/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2018 Cavium, Inc */ #include #include #include #include #include #include #include #include #include #include #include "otx_cryptodev_hw_access.h" #include "otx_cryptodev_mbox.h" #include "cpt_pmd_logs.h" #include "cpt_pmd_ops_helper.h" #include "cpt_hw_types.h" #define METABUF_POOL_CACHE_SIZE 512 /* * VF HAL functions * Access its own BAR0/4 registers by passing VF number as 0. * OS/PCI maps them accordingly. */ static int otx_cpt_vf_init(struct cpt_vf *cptvf) { int ret = 0; /* Check ready with PF */ /* Gets chip ID / device Id from PF if ready */ ret = otx_cpt_check_pf_ready(cptvf); if (ret) { CPT_LOG_ERR("%s: PF not responding to READY msg", cptvf->dev_name); ret = -EBUSY; goto exit; } CPT_LOG_DP_DEBUG("%s: %s done", cptvf->dev_name, __func__); exit: return ret; } /* * Read Interrupt status of the VF * * @param cptvf cptvf structure */ static uint64_t otx_cpt_read_vf_misc_intr_status(struct cpt_vf *cptvf) { return CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf), CPTX_VQX_MISC_INT(0, 0)); } /* * Clear mailbox interrupt of the VF * * @param cptvf cptvf structure */ static void otx_cpt_clear_mbox_intr(struct cpt_vf *cptvf) { cptx_vqx_misc_int_t vqx_misc_int; vqx_misc_int.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf), CPTX_VQX_MISC_INT(0, 0)); /* W1C for the VF */ vqx_misc_int.s.mbox = 1; CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf), CPTX_VQX_MISC_INT(0, 0), vqx_misc_int.u); } /* * Clear instruction NCB read error interrupt of the VF * * @param cptvf cptvf structure */ static void otx_cpt_clear_irde_intr(struct cpt_vf *cptvf) { cptx_vqx_misc_int_t vqx_misc_int; vqx_misc_int.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf), CPTX_VQX_MISC_INT(0, 0)); /* W1C for the VF */ vqx_misc_int.s.irde = 1; CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf), CPTX_VQX_MISC_INT(0, 0), vqx_misc_int.u); } /* * Clear NCB result write response error interrupt of the VF * * @param cptvf cptvf structure */ static void otx_cpt_clear_nwrp_intr(struct cpt_vf *cptvf) { cptx_vqx_misc_int_t vqx_misc_int; vqx_misc_int.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf), CPTX_VQX_MISC_INT(0, 0)); /* W1C for the VF */ vqx_misc_int.s.nwrp = 1; CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf), CPTX_VQX_MISC_INT(0, 0), vqx_misc_int.u); } /* * Clear swerr interrupt of the VF * * @param cptvf cptvf structure */ static void otx_cpt_clear_swerr_intr(struct cpt_vf *cptvf) { cptx_vqx_misc_int_t vqx_misc_int; vqx_misc_int.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf), CPTX_VQX_MISC_INT(0, 0)); /* W1C for the VF */ vqx_misc_int.s.swerr = 1; CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf), CPTX_VQX_MISC_INT(0, 0), vqx_misc_int.u); } /* * Clear hwerr interrupt of the VF * * @param cptvf cptvf structure */ static void otx_cpt_clear_hwerr_intr(struct cpt_vf *cptvf) { cptx_vqx_misc_int_t vqx_misc_int; vqx_misc_int.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf), CPTX_VQX_MISC_INT(0, 0)); /* W1C for the VF */ vqx_misc_int.s.hwerr = 1; CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf), CPTX_VQX_MISC_INT(0, 0), vqx_misc_int.u); } /* * Clear translation fault interrupt of the VF * * @param cptvf cptvf structure */ static void otx_cpt_clear_fault_intr(struct cpt_vf *cptvf) { cptx_vqx_misc_int_t vqx_misc_int; vqx_misc_int.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf), CPTX_VQX_MISC_INT(0, 0)); /* W1C for the VF */ vqx_misc_int.s.fault = 1; CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf), CPTX_VQX_MISC_INT(0, 0), vqx_misc_int.u); } /* * Clear doorbell overflow interrupt of the VF * * @param cptvf cptvf structure */ static void otx_cpt_clear_dovf_intr(struct cpt_vf *cptvf) { cptx_vqx_misc_int_t vqx_misc_int; vqx_misc_int.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf), CPTX_VQX_MISC_INT(0, 0)); /* W1C for the VF */ vqx_misc_int.s.dovf = 1; CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf), CPTX_VQX_MISC_INT(0, 0), vqx_misc_int.u); } /* Write to VQX_CTL register */ static void otx_cpt_write_vq_ctl(struct cpt_vf *cptvf, bool val) { cptx_vqx_ctl_t vqx_ctl; vqx_ctl.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf), CPTX_VQX_CTL(0, 0)); vqx_ctl.s.ena = val; CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf), CPTX_VQX_CTL(0, 0), vqx_ctl.u); } /* Write to VQX_INPROG register */ static void otx_cpt_write_vq_inprog(struct cpt_vf *cptvf, uint8_t val) { cptx_vqx_inprog_t vqx_inprg; vqx_inprg.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf), CPTX_VQX_INPROG(0, 0)); vqx_inprg.s.inflight = val; CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf), CPTX_VQX_INPROG(0, 0), vqx_inprg.u); } /* Write to VQX_DONE_WAIT NUMWAIT register */ static void otx_cpt_write_vq_done_numwait(struct cpt_vf *cptvf, uint32_t val) { cptx_vqx_done_wait_t vqx_dwait; vqx_dwait.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf), CPTX_VQX_DONE_WAIT(0, 0)); vqx_dwait.s.num_wait = val; CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf), CPTX_VQX_DONE_WAIT(0, 0), vqx_dwait.u); } /* Write to VQX_DONE_WAIT NUM_WAIT register */ static void otx_cpt_write_vq_done_timewait(struct cpt_vf *cptvf, uint16_t val) { cptx_vqx_done_wait_t vqx_dwait; vqx_dwait.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf), CPTX_VQX_DONE_WAIT(0, 0)); vqx_dwait.s.time_wait = val; CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf), CPTX_VQX_DONE_WAIT(0, 0), vqx_dwait.u); } /* Write to VQX_SADDR register */ static void otx_cpt_write_vq_saddr(struct cpt_vf *cptvf, uint64_t val) { cptx_vqx_saddr_t vqx_saddr; vqx_saddr.u = val; CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf), CPTX_VQX_SADDR(0, 0), vqx_saddr.u); } static void otx_cpt_vfvq_init(struct cpt_vf *cptvf) { uint64_t base_addr = 0; /* Disable the VQ */ otx_cpt_write_vq_ctl(cptvf, 0); /* Reset the doorbell */ otx_cpt_write_vq_doorbell(cptvf, 0); /* Clear inflight */ otx_cpt_write_vq_inprog(cptvf, 0); /* Write VQ SADDR */ base_addr = (uint64_t)(cptvf->cqueue.chead[0].dma_addr); otx_cpt_write_vq_saddr(cptvf, base_addr); /* Configure timerhold / coalescence */ otx_cpt_write_vq_done_timewait(cptvf, CPT_TIMER_THOLD); otx_cpt_write_vq_done_numwait(cptvf, CPT_COUNT_THOLD); /* Enable the VQ */ otx_cpt_write_vq_ctl(cptvf, 1); } static int cpt_vq_init(struct cpt_vf *cptvf, uint8_t group) { int err; /* Convey VQ LEN to PF */ err = otx_cpt_send_vq_size_msg(cptvf); if (err) { CPT_LOG_ERR("%s: PF not responding to QLEN msg", cptvf->dev_name); err = -EBUSY; goto cleanup; } /* CPT VF device initialization */ otx_cpt_vfvq_init(cptvf); /* Send msg to PF to assign current Q to required group */ cptvf->vfgrp = group; err = otx_cpt_send_vf_grp_msg(cptvf, group); if (err) { CPT_LOG_ERR("%s: PF not responding to VF_GRP msg", cptvf->dev_name); err = -EBUSY; goto cleanup; } CPT_LOG_DP_DEBUG("%s: %s done", cptvf->dev_name, __func__); return 0; cleanup: return err; } void otx_cpt_poll_misc(struct cpt_vf *cptvf) { uint64_t intr; intr = otx_cpt_read_vf_misc_intr_status(cptvf); if (!intr) return; /* Check for MISC interrupt types */ if (likely(intr & CPT_VF_INTR_MBOX_MASK)) { CPT_LOG_DP_DEBUG("%s: Mailbox interrupt 0x%lx on CPT VF %d", cptvf->dev_name, (unsigned int long)intr, cptvf->vfid); otx_cpt_handle_mbox_intr(cptvf); otx_cpt_clear_mbox_intr(cptvf); } else if (unlikely(intr & CPT_VF_INTR_IRDE_MASK)) { otx_cpt_clear_irde_intr(cptvf); CPT_LOG_DP_DEBUG("%s: Instruction NCB read error interrupt " "0x%lx on CPT VF %d", cptvf->dev_name, (unsigned int long)intr, cptvf->vfid); } else if (unlikely(intr & CPT_VF_INTR_NWRP_MASK)) { otx_cpt_clear_nwrp_intr(cptvf); CPT_LOG_DP_DEBUG("%s: NCB response write error interrupt 0x%lx" " on CPT VF %d", cptvf->dev_name, (unsigned int long)intr, cptvf->vfid); } else if (unlikely(intr & CPT_VF_INTR_SWERR_MASK)) { otx_cpt_clear_swerr_intr(cptvf); CPT_LOG_DP_DEBUG("%s: Software error interrupt 0x%lx on CPT VF " "%d", cptvf->dev_name, (unsigned int long)intr, cptvf->vfid); } else if (unlikely(intr & CPT_VF_INTR_HWERR_MASK)) { otx_cpt_clear_hwerr_intr(cptvf); CPT_LOG_DP_DEBUG("%s: Hardware error interrupt 0x%lx on CPT VF " "%d", cptvf->dev_name, (unsigned int long)intr, cptvf->vfid); } else if (unlikely(intr & CPT_VF_INTR_FAULT_MASK)) { otx_cpt_clear_fault_intr(cptvf); CPT_LOG_DP_DEBUG("%s: Translation fault interrupt 0x%lx on CPT VF " "%d", cptvf->dev_name, (unsigned int long)intr, cptvf->vfid); } else if (unlikely(intr & CPT_VF_INTR_DOVF_MASK)) { otx_cpt_clear_dovf_intr(cptvf); CPT_LOG_DP_DEBUG("%s: Doorbell overflow interrupt 0x%lx on CPT VF " "%d", cptvf->dev_name, (unsigned int long)intr, cptvf->vfid); } else CPT_LOG_DP_ERR("%s: Unhandled interrupt 0x%lx in CPT VF %d", cptvf->dev_name, (unsigned int long)intr, cptvf->vfid); } int otx_cpt_hw_init(struct cpt_vf *cptvf, void *pdev, void *reg_base, char *name) { memset(cptvf, 0, sizeof(struct cpt_vf)); /* Bar0 base address */ cptvf->reg_base = reg_base; /* Save device name */ strlcpy(cptvf->dev_name, name, (sizeof(cptvf->dev_name))); cptvf->pdev = pdev; /* To clear if there are any pending mbox msgs */ otx_cpt_poll_misc(cptvf); if (otx_cpt_vf_init(cptvf)) { CPT_LOG_ERR("Failed to initialize CPT VF device"); return -1; } /* Gets device type */ if (otx_cpt_get_dev_type(cptvf)) { CPT_LOG_ERR("Failed to get device type"); return -1; } return 0; } int otx_cpt_deinit_device(void *dev) { struct cpt_vf *cptvf = (struct cpt_vf *)dev; /* Do misc work one last time */ otx_cpt_poll_misc(cptvf); return 0; } static int otx_cpt_metabuf_mempool_create(const struct rte_cryptodev *dev, struct cpt_instance *instance, uint8_t qp_id, int nb_elements) { char mempool_name[RTE_MEMPOOL_NAMESIZE]; struct cpt_qp_meta_info *meta_info; struct rte_mempool *pool; int max_mlen = 0; int sg_mlen = 0; int lb_mlen = 0; int ret; /* * Calculate metabuf length required. The 'crypto_octeontx' device * would be either SYMMETRIC or ASYMMETRIC. */ if (dev->feature_flags & RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO) { /* Get meta len for scatter gather mode */ sg_mlen = cpt_pmd_ops_helper_get_mlen_sg_mode(); /* Extra 32B saved for future considerations */ sg_mlen += 4 * sizeof(uint64_t); /* Get meta len for linear buffer (direct) mode */ lb_mlen = cpt_pmd_ops_helper_get_mlen_direct_mode(); /* Extra 32B saved for future considerations */ lb_mlen += 4 * sizeof(uint64_t); /* Check max requirement for meta buffer */ max_mlen = RTE_MAX(lb_mlen, sg_mlen); } else { /* Asymmetric device */ /* Get meta len for asymmetric operations */ max_mlen = cpt_pmd_ops_helper_asym_get_mlen(); } /* Allocate mempool */ snprintf(mempool_name, RTE_MEMPOOL_NAMESIZE, "otx_cpt_mb_%u:%u", dev->data->dev_id, qp_id); pool = rte_mempool_create_empty(mempool_name, nb_elements, max_mlen, METABUF_POOL_CACHE_SIZE, 0, rte_socket_id(), 0); if (pool == NULL) { CPT_LOG_ERR("Could not create mempool for metabuf"); return rte_errno; } ret = rte_mempool_set_ops_byname(pool, RTE_MBUF_DEFAULT_MEMPOOL_OPS, NULL); if (ret) { CPT_LOG_ERR("Could not set mempool ops"); goto mempool_free; } ret = rte_mempool_populate_default(pool); if (ret <= 0) { CPT_LOG_ERR("Could not populate metabuf pool"); goto mempool_free; } meta_info = &instance->meta_info; meta_info->pool = pool; meta_info->lb_mlen = lb_mlen; meta_info->sg_mlen = sg_mlen; return 0; mempool_free: rte_mempool_free(pool); return ret; } static void otx_cpt_metabuf_mempool_destroy(struct cpt_instance *instance) { struct cpt_qp_meta_info *meta_info = &instance->meta_info; rte_mempool_free(meta_info->pool); meta_info->pool = NULL; meta_info->lb_mlen = 0; meta_info->sg_mlen = 0; } int otx_cpt_get_resource(const struct rte_cryptodev *dev, uint8_t group, struct cpt_instance **instance, uint16_t qp_id) { int ret = -ENOENT, len, qlen, i; int chunk_len, chunks, chunk_size; struct cpt_vf *cptvf = dev->data->dev_private; struct cpt_instance *cpt_instance; struct command_chunk *chunk_head = NULL, *chunk_prev = NULL; struct command_chunk *chunk = NULL; uint8_t *mem; const struct rte_memzone *rz; uint64_t dma_addr = 0, alloc_len, used_len; uint64_t *next_ptr; uint64_t pg_sz = sysconf(_SC_PAGESIZE); CPT_LOG_DP_DEBUG("Initializing cpt resource %s", cptvf->dev_name); cpt_instance = &cptvf->instance; memset(&cptvf->cqueue, 0, sizeof(cptvf->cqueue)); memset(&cptvf->pqueue, 0, sizeof(cptvf->pqueue)); /* Chunks are of fixed size buffers */ chunks = DEFAULT_CMD_QCHUNKS; chunk_len = DEFAULT_CMD_QCHUNK_SIZE; qlen = chunks * chunk_len; /* Chunk size includes 8 bytes of next chunk ptr */ chunk_size = chunk_len * CPT_INST_SIZE + CPT_NEXT_CHUNK_PTR_SIZE; /* For command chunk structures */ len = chunks * RTE_ALIGN(sizeof(struct command_chunk), 8); /* For pending queue */ len += qlen * sizeof(uintptr_t); /* So that instruction queues start as pg size aligned */ len = RTE_ALIGN(len, pg_sz); /* For Instruction queues */ len += chunks * RTE_ALIGN(chunk_size, 128); /* Wastage after instruction queues */ len = RTE_ALIGN(len, pg_sz); rz = rte_memzone_reserve_aligned(cptvf->dev_name, len, cptvf->node, RTE_MEMZONE_SIZE_HINT_ONLY | RTE_MEMZONE_256MB, RTE_CACHE_LINE_SIZE); if (!rz) { ret = rte_errno; goto exit; } mem = rz->addr; dma_addr = rz->iova; alloc_len = len; memset(mem, 0, len); cpt_instance->rsvd = (uintptr_t)rz; ret = otx_cpt_metabuf_mempool_create(dev, cpt_instance, qp_id, qlen); if (ret) { CPT_LOG_ERR("Could not create mempool for metabuf"); goto memzone_free; } /* Pending queue setup */ cptvf->pqueue.req_queue = (uintptr_t *)mem; cptvf->pqueue.enq_tail = 0; cptvf->pqueue.deq_head = 0; cptvf->pqueue.pending_count = 0; mem += qlen * sizeof(uintptr_t); len -= qlen * sizeof(uintptr_t); dma_addr += qlen * sizeof(uintptr_t); /* Alignment wastage */ used_len = alloc_len - len; mem += RTE_ALIGN(used_len, pg_sz) - used_len; len -= RTE_ALIGN(used_len, pg_sz) - used_len; dma_addr += RTE_ALIGN(used_len, pg_sz) - used_len; /* Init instruction queues */ chunk_head = &cptvf->cqueue.chead[0]; i = qlen; chunk_prev = NULL; for (i = 0; i < DEFAULT_CMD_QCHUNKS; i++) { int csize; chunk = &cptvf->cqueue.chead[i]; chunk->head = mem; chunk->dma_addr = dma_addr; csize = RTE_ALIGN(chunk_size, 128); mem += csize; dma_addr += csize; len -= csize; if (chunk_prev) { next_ptr = (uint64_t *)(chunk_prev->head + chunk_size - 8); *next_ptr = (uint64_t)chunk->dma_addr; } chunk_prev = chunk; } /* Circular loop */ next_ptr = (uint64_t *)(chunk_prev->head + chunk_size - 8); *next_ptr = (uint64_t)chunk_head->dma_addr; assert(!len); /* This is used for CPT(0)_PF_Q(0..15)_CTL.size config */ cptvf->qsize = chunk_size / 8; cptvf->cqueue.qhead = chunk_head->head; cptvf->cqueue.idx = 0; cptvf->cqueue.cchunk = 0; if (cpt_vq_init(cptvf, group)) { CPT_LOG_ERR("Failed to initialize CPT VQ of device %s", cptvf->dev_name); ret = -EBUSY; goto mempool_destroy; } *instance = cpt_instance; CPT_LOG_DP_DEBUG("Crypto device (%s) initialized", cptvf->dev_name); return 0; mempool_destroy: otx_cpt_metabuf_mempool_destroy(cpt_instance); memzone_free: rte_memzone_free(rz); exit: *instance = NULL; return ret; } int otx_cpt_put_resource(struct cpt_instance *instance) { struct cpt_vf *cptvf = (struct cpt_vf *)instance; struct rte_memzone *rz; if (!cptvf) { CPT_LOG_ERR("Invalid CPTVF handle"); return -EINVAL; } CPT_LOG_DP_DEBUG("Releasing cpt device %s", cptvf->dev_name); otx_cpt_metabuf_mempool_destroy(instance); rz = (struct rte_memzone *)instance->rsvd; rte_memzone_free(rz); return 0; } int otx_cpt_start_device(void *dev) { int rc; struct cpt_vf *cptvf = (struct cpt_vf *)dev; rc = otx_cpt_send_vf_up(cptvf); if (rc) { CPT_LOG_ERR("Failed to mark CPT VF device %s UP, rc = %d", cptvf->dev_name, rc); return -EFAULT; } return 0; } void otx_cpt_stop_device(void *dev) { int rc; uint32_t pending, retries = 5; struct cpt_vf *cptvf = (struct cpt_vf *)dev; /* Wait for pending entries to complete */ pending = otx_cpt_read_vq_doorbell(cptvf); while (pending) { CPT_LOG_DP_DEBUG("%s: Waiting for pending %u cmds to complete", cptvf->dev_name, pending); sleep(1); pending = otx_cpt_read_vq_doorbell(cptvf); retries--; if (!retries) break; } if (!retries && pending) { CPT_LOG_ERR("%s: Timeout waiting for commands(%u)", cptvf->dev_name, pending); return; } rc = otx_cpt_send_vf_down(cptvf); if (rc) { CPT_LOG_ERR("Failed to bring down vf %s, rc %d", cptvf->dev_name, rc); return; } }