/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2017 Intel Corporation
 */

#include <stdbool.h>

#include <rte_crypto.h>
#include <rte_cryptodev.h>
#include <rte_cycles.h>
#include <rte_malloc.h>

#include "cperf_ops.h"
#include "cperf_test_pmd_cyclecount.h"
#include "cperf_test_common.h"

#define PRETTY_HDR_FMT "%12s%12s%12s%12s%12s%12s%12s%12s%12s%12s\n\n"
#define PRETTY_LINE_FMT "%12u%12u%12u%12u%12u%12u%12u%12.0f%12.0f%12.0f\n"
#define CSV_HDR_FMT "%s,%s,%s,%s,%s,%s,%s,%s,%s,%s\n"
#define CSV_LINE_FMT "%10u;%10u;%u;%u;%u;%u;%u;%.f3;%.f3;%.f3\n"

struct cperf_pmd_cyclecount_ctx {
	uint8_t dev_id;
	uint16_t qp_id;
	uint8_t lcore_id;

	struct rte_mempool *pool;
	struct rte_crypto_op **ops;
	struct rte_crypto_op **ops_processed;

	struct rte_cryptodev_sym_session *sess;

	cperf_populate_ops_t populate_ops;

	uint32_t src_buf_offset;
	uint32_t dst_buf_offset;

	const struct cperf_options *options;
	const struct cperf_test_vector *test_vector;
};

struct pmd_cyclecount_state {
	struct cperf_pmd_cyclecount_ctx *ctx;
	const struct cperf_options *opts;
	uint32_t lcore;
	uint64_t delay;
	int linearize;
	uint32_t ops_enqd;
	uint32_t ops_deqd;
	uint32_t ops_enq_retries;
	uint32_t ops_deq_retries;
	double cycles_per_build;
	double cycles_per_enq;
	double cycles_per_deq;
};

static const uint16_t iv_offset =
		sizeof(struct rte_crypto_op) + sizeof(struct rte_crypto_sym_op);

static void
cperf_pmd_cyclecount_test_free(struct cperf_pmd_cyclecount_ctx *ctx)
{
	if (ctx) {
		if (ctx->sess) {
			rte_cryptodev_sym_session_clear(ctx->dev_id, ctx->sess);
			rte_cryptodev_sym_session_free(ctx->sess);
		}

		if (ctx->pool)
			rte_mempool_free(ctx->pool);

		if (ctx->ops)
			rte_free(ctx->ops);

		if (ctx->ops_processed)
			rte_free(ctx->ops_processed);

		rte_free(ctx);
	}
}

void *
cperf_pmd_cyclecount_test_constructor(struct rte_mempool *sess_mp,
		uint8_t dev_id, uint16_t qp_id,
		const struct cperf_options *options,
		const struct cperf_test_vector *test_vector,
		const struct cperf_op_fns *op_fns)
{
	struct cperf_pmd_cyclecount_ctx *ctx = NULL;

	/* preallocate buffers for crypto ops as they can get quite big */
	size_t alloc_sz = sizeof(struct rte_crypto_op *) *
			options->nb_descriptors;

	ctx = rte_malloc(NULL, sizeof(struct cperf_pmd_cyclecount_ctx), 0);
	if (ctx == NULL)
		goto err;

	ctx->dev_id = dev_id;
	ctx->qp_id = qp_id;

	ctx->populate_ops = op_fns->populate_ops;
	ctx->options = options;
	ctx->test_vector = test_vector;

	/* IV goes at the end of the crypto operation */
	uint16_t iv_offset = sizeof(struct rte_crypto_op) +
			sizeof(struct rte_crypto_sym_op);

	ctx->sess = op_fns->sess_create(
			sess_mp, dev_id, options, test_vector, iv_offset);
	if (ctx->sess == NULL)
		goto err;

	if (cperf_alloc_common_memory(options, test_vector, dev_id, qp_id, 0,
			&ctx->src_buf_offset, &ctx->dst_buf_offset,
			&ctx->pool) < 0)
		goto err;

	ctx->ops = rte_malloc("ops", alloc_sz, 0);
	if (!ctx->ops)
		goto err;

	ctx->ops_processed = rte_malloc("ops_processed", alloc_sz, 0);
	if (!ctx->ops_processed)
		goto err;

	return ctx;

err:
	cperf_pmd_cyclecount_test_free(ctx);

	return NULL;
}

/* benchmark alloc-build-free of ops */
static inline int
pmd_cyclecount_bench_ops(struct pmd_cyclecount_state *state, uint32_t cur_op,
		uint16_t test_burst_size)
{
	uint32_t iter_ops_left = state->opts->total_ops - cur_op;
	uint32_t iter_ops_needed =
			RTE_MIN(state->opts->nb_descriptors, iter_ops_left);
	uint32_t cur_iter_op;
	uint32_t imix_idx = 0;

	for (cur_iter_op = 0; cur_iter_op < iter_ops_needed;
			cur_iter_op += test_burst_size) {
		uint32_t burst_size = RTE_MIN(iter_ops_needed - cur_iter_op,
				test_burst_size);
		struct rte_crypto_op **ops = &state->ctx->ops[cur_iter_op];

		/* Allocate objects containing crypto operations and mbufs */
		if (rte_mempool_get_bulk(state->ctx->pool, (void **)ops,
					burst_size) != 0) {
			RTE_LOG(ERR, USER1,
					"Failed to allocate more crypto operations "
					"from the crypto operation pool.\n"
					"Consider increasing the pool size "
					"with --pool-sz\n");
				return -1;
		}

		/* Setup crypto op, attach mbuf etc */
		(state->ctx->populate_ops)(ops,
				state->ctx->src_buf_offset,
				state->ctx->dst_buf_offset,
				burst_size,
				state->ctx->sess, state->opts,
				state->ctx->test_vector, iv_offset,
				&imix_idx);

#ifdef CPERF_LINEARIZATION_ENABLE
		/* Check if source mbufs require coalescing */
		if (state->linearize) {
			uint8_t i;
			for (i = 0; i < burst_size; i++) {
				struct rte_mbuf *src = ops[i]->sym->m_src;
				rte_pktmbuf_linearize(src);
			}
		}
#endif /* CPERF_LINEARIZATION_ENABLE */
		rte_mempool_put_bulk(state->ctx->pool, (void **)ops,
				burst_size);
	}

	return 0;
}

/* allocate and build ops (no free) */
static int
pmd_cyclecount_build_ops(struct pmd_cyclecount_state *state,
		uint32_t iter_ops_needed, uint16_t test_burst_size)
{
	uint32_t cur_iter_op;
	uint32_t imix_idx = 0;

	for (cur_iter_op = 0; cur_iter_op < iter_ops_needed;
			cur_iter_op += test_burst_size) {
		uint32_t burst_size = RTE_MIN(
				iter_ops_needed - cur_iter_op, test_burst_size);
		struct rte_crypto_op **ops = &state->ctx->ops[cur_iter_op];

		/* Allocate objects containing crypto operations and mbufs */
		if (rte_mempool_get_bulk(state->ctx->pool, (void **)ops,
					burst_size) != 0) {
			RTE_LOG(ERR, USER1,
					"Failed to allocate more crypto operations "
					"from the crypto operation pool.\n"
					"Consider increasing the pool size "
					"with --pool-sz\n");
				return -1;
		}

		/* Setup crypto op, attach mbuf etc */
		(state->ctx->populate_ops)(ops,
				state->ctx->src_buf_offset,
				state->ctx->dst_buf_offset,
				burst_size,
				state->ctx->sess, state->opts,
				state->ctx->test_vector, iv_offset,
				&imix_idx);
	}
	return 0;
}

/* benchmark enqueue, returns number of ops enqueued */
static uint32_t
pmd_cyclecount_bench_enq(struct pmd_cyclecount_state *state,
		uint32_t iter_ops_needed, uint16_t test_burst_size)
{
	/* Enqueue full descriptor ring of ops on crypto device */
	uint32_t cur_iter_op = 0;
	while (cur_iter_op < iter_ops_needed) {
		uint32_t burst_size = RTE_MIN(iter_ops_needed - cur_iter_op,
				test_burst_size);
		struct rte_crypto_op **ops = &state->ctx->ops[cur_iter_op];
		uint32_t burst_enqd;

		burst_enqd = rte_cryptodev_enqueue_burst(state->ctx->dev_id,
				state->ctx->qp_id, ops, burst_size);

		/* if we couldn't enqueue anything, the queue is full */
		if (!burst_enqd) {
			/* don't try to dequeue anything we didn't enqueue */
			return cur_iter_op;
		}

		if (burst_enqd < burst_size)
			state->ops_enq_retries++;
		state->ops_enqd += burst_enqd;
		cur_iter_op += burst_enqd;
	}
	return iter_ops_needed;
}

/* benchmark dequeue */
static void
pmd_cyclecount_bench_deq(struct pmd_cyclecount_state *state,
		uint32_t iter_ops_needed, uint16_t test_burst_size)
{
	/* Dequeue full descriptor ring of ops on crypto device */
	uint32_t cur_iter_op = 0;
	while (cur_iter_op < iter_ops_needed) {
		uint32_t burst_size = RTE_MIN(iter_ops_needed - cur_iter_op,
				test_burst_size);
		struct rte_crypto_op **ops_processed =
				&state->ctx->ops[cur_iter_op];
		uint32_t burst_deqd;

		burst_deqd = rte_cryptodev_dequeue_burst(state->ctx->dev_id,
				state->ctx->qp_id, ops_processed, burst_size);

		if (burst_deqd < burst_size)
			state->ops_deq_retries++;
		state->ops_deqd += burst_deqd;
		cur_iter_op += burst_deqd;
	}
}

/* run benchmark per burst size */
static inline int
pmd_cyclecount_bench_burst_sz(
		struct pmd_cyclecount_state *state, uint16_t test_burst_size)
{
	uint64_t tsc_start;
	uint64_t tsc_end;
	uint64_t tsc_op;
	uint64_t tsc_enq;
	uint64_t tsc_deq;
	uint32_t cur_op;

	/* reset all counters */
	tsc_enq = 0;
	tsc_deq = 0;
	state->ops_enqd = 0;
	state->ops_enq_retries = 0;
	state->ops_deqd = 0;
	state->ops_deq_retries = 0;

	/*
	 * Benchmark crypto op alloc-build-free separately.
	 */
	tsc_start = rte_rdtsc_precise();

	for (cur_op = 0; cur_op < state->opts->total_ops;
			cur_op += state->opts->nb_descriptors) {
		if (unlikely(pmd_cyclecount_bench_ops(
				state, cur_op, test_burst_size)))
			return -1;
	}

	tsc_end = rte_rdtsc_precise();
	tsc_op = tsc_end - tsc_start;


	/*
	 * Hardware acceleration cyclecount benchmarking loop.
	 *
	 * We're benchmarking raw enq/deq performance by filling up the device
	 * queue, so we never get any failed enqs unless the driver won't accept
	 * the exact number of descriptors we requested, or the driver won't
	 * wrap around the end of the TX ring. However, since we're only
	 * dequeueing once we've filled up the queue, we have to benchmark it
	 * piecemeal and then average out the results.
	 */
	cur_op = 0;
	while (cur_op < state->opts->total_ops) {
		uint32_t iter_ops_left = state->opts->total_ops - cur_op;
		uint32_t iter_ops_needed = RTE_MIN(
				state->opts->nb_descriptors, iter_ops_left);
		uint32_t iter_ops_allocd = iter_ops_needed;

		/* allocate and build ops */
		if (unlikely(pmd_cyclecount_build_ops(state, iter_ops_needed,
				test_burst_size)))
			return -1;

		tsc_start = rte_rdtsc_precise();

		/* fill up TX ring */
		iter_ops_needed = pmd_cyclecount_bench_enq(state,
				iter_ops_needed, test_burst_size);

		tsc_end = rte_rdtsc_precise();

		tsc_enq += tsc_end - tsc_start;

		/* allow for HW to catch up */
		if (state->delay)
			rte_delay_us_block(state->delay);

		tsc_start = rte_rdtsc_precise();

		/* drain RX ring */
		pmd_cyclecount_bench_deq(state, iter_ops_needed,
				test_burst_size);

		tsc_end = rte_rdtsc_precise();

		tsc_deq += tsc_end - tsc_start;

		cur_op += iter_ops_needed;

		/*
		 * we may not have processed all ops that we allocated, so
		 * free everything we've allocated.
		 */
		rte_mempool_put_bulk(state->ctx->pool,
				(void **)state->ctx->ops, iter_ops_allocd);
	}

	state->cycles_per_build = (double)tsc_op / state->opts->total_ops;
	state->cycles_per_enq = (double)tsc_enq / state->ops_enqd;
	state->cycles_per_deq = (double)tsc_deq / state->ops_deqd;

	return 0;
}

int
cperf_pmd_cyclecount_test_runner(void *test_ctx)
{
	struct pmd_cyclecount_state state = {0};
	const struct cperf_options *opts;
	uint16_t test_burst_size;
	uint8_t burst_size_idx = 0;

	state.ctx = test_ctx;
	opts = state.ctx->options;
	state.opts = opts;
	state.lcore = rte_lcore_id();
	state.linearize = 0;

	static int only_once;
	static bool warmup = true;

	/*
	 * We need a small delay to allow for hardware to process all the crypto
	 * operations. We can't automatically figure out what the delay should
	 * be, so we leave it up to the user (by default it's 0).
	 */
	state.delay = 1000 * opts->pmdcc_delay;

#ifdef CPERF_LINEARIZATION_ENABLE
	struct rte_cryptodev_info dev_info;

	/* Check if source mbufs require coalescing */
	if (opts->segments_sz < ctx->options->max_buffer_size) {
		rte_cryptodev_info_get(state.ctx->dev_id, &dev_info);
		if ((dev_info.feature_flags &
				    RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) ==
				0) {
			state.linearize = 1;
		}
	}
#endif /* CPERF_LINEARIZATION_ENABLE */

	state.ctx->lcore_id = state.lcore;

	/* Get first size from range or list */
	if (opts->inc_burst_size != 0)
		test_burst_size = opts->min_burst_size;
	else
		test_burst_size = opts->burst_size_list[0];

	while (test_burst_size <= opts->max_burst_size) {
		/* do a benchmark run */
		if (pmd_cyclecount_bench_burst_sz(&state, test_burst_size))
			return -1;

		/*
		 * First run is always a warm up run.
		 */
		if (warmup) {
			warmup = false;
			continue;
		}

		if (!opts->csv) {
			if (!only_once)
				printf(PRETTY_HDR_FMT, "lcore id", "Buf Size",
						"Burst Size", "Enqueued",
						"Dequeued", "Enq Retries",
						"Deq Retries", "Cycles/Op",
						"Cycles/Enq", "Cycles/Deq");
			only_once = 1;

			printf(PRETTY_LINE_FMT, state.ctx->lcore_id,
					opts->test_buffer_size, test_burst_size,
					state.ops_enqd, state.ops_deqd,
					state.ops_enq_retries,
					state.ops_deq_retries,
					state.cycles_per_build,
					state.cycles_per_enq,
					state.cycles_per_deq);
		} else {
			if (!only_once)
				printf(CSV_HDR_FMT, "# lcore id", "Buf Size",
						"Burst Size", "Enqueued",
						"Dequeued", "Enq Retries",
						"Deq Retries", "Cycles/Op",
						"Cycles/Enq", "Cycles/Deq");
			only_once = 1;

			printf(CSV_LINE_FMT, state.ctx->lcore_id,
					opts->test_buffer_size, test_burst_size,
					state.ops_enqd, state.ops_deqd,
					state.ops_enq_retries,
					state.ops_deq_retries,
					state.cycles_per_build,
					state.cycles_per_enq,
					state.cycles_per_deq);
		}

		/* Get next size from range or list */
		if (opts->inc_burst_size != 0)
			test_burst_size += opts->inc_burst_size;
		else {
			if (++burst_size_idx == opts->burst_size_count)
				break;
			test_burst_size = opts->burst_size_list[burst_size_idx];
		}
	}

	return 0;
}

void
cperf_pmd_cyclecount_test_destructor(void *arg)
{
	struct cperf_pmd_cyclecount_ctx *ctx = arg;

	if (ctx == NULL)
		return;

	cperf_pmd_cyclecount_test_free(ctx);
}