/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2014 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include #include "test.h" /* * Set this to the maximum buffer size you want to test. If it is 0, then the * values in the buf_sizes[] array below will be used. */ #define TEST_VALUE_RANGE 0 /* List of buffer sizes to test */ #if TEST_VALUE_RANGE == 0 static size_t buf_sizes[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 15, 16, 17, 31, 32, 33, 63, 64, 65, 127, 128, 129, 191, 192, 193, 255, 256, 257, 319, 320, 321, 383, 384, 385, 447, 448, 449, 511, 512, 513, 767, 768, 769, 1023, 1024, 1025, 1518, 1522, 1536, 1600, 2048, 2560, 3072, 3584, 4096, 4608, 5120, 5632, 6144, 6656, 7168, 7680, 8192 }; /* MUST be as large as largest packet size above */ #define SMALL_BUFFER_SIZE 8192 #else /* TEST_VALUE_RANGE != 0 */ static size_t buf_sizes[TEST_VALUE_RANGE]; #define SMALL_BUFFER_SIZE TEST_VALUE_RANGE #endif /* TEST_VALUE_RANGE == 0 */ /* * Arrays of this size are used for measuring uncached memory accesses by * picking a random location within the buffer. Make this smaller if there are * memory allocation errors. */ #define LARGE_BUFFER_SIZE (100 * 1024 * 1024) /* How many times to run timing loop for performance tests */ #define TEST_ITERATIONS 1000000 #define TEST_BATCH_SIZE 100 /* Data is aligned on this many bytes (power of 2) */ #ifdef __AVX512F__ #define ALIGNMENT_UNIT 64 #elif defined __AVX2__ #define ALIGNMENT_UNIT 32 #else #define ALIGNMENT_UNIT 16 #endif /* * Pointers used in performance tests. The two large buffers are for uncached * access where random addresses within the buffer are used for each * memcpy. The two small buffers are for cached access. */ static uint8_t *large_buf_read, *large_buf_write; static uint8_t *small_buf_read, *small_buf_write; /* Initialise data buffers. */ static int init_buffers(void) { unsigned i; large_buf_read = rte_malloc("memcpy", LARGE_BUFFER_SIZE + ALIGNMENT_UNIT, ALIGNMENT_UNIT); if (large_buf_read == NULL) goto error_large_buf_read; large_buf_write = rte_malloc("memcpy", LARGE_BUFFER_SIZE + ALIGNMENT_UNIT, ALIGNMENT_UNIT); if (large_buf_write == NULL) goto error_large_buf_write; small_buf_read = rte_malloc("memcpy", SMALL_BUFFER_SIZE + ALIGNMENT_UNIT, ALIGNMENT_UNIT); if (small_buf_read == NULL) goto error_small_buf_read; small_buf_write = rte_malloc("memcpy", SMALL_BUFFER_SIZE + ALIGNMENT_UNIT, ALIGNMENT_UNIT); if (small_buf_write == NULL) goto error_small_buf_write; for (i = 0; i < LARGE_BUFFER_SIZE; i++) large_buf_read[i] = rte_rand(); for (i = 0; i < SMALL_BUFFER_SIZE; i++) small_buf_read[i] = rte_rand(); return 0; error_small_buf_write: rte_free(small_buf_read); error_small_buf_read: rte_free(large_buf_write); error_large_buf_write: rte_free(large_buf_read); error_large_buf_read: printf("ERROR: not enough memory\n"); return -1; } /* Cleanup data buffers */ static void free_buffers(void) { rte_free(large_buf_read); rte_free(large_buf_write); rte_free(small_buf_read); rte_free(small_buf_write); } /* * Get a random offset into large array, with enough space needed to perform * max copy size. Offset is aligned, uoffset is used for unalignment setting. */ static inline size_t get_rand_offset(size_t uoffset) { return ((rte_rand() % (LARGE_BUFFER_SIZE - SMALL_BUFFER_SIZE)) & ~(ALIGNMENT_UNIT - 1)) + uoffset; } /* Fill in source and destination addresses. */ static inline void fill_addr_arrays(size_t *dst_addr, int is_dst_cached, size_t dst_uoffset, size_t *src_addr, int is_src_cached, size_t src_uoffset) { unsigned int i; for (i = 0; i < TEST_BATCH_SIZE; i++) { dst_addr[i] = (is_dst_cached) ? dst_uoffset : get_rand_offset(dst_uoffset); src_addr[i] = (is_src_cached) ? src_uoffset : get_rand_offset(src_uoffset); } } /* * WORKAROUND: For some reason the first test doing an uncached write * takes a very long time (~25 times longer than is expected). So we do * it once without timing. */ static void do_uncached_write(uint8_t *dst, int is_dst_cached, const uint8_t *src, int is_src_cached, size_t size) { unsigned i, j; size_t dst_addrs[TEST_BATCH_SIZE], src_addrs[TEST_BATCH_SIZE]; for (i = 0; i < (TEST_ITERATIONS / TEST_BATCH_SIZE); i++) { fill_addr_arrays(dst_addrs, is_dst_cached, 0, src_addrs, is_src_cached, 0); for (j = 0; j < TEST_BATCH_SIZE; j++) { rte_memcpy(dst+dst_addrs[j], src+src_addrs[j], size); } } } /* * Run a single memcpy performance test. This is a macro to ensure that if * the "size" parameter is a constant it won't be converted to a variable. */ #define SINGLE_PERF_TEST(dst, is_dst_cached, dst_uoffset, \ src, is_src_cached, src_uoffset, size) \ do { \ unsigned int iter, t; \ size_t dst_addrs[TEST_BATCH_SIZE], src_addrs[TEST_BATCH_SIZE]; \ uint64_t start_time, total_time = 0; \ uint64_t total_time2 = 0; \ for (iter = 0; iter < (TEST_ITERATIONS / TEST_BATCH_SIZE); iter++) { \ fill_addr_arrays(dst_addrs, is_dst_cached, dst_uoffset, \ src_addrs, is_src_cached, src_uoffset); \ start_time = rte_rdtsc(); \ for (t = 0; t < TEST_BATCH_SIZE; t++) \ rte_memcpy(dst+dst_addrs[t], src+src_addrs[t], size); \ total_time += rte_rdtsc() - start_time; \ } \ for (iter = 0; iter < (TEST_ITERATIONS / TEST_BATCH_SIZE); iter++) { \ fill_addr_arrays(dst_addrs, is_dst_cached, dst_uoffset, \ src_addrs, is_src_cached, src_uoffset); \ start_time = rte_rdtsc(); \ for (t = 0; t < TEST_BATCH_SIZE; t++) \ memcpy(dst+dst_addrs[t], src+src_addrs[t], size); \ total_time2 += rte_rdtsc() - start_time; \ } \ printf("%3.0f -", (double)total_time / TEST_ITERATIONS); \ printf("%3.0f", (double)total_time2 / TEST_ITERATIONS); \ printf("(%6.2f%%) ", ((double)total_time - total_time2)*100/total_time2); \ } while (0) /* Run aligned memcpy tests for each cached/uncached permutation */ #define ALL_PERF_TESTS_FOR_SIZE(n) \ do { \ if (__builtin_constant_p(n)) \ printf("\nC%6u", (unsigned)n); \ else \ printf("\n%7u", (unsigned)n); \ SINGLE_PERF_TEST(small_buf_write, 1, 0, small_buf_read, 1, 0, n); \ SINGLE_PERF_TEST(large_buf_write, 0, 0, small_buf_read, 1, 0, n); \ SINGLE_PERF_TEST(small_buf_write, 1, 0, large_buf_read, 0, 0, n); \ SINGLE_PERF_TEST(large_buf_write, 0, 0, large_buf_read, 0, 0, n); \ } while (0) /* Run unaligned memcpy tests for each cached/uncached permutation */ #define ALL_PERF_TESTS_FOR_SIZE_UNALIGNED(n) \ do { \ if (__builtin_constant_p(n)) \ printf("\nC%6u", (unsigned)n); \ else \ printf("\n%7u", (unsigned)n); \ SINGLE_PERF_TEST(small_buf_write, 1, 1, small_buf_read, 1, 5, n); \ SINGLE_PERF_TEST(large_buf_write, 0, 1, small_buf_read, 1, 5, n); \ SINGLE_PERF_TEST(small_buf_write, 1, 1, large_buf_read, 0, 5, n); \ SINGLE_PERF_TEST(large_buf_write, 0, 1, large_buf_read, 0, 5, n); \ } while (0) /* Run memcpy tests for constant length */ #define ALL_PERF_TEST_FOR_CONSTANT \ do { \ TEST_CONSTANT(6U); TEST_CONSTANT(64U); TEST_CONSTANT(128U); \ TEST_CONSTANT(192U); TEST_CONSTANT(256U); TEST_CONSTANT(512U); \ TEST_CONSTANT(768U); TEST_CONSTANT(1024U); TEST_CONSTANT(1536U); \ } while (0) /* Run all memcpy tests for aligned constant cases */ static inline void perf_test_constant_aligned(void) { #define TEST_CONSTANT ALL_PERF_TESTS_FOR_SIZE ALL_PERF_TEST_FOR_CONSTANT; #undef TEST_CONSTANT } /* Run all memcpy tests for unaligned constant cases */ static inline void perf_test_constant_unaligned(void) { #define TEST_CONSTANT ALL_PERF_TESTS_FOR_SIZE_UNALIGNED ALL_PERF_TEST_FOR_CONSTANT; #undef TEST_CONSTANT } /* Run all memcpy tests for aligned variable cases */ static inline void perf_test_variable_aligned(void) { unsigned i; for (i = 0; i < RTE_DIM(buf_sizes); i++) { ALL_PERF_TESTS_FOR_SIZE((size_t)buf_sizes[i]); } } /* Run all memcpy tests for unaligned variable cases */ static inline void perf_test_variable_unaligned(void) { unsigned i; for (i = 0; i < RTE_DIM(buf_sizes); i++) { ALL_PERF_TESTS_FOR_SIZE_UNALIGNED((size_t)buf_sizes[i]); } } /* Run all memcpy tests */ static int perf_test(void) { int ret; struct timeval tv_begin, tv_end; double time_aligned, time_unaligned; double time_aligned_const, time_unaligned_const; ret = init_buffers(); if (ret != 0) return ret; #if TEST_VALUE_RANGE != 0 /* Set up buf_sizes array, if required */ unsigned i; for (i = 0; i < TEST_VALUE_RANGE; i++) buf_sizes[i] = i; #endif /* See function comment */ do_uncached_write(large_buf_write, 0, small_buf_read, 1, SMALL_BUFFER_SIZE); printf("\n** rte_memcpy() - memcpy perf. tests (C = compile-time constant) **\n" "======= ================= ================= ================= =================\n" " Size Cache to cache Cache to mem Mem to cache Mem to mem\n" "(bytes) (ticks) (ticks) (ticks) (ticks)\n" "------- ----------------- ----------------- ----------------- -----------------"); printf("\n================================= %2dB aligned =================================", ALIGNMENT_UNIT); /* Do aligned tests where size is a variable */ gettimeofday(&tv_begin, NULL); perf_test_variable_aligned(); gettimeofday(&tv_end, NULL); time_aligned = (double)(tv_end.tv_sec - tv_begin.tv_sec) + ((double)tv_end.tv_usec - tv_begin.tv_usec)/1000000; printf("\n------- ----------------- ----------------- ----------------- -----------------"); /* Do aligned tests where size is a compile-time constant */ gettimeofday(&tv_begin, NULL); perf_test_constant_aligned(); gettimeofday(&tv_end, NULL); time_aligned_const = (double)(tv_end.tv_sec - tv_begin.tv_sec) + ((double)tv_end.tv_usec - tv_begin.tv_usec)/1000000; printf("\n================================== Unaligned =================================="); /* Do unaligned tests where size is a variable */ gettimeofday(&tv_begin, NULL); perf_test_variable_unaligned(); gettimeofday(&tv_end, NULL); time_unaligned = (double)(tv_end.tv_sec - tv_begin.tv_sec) + ((double)tv_end.tv_usec - tv_begin.tv_usec)/1000000; printf("\n------- ----------------- ----------------- ----------------- -----------------"); /* Do unaligned tests where size is a compile-time constant */ gettimeofday(&tv_begin, NULL); perf_test_constant_unaligned(); gettimeofday(&tv_end, NULL); time_unaligned_const = (double)(tv_end.tv_sec - tv_begin.tv_sec) + ((double)tv_end.tv_usec - tv_begin.tv_usec)/1000000; printf("\n======= ================= ================= ================= =================\n\n"); printf("Test Execution Time (seconds):\n"); printf("Aligned variable copy size = %8.3f\n", time_aligned); printf("Aligned constant copy size = %8.3f\n", time_aligned_const); printf("Unaligned variable copy size = %8.3f\n", time_unaligned); printf("Unaligned constant copy size = %8.3f\n", time_unaligned_const); free_buffers(); return 0; } static int test_memcpy_perf(void) { int ret; ret = perf_test(); if (ret != 0) return -1; return 0; } REGISTER_TEST_COMMAND(memcpy_perf_autotest, test_memcpy_perf);