/* SPDX-License-Identifier: BSD-3-Clause * Copyright 2014-2020 Mellanox Technologies, Ltd */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "testpmd.h" static uint32_t cfg_ip_src = RTE_IPV4(10, 254, 0, 0); static uint32_t cfg_ip_dst = RTE_IPV4(10, 253, 0, 0); static uint16_t cfg_udp_src = 1000; static uint16_t cfg_udp_dst = 1001; static struct rte_ether_addr cfg_ether_src = {{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x00 }}; static struct rte_ether_addr cfg_ether_dst = {{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x01 }}; #define IP_DEFTTL 64 /* from RFC 1340. */ RTE_DEFINE_PER_LCORE(int, _next_flow); /* * Multi-flow generation mode. * * We originate a bunch of flows (varying destination IP addresses), and * terminate receive traffic. Received traffic is simply discarded, but we * still do so in order to maintain traffic statistics. */ static void pkt_burst_flow_gen(struct fwd_stream *fs) { unsigned pkt_size = tx_pkt_length - 4; /* Adjust FCS */ struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; struct rte_mempool *mbp; struct rte_mbuf *pkt = NULL; struct rte_ether_hdr *eth_hdr; struct rte_ipv4_hdr *ip_hdr; struct rte_udp_hdr *udp_hdr; uint16_t vlan_tci, vlan_tci_outer; uint64_t ol_flags = 0; uint16_t nb_rx; uint16_t nb_tx; uint16_t nb_dropped; uint16_t nb_pkt; uint16_t nb_clones = nb_pkt_flowgen_clones; uint16_t i; uint32_t retry; uint64_t tx_offloads; uint64_t start_tsc = 0; int next_flow = RTE_PER_LCORE(_next_flow); get_start_cycles(&start_tsc); /* Receive a burst of packets and discard them. */ nb_rx = rte_eth_rx_burst(fs->rx_port, fs->rx_queue, pkts_burst, nb_pkt_per_burst); inc_rx_burst_stats(fs, nb_rx); fs->rx_packets += nb_rx; for (i = 0; i < nb_rx; i++) rte_pktmbuf_free(pkts_burst[i]); mbp = current_fwd_lcore()->mbp; vlan_tci = ports[fs->tx_port].tx_vlan_id; vlan_tci_outer = ports[fs->tx_port].tx_vlan_id_outer; tx_offloads = ports[fs->tx_port].dev_conf.txmode.offloads; if (tx_offloads & RTE_ETH_TX_OFFLOAD_VLAN_INSERT) ol_flags |= RTE_MBUF_F_TX_VLAN; if (tx_offloads & RTE_ETH_TX_OFFLOAD_QINQ_INSERT) ol_flags |= RTE_MBUF_F_TX_QINQ; if (tx_offloads & RTE_ETH_TX_OFFLOAD_MACSEC_INSERT) ol_flags |= RTE_MBUF_F_TX_MACSEC; for (nb_pkt = 0; nb_pkt < nb_pkt_per_burst; nb_pkt++) { if (!nb_pkt || !nb_clones) { nb_clones = nb_pkt_flowgen_clones; /* Logic limitation */ if (nb_clones > nb_pkt_per_burst) nb_clones = nb_pkt_per_burst; pkt = rte_mbuf_raw_alloc(mbp); if (!pkt) break; pkt->data_len = pkt_size; pkt->next = NULL; /* Initialize Ethernet header. */ eth_hdr = rte_pktmbuf_mtod(pkt, struct rte_ether_hdr *); rte_ether_addr_copy(&cfg_ether_dst, ð_hdr->dst_addr); rte_ether_addr_copy(&cfg_ether_src, ð_hdr->src_addr); eth_hdr->ether_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4); /* Initialize IP header. */ ip_hdr = (struct rte_ipv4_hdr *)(eth_hdr + 1); memset(ip_hdr, 0, sizeof(*ip_hdr)); ip_hdr->version_ihl = RTE_IPV4_VHL_DEF; ip_hdr->type_of_service = 0; ip_hdr->fragment_offset = 0; ip_hdr->time_to_live = IP_DEFTTL; ip_hdr->next_proto_id = IPPROTO_UDP; ip_hdr->packet_id = 0; ip_hdr->src_addr = rte_cpu_to_be_32(cfg_ip_src); ip_hdr->dst_addr = rte_cpu_to_be_32(cfg_ip_dst + next_flow); ip_hdr->total_length = RTE_CPU_TO_BE_16(pkt_size - sizeof(*eth_hdr)); ip_hdr->hdr_checksum = rte_ipv4_cksum(ip_hdr); /* Initialize UDP header. */ udp_hdr = (struct rte_udp_hdr *)(ip_hdr + 1); udp_hdr->src_port = rte_cpu_to_be_16(cfg_udp_src); udp_hdr->dst_port = rte_cpu_to_be_16(cfg_udp_dst); udp_hdr->dgram_cksum = 0; /* No UDP checksum. */ udp_hdr->dgram_len = RTE_CPU_TO_BE_16(pkt_size - sizeof(*eth_hdr) - sizeof(*ip_hdr)); pkt->nb_segs = 1; pkt->pkt_len = pkt_size; pkt->ol_flags &= RTE_MBUF_F_EXTERNAL; pkt->ol_flags |= ol_flags; pkt->vlan_tci = vlan_tci; pkt->vlan_tci_outer = vlan_tci_outer; pkt->l2_len = sizeof(struct rte_ether_hdr); pkt->l3_len = sizeof(struct rte_ipv4_hdr); } else { nb_clones--; rte_mbuf_refcnt_update(pkt, 1); } pkts_burst[nb_pkt] = pkt; if (++next_flow >= nb_flows_flowgen) next_flow = 0; } nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue, pkts_burst, nb_pkt); /* * Retry if necessary */ if (unlikely(nb_tx < nb_pkt) && fs->retry_enabled) { retry = 0; while (nb_tx < nb_pkt && retry++ < burst_tx_retry_num) { rte_delay_us(burst_tx_delay_time); nb_tx += rte_eth_tx_burst(fs->tx_port, fs->tx_queue, &pkts_burst[nb_tx], nb_pkt - nb_tx); } } fs->tx_packets += nb_tx; inc_tx_burst_stats(fs, nb_tx); nb_dropped = nb_pkt - nb_tx; if (unlikely(nb_dropped > 0)) { /* Back out the flow counter. */ next_flow -= nb_dropped; while (next_flow < 0) next_flow += nb_flows_flowgen; fs->fwd_dropped += nb_dropped; do { rte_pktmbuf_free(pkts_burst[nb_tx]); } while (++nb_tx < nb_pkt); } RTE_PER_LCORE(_next_flow) = next_flow; get_end_cycles(fs, start_tsc); } static int flowgen_begin(portid_t pi) { printf(" number of flows for port %u: %d\n", pi, nb_flows_flowgen); return 0; } static void flowgen_stream_init(struct fwd_stream *fs) { bool rx_stopped, tx_stopped; rx_stopped = ports[fs->rx_port].rxq[fs->rx_queue].state == RTE_ETH_QUEUE_STATE_STOPPED; tx_stopped = ports[fs->tx_port].txq[fs->tx_queue].state == RTE_ETH_QUEUE_STATE_STOPPED; fs->disabled = rx_stopped || tx_stopped; } struct fwd_engine flow_gen_engine = { .fwd_mode_name = "flowgen", .port_fwd_begin = flowgen_begin, .port_fwd_end = NULL, .stream_init = flowgen_stream_init, .packet_fwd = pkt_burst_flow_gen, };