/* SPDX-License-Identifier: BSD-3-Clause * Copyright (c) 2021 Marvell. */ #include "roc_api.h" #define KEY_WORD_LEN (ROC_CPT_AES_XCBC_KEY_LENGTH / sizeof(uint32_t)) #define KEY_ROUNDS 10 /* (Nr+1)*Nb */ #define KEY_SCHEDULE_LEN ((KEY_ROUNDS + 1) * 4) /* (Nr+1)*Nb words */ /* * AES 128 implementation based on NIST FIPS 197 suitable for LittleEndian * https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf */ /* Sbox from NIST FIPS 197 */ static uint8_t Sbox[] = { 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16, }; /* Substitute a byte with Sbox[byte]. Do it for a word for 4 bytes */ static uint32_t sub_word(uint32_t word) { word = (Sbox[(word >> 24) & 0xFF] << 24) | (Sbox[(word >> 16) & 0xFF] << 16) | (Sbox[(word >> 8) & 0xFF] << 8) | Sbox[word & 0xFF]; return word; } /* Rotate a word by one byte */ static uint32_t rot_word(uint32_t word) { return ((word >> 8) & 0xFFFFFF) | (word << 24); } /* * Multiply with power of 2 and polynomial reduce the result using AES * polynomial */ static uint8_t Xtime(uint8_t byte, uint8_t pow) { uint32_t w = byte; while (pow) { w = w << 1; if (w >> 8) w ^= 0x11b; pow--; } return (uint8_t)w; } /* * Multiply a byte with another number such that the result is polynomial * reduced in the GF8 space */ static uint8_t GF8mul(uint8_t byte, uint32_t mp) { uint8_t pow, mul = 0; while (mp) { pow = ffs(mp) - 1; mul ^= Xtime(byte, pow); mp ^= (1 << pow); } return mul; } static void aes_key_expand(const uint8_t *key, uint32_t *ks) { unsigned int i = 4; uint32_t temp; /* Skip key in ks */ memcpy(ks, key, KEY_WORD_LEN * sizeof(uint32_t)); while (i < KEY_SCHEDULE_LEN) { temp = ks[i - 1]; if ((i & 0x3) == 0) { temp = rot_word(temp); temp = sub_word(temp); temp ^= (uint32_t)GF8mul(1, 1 << ((i >> 2) - 1)); } ks[i] = ks[i - 4] ^ temp; i++; } } /* Shift Rows(columns in state in this implementation) */ static void shift_word(uint8_t *sRc, uint8_t c, int count) { /* rotate across non-consecutive locations */ while (count) { uint8_t t = sRc[c]; sRc[c] = sRc[0x4 + c]; sRc[0x4 + c] = sRc[0x8 + c]; sRc[0x8 + c] = sRc[0xc + c]; sRc[0xc + c] = t; count--; } } /* Mix Columns(rows in state in this implementation) */ static void mix_columns(uint8_t *sRc) { uint8_t new_st[4]; int i; for (i = 0; i < 4; i++) new_st[i] = GF8mul(sRc[i], 0x2) ^ GF8mul(sRc[(i + 1) & 0x3], 0x3) ^ sRc[(i + 2) & 0x3] ^ sRc[(i + 3) & 0x3]; for (i = 0; i < 4; i++) sRc[i] = new_st[i]; } static void cipher(uint8_t *in, uint8_t *out, uint32_t *ks) { uint32_t state[KEY_WORD_LEN]; unsigned int i, round; memcpy(state, in, sizeof(state)); /* AddRoundKey(state, w[0, Nb-1]) // See Sec. 5.1.4 */ for (i = 0; i < KEY_WORD_LEN; i++) state[i] ^= ks[i]; for (round = 1; round < KEY_ROUNDS; round++) { /* SubBytes(state) // See Sec. 5.1.1 */ for (i = 0; i < KEY_WORD_LEN; i++) state[i] = sub_word(state[i]); /* ShiftRows(state) // See Sec. 5.1.2 */ for (i = 0; i < KEY_WORD_LEN; i++) shift_word((uint8_t *)state, i, i); /* MixColumns(state) // See Sec. 5.1.3 */ for (i = 0; i < KEY_WORD_LEN; i++) mix_columns((uint8_t *)&state[i]); /* AddRoundKey(state, w[round*Nb, (round+1)*Nb-1]) */ for (i = 0; i < KEY_WORD_LEN; i++) state[i] ^= ks[round * 4 + i]; } /* SubBytes(state) */ for (i = 0; i < KEY_WORD_LEN; i++) state[i] = sub_word(state[i]); /* ShiftRows(state) */ for (i = 0; i < KEY_WORD_LEN; i++) shift_word((uint8_t *)state, i, i); /* AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1]) */ for (i = 0; i < KEY_WORD_LEN; i++) state[i] ^= ks[KEY_ROUNDS * 4 + i]; memcpy(out, state, KEY_WORD_LEN * sizeof(uint32_t)); } void roc_aes_xcbc_key_derive(const uint8_t *auth_key, uint8_t *derived_key) { uint32_t aes_ks[KEY_SCHEDULE_LEN] = {0}; uint8_t k1[16] = {[0 ... 15] = 0x01}; uint8_t k2[16] = {[0 ... 15] = 0x02}; uint8_t k3[16] = {[0 ... 15] = 0x03}; aes_key_expand(auth_key, aes_ks); cipher(k1, derived_key, aes_ks); derived_key += sizeof(k1); cipher(k2, derived_key, aes_ks); derived_key += sizeof(k2); cipher(k3, derived_key, aes_ks); }