUS_INVALID_SESSION; break; } curr_zuc_op = curr_sess->op; /* * Batch ops that share the same operation type * (cipher only, auth only...). */ if (burst_size == 0) { prev_zuc_op = curr_zuc_op; int_c_ops[0] = curr_c_op; sessions[0] = curr_sess; burst_size++; } else if (curr_zuc_op == prev_zuc_op) { int_c_ops[burst_size] = curr_c_op; sessions[burst_size] = curr_sess; burst_size++; /* * When there are enough ops to process in a batch, * process them, and start a new batch. */ if (burst_size == ZUC_MAX_BURST) { processed_ops = process_ops(int_c_ops, curr_zuc_op, sessions, qp, burst_size, &enqueued_ops); if (processed_ops < burst_size) { burst_size = 0; break; } burst_size = 0; } } else { /* * Different operation type, process the ops * of the previous type. */ processed_ops = process_ops(int_c_ops, prev_zuc_op, sessions, qp, burst_size, &enqueued_ops); if (processed_ops < burst_size) { burst_size = 0; break; } burst_size = 0; prev_zuc_op = curr_zuc_op; int_c_ops[0] = curr_c_op; sessions[0] = curr_sess; burst_size++; } } if (burst_size != 0) { /* Process the crypto ops of the last operation type. */ processed_ops = process_ops(int_c_ops, prev_zuc_op, sessions, qp, burst_size, &enqueued_ops); } qp->qp_stats.enqueue_err_count += nb_ops - enqueued_ops; return enqueued_ops; } static uint16_t zuc_pmd_dequeue_burst(void *queue_pair, struct rte_crypto_op **c_ops, uint16_t nb_ops) { struct zuc_qp *qp = queue_pair; unsigned nb_dequeued; nb_dequeued = rte_ring_dequeue_burst(qp->processed_ops, (void **)c_ops, nb_ops, NULL); qp->qp_stats.dequeued_count += nb_dequeued; return nb_dequeued; } static int cryptodev_zuc_remove(struct rte_vdev_device *vdev); static int cryptodev_zuc_create(const char *name, struct rte_vdev_device *vdev, struct rte_cryptodev_pmd_init_params *init_params) { struct rte_cryptodev *dev; struct zuc_private *internals; MB_MGR *mb_mgr; dev = rte_cryptodev_pmd_create(name, &vdev->device, init_params); if (dev == NULL) { ZUC_LOG(ERR, "failed to create cryptodev vdev"); goto init_error; } dev->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO | RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING | RTE_CRYPTODEV_FF_NON_BYTE_ALIGNED_DATA | RTE_CRYPTODEV_FF_SYM_SESSIONLESS | RTE_CRYPTODEV_FF_OOP_LB_IN_LB_OUT; mb_mgr = alloc_mb_mgr(0); if (mb_mgr == NULL) return -ENOMEM; if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F)) { dev->feature_flags |= RTE_CRYPTODEV_FF_CPU_AVX512; init_mb_mgr_avx512(mb_mgr); } else if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2)) { dev->feature_flags |= RTE_CRYPTODEV_FF_CPU_AVX2; init_mb_mgr_avx2(mb_mgr); } else if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX)) { dev->feature_flags |= RTE_CRYPTODEV_FF_CPU_AVX; init_mb_mgr_avx(mb_mgr); } else { dev->feature_flags |= RTE_CRYPTODEV_FF_CPU_SSE; init_mb_mgr_sse(mb_mgr); } dev->driver_id = cryptodev_driver_id; dev->dev_ops = rte_zuc_pmd_ops; /* Register RX/TX burst functions for data path. */ dev->dequeue_burst = zuc_pmd_dequeue_burst; dev->enqueue_burst = zuc_pmd_enqueue_burst; internals = dev->data->dev_private; internals->mb_mgr = mb_mgr; internals->max_nb_queue_pairs = init_params->max_nb_queue_pairs; return 0; init_error: ZUC_LOG(ERR, "driver %s: failed", init_params->name); cryptodev_zuc_remove(vdev); return -EFAULT; } static int cryptodev_zuc_probe(struct rte_vdev_device *vdev) { struct rte_cryptodev_pmd_init_params init_params = { "", sizeof(struct zuc_private), rte_socket_id(), RTE_CRYPTODEV_PMD_DEFAULT_MAX_NB_QUEUE_PAIRS }; const char *name; const char *input_args; name = rte_vdev_device_name(vdev); if (name == NULL) return -EINVAL; input_args = rte_vdev_device_args(vdev); rte_cryptodev_pmd_parse_input_args(&init_params, input_args); return cryptodev_zuc_create(name, vdev, &init_params); } static int cryptodev_zuc_remove(struct rte_vdev_device *vdev) { struct rte_cryptodev *cryptodev; const char *name; struct zuc_private *internals; name = rte_vdev_device_name(vdev); if (name == NULL) return -EINVAL; cryptodev = rte_cryptodev_pmd_get_named_dev(name); if (cryptodev == NULL) return -ENODEV; internals = cryptodev->data->dev_private; free_mb_mgr(internals->mb_mgr); return rte_cryptodev_pmd_destroy(cryptodev); } static struct rte_vdev_driver cryptodev_zuc_pmd_drv = { .probe = cryptodev_zuc_probe, .remove = cryptodev_zuc_remove }; static struct cryptodev_driver zuc_crypto_drv; RTE_PMD_REGISTER_VDEV(CRYPTODEV_NAME_ZUC_PMD, cryptodev_zuc_pmd_drv); RTE_PMD_REGISTER_PARAM_STRING(CRYPTODEV_NAME_ZUC_PMD, "max_nb_queue_pairs= " "socket_id="); RTE_PMD_REGISTER_CRYPTO_DRIVER(zuc_crypto_drv, cryptodev_zuc_pmd_drv.driver, cryptodev_driver_id); RTE_LOG_REGISTER(zuc_logtype_driver, pmd.crypto.zuc, INFO);