/* SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 2008-2018 Solarflare Communications Inc. * All rights reserved. */ #include "efx.h" #include "efx_impl.h" #if EFSYS_OPT_MCDI /* * There are three versions of the MCDI interface: * - MCDIv0: Siena BootROM. Transport uses MCDIv1 headers. * - MCDIv1: Siena firmware and Huntington BootROM. * - MCDIv2: EF10 firmware (Huntington/Medford) and Medford BootROM. * Transport uses MCDIv2 headers. * * MCDIv2 Header NOT_EPOCH flag * ---------------------------- * A new epoch begins at initial startup or after an MC reboot, and defines when * the MC should reject stale MCDI requests. * * The first MCDI request sent by the host should contain NOT_EPOCH=0, and all * subsequent requests (until the next MC reboot) should contain NOT_EPOCH=1. * * After rebooting the MC will fail all requests with NOT_EPOCH=1 by writing a * response with ERROR=1 and DATALEN=0 until a request is seen with NOT_EPOCH=0. */ #if EFSYS_OPT_SIENA static const efx_mcdi_ops_t __efx_mcdi_siena_ops = { siena_mcdi_init, /* emco_init */ siena_mcdi_send_request, /* emco_send_request */ siena_mcdi_poll_reboot, /* emco_poll_reboot */ siena_mcdi_poll_response, /* emco_poll_response */ siena_mcdi_read_response, /* emco_read_response */ siena_mcdi_fini, /* emco_fini */ siena_mcdi_feature_supported, /* emco_feature_supported */ siena_mcdi_get_timeout, /* emco_get_timeout */ }; #endif /* EFSYS_OPT_SIENA */ #if EFX_OPTS_EF10() static const efx_mcdi_ops_t __efx_mcdi_ef10_ops = { ef10_mcdi_init, /* emco_init */ ef10_mcdi_send_request, /* emco_send_request */ ef10_mcdi_poll_reboot, /* emco_poll_reboot */ ef10_mcdi_poll_response, /* emco_poll_response */ ef10_mcdi_read_response, /* emco_read_response */ ef10_mcdi_fini, /* emco_fini */ ef10_mcdi_feature_supported, /* emco_feature_supported */ ef10_mcdi_get_timeout, /* emco_get_timeout */ }; #endif /* EFX_OPTS_EF10() */ __checkReturn efx_rc_t efx_mcdi_init( __in efx_nic_t *enp, __in const efx_mcdi_transport_t *emtp) { const efx_mcdi_ops_t *emcop; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, ==, 0); switch (enp->en_family) { #if EFSYS_OPT_SIENA case EFX_FAMILY_SIENA: emcop = &__efx_mcdi_siena_ops; break; #endif /* EFSYS_OPT_SIENA */ #if EFSYS_OPT_HUNTINGTON case EFX_FAMILY_HUNTINGTON: emcop = &__efx_mcdi_ef10_ops; break; #endif /* EFSYS_OPT_HUNTINGTON */ #if EFSYS_OPT_MEDFORD case EFX_FAMILY_MEDFORD: emcop = &__efx_mcdi_ef10_ops; break; #endif /* EFSYS_OPT_MEDFORD */ #if EFSYS_OPT_MEDFORD2 case EFX_FAMILY_MEDFORD2: emcop = &__efx_mcdi_ef10_ops; break; #endif /* EFSYS_OPT_MEDFORD2 */ default: EFSYS_ASSERT(0); rc = ENOTSUP; goto fail1; } if (enp->en_features & EFX_FEATURE_MCDI_DMA) { /* MCDI requires a DMA buffer in host memory */ if ((emtp == NULL) || (emtp->emt_dma_mem) == NULL) { rc = EINVAL; goto fail2; } } enp->en_mcdi.em_emtp = emtp; if (emcop != NULL && emcop->emco_init != NULL) { if ((rc = emcop->emco_init(enp, emtp)) != 0) goto fail3; } enp->en_mcdi.em_emcop = emcop; enp->en_mod_flags |= EFX_MOD_MCDI; return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); enp->en_mcdi.em_emcop = NULL; enp->en_mcdi.em_emtp = NULL; enp->en_mod_flags &= ~EFX_MOD_MCDI; return (rc); } void efx_mcdi_fini( __in efx_nic_t *enp) { efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, ==, EFX_MOD_MCDI); if (emcop != NULL && emcop->emco_fini != NULL) emcop->emco_fini(enp); emip->emi_port = 0; emip->emi_aborted = 0; enp->en_mcdi.em_emcop = NULL; enp->en_mod_flags &= ~EFX_MOD_MCDI; } void efx_mcdi_new_epoch( __in efx_nic_t *enp) { efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); efsys_lock_state_t state; /* Start a new epoch (allow fresh MCDI requests to succeed) */ EFSYS_LOCK(enp->en_eslp, state); emip->emi_new_epoch = B_TRUE; EFSYS_UNLOCK(enp->en_eslp, state); } static void efx_mcdi_send_request( __in efx_nic_t *enp, __in void *hdrp, __in size_t hdr_len, __in void *sdup, __in size_t sdu_len) { const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop; emcop->emco_send_request(enp, hdrp, hdr_len, sdup, sdu_len); } static efx_rc_t efx_mcdi_poll_reboot( __in efx_nic_t *enp) { const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop; efx_rc_t rc; rc = emcop->emco_poll_reboot(enp); return (rc); } static boolean_t efx_mcdi_poll_response( __in efx_nic_t *enp) { const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop; boolean_t available; available = emcop->emco_poll_response(enp); return (available); } static void efx_mcdi_read_response( __in efx_nic_t *enp, __out void *bufferp, __in size_t offset, __in size_t length) { const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop; emcop->emco_read_response(enp, bufferp, offset, length); } void efx_mcdi_request_start( __in efx_nic_t *enp, __in efx_mcdi_req_t *emrp, __in boolean_t ev_cpl) { #if EFSYS_OPT_MCDI_LOGGING const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp; #endif efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); efx_dword_t hdr[2]; size_t hdr_len; unsigned int max_version; unsigned int seq; unsigned int xflags; boolean_t new_epoch; efsys_lock_state_t state; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI); EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI); /* * efx_mcdi_request_start() is naturally serialised against both * efx_mcdi_request_poll() and efx_mcdi_ev_cpl()/efx_mcdi_ev_death(), * by virtue of there only being one outstanding MCDI request. * Unfortunately, upper layers may also call efx_mcdi_request_abort() * at any time, to timeout a pending mcdi request, That request may * then subsequently complete, meaning efx_mcdi_ev_cpl() or * efx_mcdi_ev_death() may end up running in parallel with * efx_mcdi_request_start(). This race is handled by ensuring that * %emi_pending_req, %emi_ev_cpl and %emi_seq are protected by the * en_eslp lock. */ EFSYS_LOCK(enp->en_eslp, state); EFSYS_ASSERT(emip->emi_pending_req == NULL); emip->emi_pending_req = emrp; emip->emi_ev_cpl = ev_cpl; emip->emi_poll_cnt = 0; seq = emip->emi_seq++ & EFX_MASK32(MCDI_HEADER_SEQ); new_epoch = emip->emi_new_epoch; max_version = emip->emi_max_version; EFSYS_UNLOCK(enp->en_eslp, state); xflags = 0; if (ev_cpl) xflags |= MCDI_HEADER_XFLAGS_EVREQ; /* * Huntington firmware supports MCDIv2, but the Huntington BootROM only * supports MCDIv1. Use MCDIv1 headers for MCDIv1 commands where * possible to support this. */ if ((max_version >= 2) && ((emrp->emr_cmd > MC_CMD_CMD_SPACE_ESCAPE_7) || (emrp->emr_in_length > MCDI_CTL_SDU_LEN_MAX_V1) || (emrp->emr_out_length > MCDI_CTL_SDU_LEN_MAX_V1))) { /* Construct MCDI v2 header */ hdr_len = sizeof (hdr); EFX_POPULATE_DWORD_8(hdr[0], MCDI_HEADER_CODE, MC_CMD_V2_EXTN, MCDI_HEADER_RESYNC, 1, MCDI_HEADER_DATALEN, 0, MCDI_HEADER_SEQ, seq, MCDI_HEADER_NOT_EPOCH, new_epoch ? 0 : 1, MCDI_HEADER_ERROR, 0, MCDI_HEADER_RESPONSE, 0, MCDI_HEADER_XFLAGS, xflags); EFX_POPULATE_DWORD_2(hdr[1], MC_CMD_V2_EXTN_IN_EXTENDED_CMD, emrp->emr_cmd, MC_CMD_V2_EXTN_IN_ACTUAL_LEN, emrp->emr_in_length); } else { /* Construct MCDI v1 header */ hdr_len = sizeof (hdr[0]); EFX_POPULATE_DWORD_8(hdr[0], MCDI_HEADER_CODE, emrp->emr_cmd, MCDI_HEADER_RESYNC, 1, MCDI_HEADER_DATALEN, emrp->emr_in_length, MCDI_HEADER_SEQ, seq, MCDI_HEADER_NOT_EPOCH, new_epoch ? 0 : 1, MCDI_HEADER_ERROR, 0, MCDI_HEADER_RESPONSE, 0, MCDI_HEADER_XFLAGS, xflags); } #if EFSYS_OPT_MCDI_LOGGING if (emtp->emt_logger != NULL) { emtp->emt_logger(emtp->emt_context, EFX_LOG_MCDI_REQUEST, &hdr[0], hdr_len, emrp->emr_in_buf, emrp->emr_in_length); } #endif /* EFSYS_OPT_MCDI_LOGGING */ efx_mcdi_send_request(enp, &hdr[0], hdr_len, emrp->emr_in_buf, emrp->emr_in_length); } static void efx_mcdi_read_response_header( __in efx_nic_t *enp, __inout efx_mcdi_req_t *emrp) { #if EFSYS_OPT_MCDI_LOGGING const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp; #endif /* EFSYS_OPT_MCDI_LOGGING */ efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); efx_dword_t hdr[2]; unsigned int hdr_len; unsigned int data_len; unsigned int seq; unsigned int cmd; unsigned int error; efx_rc_t rc; EFSYS_ASSERT(emrp != NULL); efx_mcdi_read_response(enp, &hdr[0], 0, sizeof (hdr[0])); hdr_len = sizeof (hdr[0]); cmd = EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_CODE); seq = EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_SEQ); error = EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_ERROR); if (cmd != MC_CMD_V2_EXTN) { data_len = EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_DATALEN); } else { efx_mcdi_read_response(enp, &hdr[1], hdr_len, sizeof (hdr[1])); hdr_len += sizeof (hdr[1]); cmd = EFX_DWORD_FIELD(hdr[1], MC_CMD_V2_EXTN_IN_EXTENDED_CMD); data_len = EFX_DWORD_FIELD(hdr[1], MC_CMD_V2_EXTN_IN_ACTUAL_LEN); } if (error && (data_len == 0)) { /* The MC has rebooted since the request was sent. */ EFSYS_SPIN(EFX_MCDI_STATUS_SLEEP_US); efx_mcdi_poll_reboot(enp); rc = EIO; goto fail1; } #if EFSYS_OPT_MCDI_PROXY_AUTH_SERVER if (((cmd != emrp->emr_cmd) && (emrp->emr_cmd != MC_CMD_PROXY_CMD)) || #else if ((cmd != emrp->emr_cmd) || #endif (seq != ((emip->emi_seq - 1) & EFX_MASK32(MCDI_HEADER_SEQ)))) { /* Response is for a different request */ rc = EIO; goto fail2; } if (error) { efx_dword_t err[2]; unsigned int err_len = MIN(data_len, sizeof (err)); int err_code = MC_CMD_ERR_EPROTO; int err_arg = 0; /* Read error code (and arg num for MCDI v2 commands) */ efx_mcdi_read_response(enp, &err, hdr_len, err_len); if (err_len >= (MC_CMD_ERR_CODE_OFST + sizeof (efx_dword_t))) err_code = EFX_DWORD_FIELD(err[0], EFX_DWORD_0); #ifdef WITH_MCDI_V2 if (err_len >= (MC_CMD_ERR_ARG_OFST + sizeof (efx_dword_t))) err_arg = EFX_DWORD_FIELD(err[1], EFX_DWORD_0); #endif emrp->emr_err_code = err_code; emrp->emr_err_arg = err_arg; #if EFSYS_OPT_MCDI_PROXY_AUTH if ((err_code == MC_CMD_ERR_PROXY_PENDING) && (err_len == sizeof (err))) { /* * The MCDI request would normally fail with EPERM, but * firmware has forwarded it to an authorization agent * attached to a privileged PF. * * Save the authorization request handle. The client * must wait for a PROXY_RESPONSE event, or timeout. */ emrp->emr_proxy_handle = err_arg; } #endif /* EFSYS_OPT_MCDI_PROXY_AUTH */ #if EFSYS_OPT_MCDI_LOGGING if (emtp->emt_logger != NULL) { emtp->emt_logger(emtp->emt_context, EFX_LOG_MCDI_RESPONSE, &hdr[0], hdr_len, &err[0], err_len); } #endif /* EFSYS_OPT_MCDI_LOGGING */ if (!emrp->emr_quiet) { EFSYS_PROBE3(mcdi_err_arg, int, emrp->emr_cmd, int, err_code, int, err_arg); } rc = efx_mcdi_request_errcode(err_code); goto fail3; } emrp->emr_rc = 0; emrp->emr_out_length_used = data_len; #if EFSYS_OPT_MCDI_PROXY_AUTH emrp->emr_proxy_handle = 0; #endif /* EFSYS_OPT_MCDI_PROXY_AUTH */ return; fail3: fail2: fail1: emrp->emr_rc = rc; emrp->emr_out_length_used = 0; } static void efx_mcdi_finish_response( __in efx_nic_t *enp, __in efx_mcdi_req_t *emrp) { #if EFSYS_OPT_MCDI_LOGGING const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp; #endif /* EFSYS_OPT_MCDI_LOGGING */ efx_dword_t hdr[2]; unsigned int hdr_len; size_t bytes; unsigned int resp_off; #if EFSYS_OPT_MCDI_PROXY_AUTH_SERVER unsigned int resp_cmd; boolean_t proxied_cmd_resp = B_FALSE; #endif /* EFSYS_OPT_MCDI_PROXY_AUTH_SERVER */ if (emrp->emr_out_buf == NULL) return; /* Read the command header to detect MCDI response format */ hdr_len = sizeof (hdr[0]); efx_mcdi_read_response(enp, &hdr[0], 0, hdr_len); if (EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_CODE) == MC_CMD_V2_EXTN) { /* * Read the actual payload length. The length given in the event * is only correct for responses with the V1 format. */ efx_mcdi_read_response(enp, &hdr[1], hdr_len, sizeof (hdr[1])); hdr_len += sizeof (hdr[1]); resp_off = hdr_len; emrp->emr_out_length_used = EFX_DWORD_FIELD(hdr[1], MC_CMD_V2_EXTN_IN_ACTUAL_LEN); #if EFSYS_OPT_MCDI_PROXY_AUTH_SERVER /* * A proxy MCDI command is executed by PF on behalf of * one of its VFs. The command to be proxied follows * immediately afterward in the host buffer. * PROXY_CMD inner call complete response should be copied to * output buffer so that it can be returned to the requesting * function in MC_CMD_PROXY_COMPLETE payload. */ resp_cmd = EFX_DWORD_FIELD(hdr[1], MC_CMD_V2_EXTN_IN_EXTENDED_CMD); proxied_cmd_resp = ((emrp->emr_cmd == MC_CMD_PROXY_CMD) && (resp_cmd != MC_CMD_PROXY_CMD)); if (proxied_cmd_resp) { resp_off = 0; emrp->emr_out_length_used += hdr_len; } #endif /* EFSYS_OPT_MCDI_PROXY_AUTH_SERVER */ } else { resp_off = hdr_len; } /* Copy payload out into caller supplied buffer */ bytes = MIN(emrp->emr_out_length_used, emrp->emr_out_length); efx_mcdi_read_response(enp, emrp->emr_out_buf, resp_off, bytes); #if EFSYS_OPT_MCDI_LOGGING if (emtp->emt_logger != NULL) { emtp->emt_logger(emtp->emt_context, EFX_LOG_MCDI_RESPONSE, &hdr[0], hdr_len, emrp->emr_out_buf, bytes); } #endif /* EFSYS_OPT_MCDI_LOGGING */ } __checkReturn boolean_t efx_mcdi_request_poll( __in efx_nic_t *enp) { efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); efx_mcdi_req_t *emrp; efsys_lock_state_t state; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI); EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI); /* Serialise against post-watchdog efx_mcdi_ev* */ EFSYS_LOCK(enp->en_eslp, state); EFSYS_ASSERT(emip->emi_pending_req != NULL); EFSYS_ASSERT(!emip->emi_ev_cpl); emrp = emip->emi_pending_req; /* Check if hardware is unavailable */ if (efx_nic_hw_unavailable(enp)) { EFSYS_UNLOCK(enp->en_eslp, state); return (B_FALSE); } /* Check for reboot atomically w.r.t efx_mcdi_request_start */ if (emip->emi_poll_cnt++ == 0) { if ((rc = efx_mcdi_poll_reboot(enp)) != 0) { emip->emi_pending_req = NULL; EFSYS_UNLOCK(enp->en_eslp, state); /* Reboot/Assertion */ if (rc == EIO || rc == EINTR) efx_mcdi_raise_exception(enp, emrp, rc); goto fail1; } } /* Check if a response is available */ if (efx_mcdi_poll_response(enp) == B_FALSE) { EFSYS_UNLOCK(enp->en_eslp, state); return (B_FALSE); } /* Read the response header */ efx_mcdi_read_response_header(enp, emrp); /* Request complete */ emip->emi_pending_req = NULL; /* Ensure stale MCDI requests fail after an MC reboot. */ emip->emi_new_epoch = B_FALSE; EFSYS_UNLOCK(enp->en_eslp, state); if ((rc = emrp->emr_rc) != 0) goto fail2; efx_mcdi_finish_response(enp, emrp); return (B_TRUE); fail2: if (!emrp->emr_quiet) EFSYS_PROBE(fail2); fail1: if (!emrp->emr_quiet) EFSYS_PROBE1(fail1, efx_rc_t, rc); return (B_TRUE); } __checkReturn boolean_t efx_mcdi_request_abort( __in efx_nic_t *enp) { efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); efx_mcdi_req_t *emrp; boolean_t aborted; efsys_lock_state_t state; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI); EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI); /* * efx_mcdi_ev_* may have already completed this event, and be * spinning/blocked on the upper layer lock. So it *is* legitimate * to for emi_pending_req to be NULL. If there is a pending event * completed request, then provide a "credit" to allow * efx_mcdi_ev_cpl() to accept a single spurious completion. */ EFSYS_LOCK(enp->en_eslp, state); emrp = emip->emi_pending_req; aborted = (emrp != NULL); if (aborted) { emip->emi_pending_req = NULL; /* Error the request */ emrp->emr_out_length_used = 0; emrp->emr_rc = ETIMEDOUT; /* Provide a credit for seqno/emr_pending_req mismatches */ if (emip->emi_ev_cpl) ++emip->emi_aborted; /* * The upper layer has called us, so we don't * need to complete the request. */ } EFSYS_UNLOCK(enp->en_eslp, state); return (aborted); } void efx_mcdi_get_timeout( __in efx_nic_t *enp, __in efx_mcdi_req_t *emrp, __out uint32_t *timeoutp) { const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop; emcop->emco_get_timeout(enp, emrp, timeoutp); } __checkReturn efx_rc_t efx_mcdi_request_errcode( __in unsigned int err) { switch (err) { /* MCDI v1 */ case MC_CMD_ERR_EPERM: return (EACCES); case MC_CMD_ERR_ENOENT: return (ENOENT); case MC_CMD_ERR_EINTR: return (EINTR); case MC_CMD_ERR_EACCES: return (EACCES); case MC_CMD_ERR_EBUSY: return (EBUSY); case MC_CMD_ERR_EINVAL: return (EINVAL); case MC_CMD_ERR_EDEADLK: return (EDEADLK); case MC_CMD_ERR_ENOSYS: return (ENOTSUP); case MC_CMD_ERR_ETIME: return (ETIMEDOUT); case MC_CMD_ERR_ENOTSUP: return (ENOTSUP); case MC_CMD_ERR_EALREADY: return (EALREADY); /* MCDI v2 */ case MC_CMD_ERR_EEXIST: return (EEXIST); #ifdef MC_CMD_ERR_EAGAIN case MC_CMD_ERR_EAGAIN: return (EAGAIN); #endif #ifdef MC_CMD_ERR_ENOSPC case MC_CMD_ERR_ENOSPC: return (ENOSPC); #endif case MC_CMD_ERR_ERANGE: return (ERANGE); case MC_CMD_ERR_ALLOC_FAIL: return (ENOMEM); case MC_CMD_ERR_NO_VADAPTOR: return (ENOENT); case MC_CMD_ERR_NO_EVB_PORT: return (ENOENT); case MC_CMD_ERR_NO_VSWITCH: return (ENODEV); case MC_CMD_ERR_VLAN_LIMIT: return (EINVAL); case MC_CMD_ERR_BAD_PCI_FUNC: return (ENODEV); case MC_CMD_ERR_BAD_VLAN_MODE: return (EINVAL); case MC_CMD_ERR_BAD_VSWITCH_TYPE: return (EINVAL); case MC_CMD_ERR_BAD_VPORT_TYPE: return (EINVAL); case MC_CMD_ERR_MAC_EXIST: return (EEXIST); case MC_CMD_ERR_PROXY_PENDING: return (EAGAIN); default: EFSYS_PROBE1(mc_pcol_error, int, err); return (EIO); } } void efx_mcdi_raise_exception( __in efx_nic_t *enp, __in_opt efx_mcdi_req_t *emrp, __in int rc) { const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp; efx_mcdi_exception_t exception; /* Reboot or Assertion failure only */ EFSYS_ASSERT(rc == EIO || rc == EINTR); /* * If MC_CMD_REBOOT causes a reboot (dependent on parameters), * then the EIO is not worthy of an exception. */ if (emrp != NULL && emrp->emr_cmd == MC_CMD_REBOOT && rc == EIO) return; exception = (rc == EIO) ? EFX_MCDI_EXCEPTION_MC_REBOOT : EFX_MCDI_EXCEPTION_MC_BADASSERT; emtp->emt_exception(emtp->emt_context, exception); } void efx_mcdi_execute( __in efx_nic_t *enp, __inout efx_mcdi_req_t *emrp) { const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp; EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI); EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI); emrp->emr_quiet = B_FALSE; emtp->emt_execute(emtp->emt_context, emrp); } void efx_mcdi_execute_quiet( __in efx_nic_t *enp, __inout efx_mcdi_req_t *emrp) { const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp; EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI); EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI); emrp->emr_quiet = B_TRUE; emtp->emt_execute(emtp->emt_context, emrp); } void efx_mcdi_ev_cpl( __in efx_nic_t *enp, __in unsigned int seq, __in unsigned int outlen, __in int errcode) { efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp; efx_mcdi_req_t *emrp; efsys_lock_state_t state; EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI); EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI); /* * Serialise against efx_mcdi_request_poll()/efx_mcdi_request_start() * when we're completing an aborted request. */ EFSYS_LOCK(enp->en_eslp, state); if (emip->emi_pending_req == NULL || !emip->emi_ev_cpl || (seq != ((emip->emi_seq - 1) & EFX_MASK32(MCDI_HEADER_SEQ)))) { EFSYS_ASSERT(emip->emi_aborted > 0); if (emip->emi_aborted > 0) --emip->emi_aborted; EFSYS_UNLOCK(enp->en_eslp, state); return; } emrp = emip->emi_pending_req; emip->emi_pending_req = NULL; EFSYS_UNLOCK(enp->en_eslp, state); if (emip->emi_max_version >= 2) { /* MCDIv2 response details do not fit into an event. */ efx_mcdi_read_response_header(enp, emrp); } else { if (errcode != 0) { if (!emrp->emr_quiet) { EFSYS_PROBE2(mcdi_err, int, emrp->emr_cmd, int, errcode); } emrp->emr_out_length_used = 0; emrp->emr_rc = efx_mcdi_request_errcode(errcode); } else { emrp->emr_out_length_used = outlen; emrp->emr_rc = 0; } } if (emrp->emr_rc == 0) efx_mcdi_finish_response(enp, emrp); emtp->emt_ev_cpl(emtp->emt_context); } #if EFSYS_OPT_MCDI_PROXY_AUTH __checkReturn efx_rc_t efx_mcdi_get_proxy_handle( __in efx_nic_t *enp, __in efx_mcdi_req_t *emrp, __out uint32_t *handlep) { efx_rc_t rc; _NOTE(ARGUNUSED(enp)) /* * Return proxy handle from MCDI request that returned with error * MC_MCD_ERR_PROXY_PENDING. This handle is used to wait for a matching * PROXY_RESPONSE event. */ if ((emrp == NULL) || (handlep == NULL)) { rc = EINVAL; goto fail1; } if ((emrp->emr_rc != 0) && (emrp->emr_err_code == MC_CMD_ERR_PROXY_PENDING)) { *handlep = emrp->emr_proxy_handle; rc = 0; } else { *handlep = 0; rc = ENOENT; } return (rc); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } void efx_mcdi_ev_proxy_response( __in efx_nic_t *enp, __in unsigned int handle, __in unsigned int status) { const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp; efx_rc_t rc; /* * Handle results of an authorization request for a privileged MCDI * command. If authorization was granted then we must re-issue the * original MCDI request. If authorization failed or timed out, * then the original MCDI request should be completed with the * result code from this event. */ rc = (status == 0) ? 0 : efx_mcdi_request_errcode(status); emtp->emt_ev_proxy_response(emtp->emt_context, handle, rc); } #endif /* EFSYS_OPT_MCDI_PROXY_AUTH */ #if EFSYS_OPT_MCDI_PROXY_AUTH_SERVER void efx_mcdi_ev_proxy_request( __in efx_nic_t *enp, __in unsigned int index) { const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp; if (emtp->emt_ev_proxy_request != NULL) emtp->emt_ev_proxy_request(emtp->emt_context, index); } #endif /* EFSYS_OPT_MCDI_PROXY_AUTH_SERVER */ void efx_mcdi_ev_death( __in efx_nic_t *enp, __in int rc) { efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp; efx_mcdi_req_t *emrp = NULL; boolean_t ev_cpl; efsys_lock_state_t state; /* * The MCDI request (if there is one) has been terminated, either * by a BADASSERT or REBOOT event. * * If there is an outstanding event-completed MCDI operation, then we * will never receive the completion event (because both MCDI * completions and BADASSERT events are sent to the same evq). So * complete this MCDI op. * * This function might run in parallel with efx_mcdi_request_poll() * for poll completed mcdi requests, and also with * efx_mcdi_request_start() for post-watchdog completions. */ EFSYS_LOCK(enp->en_eslp, state); emrp = emip->emi_pending_req; ev_cpl = emip->emi_ev_cpl; if (emrp != NULL && emip->emi_ev_cpl) { emip->emi_pending_req = NULL; emrp->emr_out_length_used = 0; emrp->emr_rc = rc; ++emip->emi_aborted; } /* * Since we're running in parallel with a request, consume the * status word before dropping the lock. */ if (rc == EIO || rc == EINTR) { EFSYS_SPIN(EFX_MCDI_STATUS_SLEEP_US); (void) efx_mcdi_poll_reboot(enp); emip->emi_new_epoch = B_TRUE; } EFSYS_UNLOCK(enp->en_eslp, state); efx_mcdi_raise_exception(enp, emrp, rc); if (emrp != NULL && ev_cpl) emtp->emt_ev_cpl(emtp->emt_context); } __checkReturn efx_rc_t efx_mcdi_version( __in efx_nic_t *enp, __out_ecount_opt(4) uint16_t versionp[4], __out_opt uint32_t *buildp, __out_opt efx_mcdi_boot_t *statusp) { efx_mcdi_req_t req; EFX_MCDI_DECLARE_BUF(payload, MAX(MC_CMD_GET_VERSION_IN_LEN, MC_CMD_GET_BOOT_STATUS_IN_LEN), MAX(MC_CMD_GET_VERSION_OUT_LEN, MC_CMD_GET_BOOT_STATUS_OUT_LEN)); efx_word_t *ver_words; uint16_t version[4]; uint32_t build; efx_mcdi_boot_t status; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI); req.emr_cmd = MC_CMD_GET_VERSION; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_VERSION_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_VERSION_OUT_LEN; efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } /* bootrom support */ if (req.emr_out_length_used == MC_CMD_GET_VERSION_V0_OUT_LEN) { version[0] = version[1] = version[2] = version[3] = 0; build = MCDI_OUT_DWORD(req, GET_VERSION_OUT_FIRMWARE); goto version; } if (req.emr_out_length_used < MC_CMD_GET_VERSION_OUT_LEN) { rc = EMSGSIZE; goto fail2; } ver_words = MCDI_OUT2(req, efx_word_t, GET_VERSION_OUT_VERSION); version[0] = EFX_WORD_FIELD(ver_words[0], EFX_WORD_0); version[1] = EFX_WORD_FIELD(ver_words[1], EFX_WORD_0); version[2] = EFX_WORD_FIELD(ver_words[2], EFX_WORD_0); version[3] = EFX_WORD_FIELD(ver_words[3], EFX_WORD_0); build = MCDI_OUT_DWORD(req, GET_VERSION_OUT_FIRMWARE); version: /* The bootrom doesn't understand BOOT_STATUS */ if (MC_FW_VERSION_IS_BOOTLOADER(build)) { status = EFX_MCDI_BOOT_ROM; goto out; } (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_GET_BOOT_STATUS; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_BOOT_STATUS_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_BOOT_STATUS_OUT_LEN; efx_mcdi_execute_quiet(enp, &req); if (req.emr_rc == EACCES) { /* Unprivileged functions cannot access BOOT_STATUS */ status = EFX_MCDI_BOOT_PRIMARY; version[0] = version[1] = version[2] = version[3] = 0; build = 0; goto out; } if (req.emr_rc != 0) { rc = req.emr_rc; goto fail3; } if (req.emr_out_length_used < MC_CMD_GET_BOOT_STATUS_OUT_LEN) { rc = EMSGSIZE; goto fail4; } if (MCDI_OUT_DWORD_FIELD(req, GET_BOOT_STATUS_OUT_FLAGS, GET_BOOT_STATUS_OUT_FLAGS_PRIMARY)) status = EFX_MCDI_BOOT_PRIMARY; else status = EFX_MCDI_BOOT_SECONDARY; out: if (versionp != NULL) memcpy(versionp, version, sizeof (version)); if (buildp != NULL) *buildp = build; if (statusp != NULL) *statusp = status; return (0); fail4: EFSYS_PROBE(fail4); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_get_capabilities( __in efx_nic_t *enp, __out_opt uint32_t *flagsp, __out_opt uint16_t *rx_dpcpu_fw_idp, __out_opt uint16_t *tx_dpcpu_fw_idp, __out_opt uint32_t *flags2p, __out_opt uint32_t *tso2ncp) { efx_mcdi_req_t req; EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_CAPABILITIES_IN_LEN, MC_CMD_GET_CAPABILITIES_V2_OUT_LEN); boolean_t v2_capable; efx_rc_t rc; req.emr_cmd = MC_CMD_GET_CAPABILITIES; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_CAPABILITIES_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_CAPABILITIES_V2_OUT_LEN; efx_mcdi_execute_quiet(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_GET_CAPABILITIES_OUT_LEN) { rc = EMSGSIZE; goto fail2; } if (flagsp != NULL) *flagsp = MCDI_OUT_DWORD(req, GET_CAPABILITIES_OUT_FLAGS1); if (rx_dpcpu_fw_idp != NULL) *rx_dpcpu_fw_idp = MCDI_OUT_WORD(req, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID); if (tx_dpcpu_fw_idp != NULL) *tx_dpcpu_fw_idp = MCDI_OUT_WORD(req, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID); if (req.emr_out_length_used < MC_CMD_GET_CAPABILITIES_V2_OUT_LEN) v2_capable = B_FALSE; else v2_capable = B_TRUE; if (flags2p != NULL) { *flags2p = (v2_capable) ? MCDI_OUT_DWORD(req, GET_CAPABILITIES_V2_OUT_FLAGS2) : 0; } if (tso2ncp != NULL) { *tso2ncp = (v2_capable) ? MCDI_OUT_WORD(req, GET_CAPABILITIES_V2_OUT_TX_TSO_V2_N_CONTEXTS) : 0; } return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t efx_mcdi_do_reboot( __in efx_nic_t *enp, __in boolean_t after_assertion) { EFX_MCDI_DECLARE_BUF(payload, MC_CMD_REBOOT_IN_LEN, MC_CMD_REBOOT_OUT_LEN); efx_mcdi_req_t req; efx_rc_t rc; /* * We could require the caller to have caused en_mod_flags=0 to * call this function. This doesn't help the other port though, * who's about to get the MC ripped out from underneath them. * Since they have to cope with the subsequent fallout of MCDI * failures, we should as well. */ EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); req.emr_cmd = MC_CMD_REBOOT; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_REBOOT_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_REBOOT_OUT_LEN; MCDI_IN_SET_DWORD(req, REBOOT_IN_FLAGS, (after_assertion ? MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION : 0)); efx_mcdi_execute_quiet(enp, &req); if (req.emr_rc == EACCES) { /* Unprivileged functions cannot reboot the MC. */ goto out; } /* A successful reboot request returns EIO. */ if (req.emr_rc != 0 && req.emr_rc != EIO) { rc = req.emr_rc; goto fail1; } out: return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_reboot( __in efx_nic_t *enp) { return (efx_mcdi_do_reboot(enp, B_FALSE)); } __checkReturn efx_rc_t efx_mcdi_exit_assertion_handler( __in efx_nic_t *enp) { return (efx_mcdi_do_reboot(enp, B_TRUE)); } __checkReturn efx_rc_t efx_mcdi_read_assertion( __in efx_nic_t *enp) { efx_mcdi_req_t req; EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_ASSERTS_IN_LEN, MC_CMD_GET_ASSERTS_OUT_LEN); const char *reason; unsigned int flags; unsigned int index; unsigned int ofst; int retry; efx_rc_t rc; /* * Before we attempt to chat to the MC, we should verify that the MC * isn't in it's assertion handler, either due to a previous reboot, * or because we're reinitializing due to an eec_exception(). * * Use GET_ASSERTS to read any assertion state that may be present. * Retry this command twice. Once because a boot-time assertion failure * might cause the 1st MCDI request to fail. And once again because * we might race with efx_mcdi_exit_assertion_handler() running on * partner port(s) on the same NIC. */ retry = 2; do { (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_GET_ASSERTS; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_ASSERTS_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_ASSERTS_OUT_LEN; MCDI_IN_SET_DWORD(req, GET_ASSERTS_IN_CLEAR, 1); efx_mcdi_execute_quiet(enp, &req); } while ((req.emr_rc == EINTR || req.emr_rc == EIO) && retry-- > 0); if (req.emr_rc != 0) { if (req.emr_rc == EACCES) { /* Unprivileged functions cannot clear assertions. */ goto out; } rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_GET_ASSERTS_OUT_LEN) { rc = EMSGSIZE; goto fail2; } /* Print out any assertion state recorded */ flags = MCDI_OUT_DWORD(req, GET_ASSERTS_OUT_GLOBAL_FLAGS); if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS) return (0); reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL) ? "system-level assertion" : (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL) ? "thread-level assertion" : (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED) ? "watchdog reset" : (flags == MC_CMD_GET_ASSERTS_FLAGS_ADDR_TRAP) ? "illegal address trap" : "unknown assertion"; EFSYS_PROBE3(mcpu_assertion, const char *, reason, unsigned int, MCDI_OUT_DWORD(req, GET_ASSERTS_OUT_SAVED_PC_OFFS), unsigned int, MCDI_OUT_DWORD(req, GET_ASSERTS_OUT_THREAD_OFFS)); /* Print out the registers (r1 ... r31) */ ofst = MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_OFST; for (index = 1; index < 1 + MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM; index++) { EFSYS_PROBE2(mcpu_register, unsigned int, index, unsigned int, EFX_DWORD_FIELD(*MCDI_OUT(req, efx_dword_t, ofst), EFX_DWORD_0)); ofst += sizeof (efx_dword_t); } EFSYS_ASSERT(ofst <= MC_CMD_GET_ASSERTS_OUT_LEN); out: return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } /* * Internal routines for for specific MCDI requests. */ __checkReturn efx_rc_t efx_mcdi_drv_attach( __in efx_nic_t *enp, __in boolean_t attach) { efx_mcdi_req_t req; EFX_MCDI_DECLARE_BUF(payload, MC_CMD_DRV_ATTACH_IN_V2_LEN, MC_CMD_DRV_ATTACH_EXT_OUT_LEN); efx_rc_t rc; req.emr_cmd = MC_CMD_DRV_ATTACH; req.emr_in_buf = payload; if (enp->en_drv_version[0] == '\0') { req.emr_in_length = MC_CMD_DRV_ATTACH_IN_LEN; } else { req.emr_in_length = MC_CMD_DRV_ATTACH_IN_V2_LEN; } req.emr_out_buf = payload; req.emr_out_length = MC_CMD_DRV_ATTACH_EXT_OUT_LEN; /* * Typically, client drivers use DONT_CARE for the datapath firmware * type to ensure that the driver can attach to an unprivileged * function. The datapath firmware type to use is controlled by the * 'sfboot' utility. * If a client driver wishes to attach with a specific datapath firmware * type, that can be passed in second argument of efx_nic_probe API. One * such example is the ESXi native driver that attempts attaching with * FULL_FEATURED datapath firmware type first and fall backs to * DONT_CARE datapath firmware type if MC_CMD_DRV_ATTACH fails. */ MCDI_IN_POPULATE_DWORD_2(req, DRV_ATTACH_IN_NEW_STATE, DRV_ATTACH_IN_ATTACH, attach ? 1 : 0, DRV_ATTACH_IN_SUBVARIANT_AWARE, EFSYS_OPT_FW_SUBVARIANT_AWARE); MCDI_IN_SET_DWORD(req, DRV_ATTACH_IN_UPDATE, 1); MCDI_IN_SET_DWORD(req, DRV_ATTACH_IN_FIRMWARE_ID, enp->efv); if (req.emr_in_length >= MC_CMD_DRV_ATTACH_IN_V2_LEN) { EFX_STATIC_ASSERT(sizeof (enp->en_drv_version) == MC_CMD_DRV_ATTACH_IN_V2_DRIVER_VERSION_LEN); memcpy(MCDI_IN2(req, char, DRV_ATTACH_IN_V2_DRIVER_VERSION), enp->en_drv_version, MC_CMD_DRV_ATTACH_IN_V2_DRIVER_VERSION_LEN); } efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_DRV_ATTACH_OUT_LEN) { rc = EMSGSIZE; goto fail2; } return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_get_board_cfg( __in efx_nic_t *enp, __out_opt uint32_t *board_typep, __out_opt efx_dword_t *capabilitiesp, __out_ecount_opt(6) uint8_t mac_addrp[6]) { efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); efx_mcdi_req_t req; EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_BOARD_CFG_IN_LEN, MC_CMD_GET_BOARD_CFG_OUT_LENMIN); efx_rc_t rc; req.emr_cmd = MC_CMD_GET_BOARD_CFG; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_BOARD_CFG_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_BOARD_CFG_OUT_LENMIN; efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) { rc = EMSGSIZE; goto fail2; } if (mac_addrp != NULL) { uint8_t *addrp; if (emip->emi_port == 1) { addrp = MCDI_OUT2(req, uint8_t, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0); } else if (emip->emi_port == 2) { addrp = MCDI_OUT2(req, uint8_t, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1); } else { rc = EINVAL; goto fail3; } EFX_MAC_ADDR_COPY(mac_addrp, addrp); } if (capabilitiesp != NULL) { if (emip->emi_port == 1) { *capabilitiesp = *MCDI_OUT2(req, efx_dword_t, GET_BOARD_CFG_OUT_CAPABILITIES_PORT0); } else if (emip->emi_port == 2) { *capabilitiesp = *MCDI_OUT2(req, efx_dword_t, GET_BOARD_CFG_OUT_CAPABILITIES_PORT1); } else { rc = EINVAL; goto fail4; } } if (board_typep != NULL) { *board_typep = MCDI_OUT_DWORD(req, GET_BOARD_CFG_OUT_BOARD_TYPE); } return (0); fail4: EFSYS_PROBE(fail4); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_get_resource_limits( __in efx_nic_t *enp, __out_opt uint32_t *nevqp, __out_opt uint32_t *nrxqp, __out_opt uint32_t *ntxqp) { efx_mcdi_req_t req; EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_RESOURCE_LIMITS_IN_LEN, MC_CMD_GET_RESOURCE_LIMITS_OUT_LEN); efx_rc_t rc; req.emr_cmd = MC_CMD_GET_RESOURCE_LIMITS; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_RESOURCE_LIMITS_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_RESOURCE_LIMITS_OUT_LEN; efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_GET_RESOURCE_LIMITS_OUT_LEN) { rc = EMSGSIZE; goto fail2; } if (nevqp != NULL) *nevqp = MCDI_OUT_DWORD(req, GET_RESOURCE_LIMITS_OUT_EVQ); if (nrxqp != NULL) *nrxqp = MCDI_OUT_DWORD(req, GET_RESOURCE_LIMITS_OUT_RXQ); if (ntxqp != NULL) *ntxqp = MCDI_OUT_DWORD(req, GET_RESOURCE_LIMITS_OUT_TXQ); return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_get_phy_cfg( __in efx_nic_t *enp) { efx_port_t *epp = &(enp->en_port); efx_nic_cfg_t *encp = &(enp->en_nic_cfg); efx_mcdi_req_t req; EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_PHY_CFG_IN_LEN, MC_CMD_GET_PHY_CFG_OUT_LEN); #if EFSYS_OPT_NAMES const char *namep; size_t namelen; #endif uint32_t phy_media_type; efx_rc_t rc; req.emr_cmd = MC_CMD_GET_PHY_CFG; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_PHY_CFG_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_PHY_CFG_OUT_LEN; efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_GET_PHY_CFG_OUT_LEN) { rc = EMSGSIZE; goto fail2; } encp->enc_phy_type = MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_TYPE); #if EFSYS_OPT_NAMES namep = MCDI_OUT2(req, char, GET_PHY_CFG_OUT_NAME); namelen = MIN(sizeof (encp->enc_phy_name) - 1, strnlen(namep, MC_CMD_GET_PHY_CFG_OUT_NAME_LEN)); (void) memset(encp->enc_phy_name, 0, sizeof (encp->enc_phy_name)); memcpy(encp->enc_phy_name, namep, namelen); #endif /* EFSYS_OPT_NAMES */ (void) memset(encp->enc_phy_revision, 0, sizeof (encp->enc_phy_revision)); memcpy(encp->enc_phy_revision, MCDI_OUT2(req, char, GET_PHY_CFG_OUT_REVISION), MIN(sizeof (encp->enc_phy_revision) - 1, MC_CMD_GET_PHY_CFG_OUT_REVISION_LEN)); #if EFSYS_OPT_PHY_LED_CONTROL encp->enc_led_mask = ((1 << EFX_PHY_LED_DEFAULT) | (1 << EFX_PHY_LED_OFF) | (1 << EFX_PHY_LED_ON)); #endif /* EFSYS_OPT_PHY_LED_CONTROL */ /* Get the media type of the fixed port, if recognised. */ EFX_STATIC_ASSERT(MC_CMD_MEDIA_XAUI == EFX_PHY_MEDIA_XAUI); EFX_STATIC_ASSERT(MC_CMD_MEDIA_CX4 == EFX_PHY_MEDIA_CX4); EFX_STATIC_ASSERT(MC_CMD_MEDIA_KX4 == EFX_PHY_MEDIA_KX4); EFX_STATIC_ASSERT(MC_CMD_MEDIA_XFP == EFX_PHY_MEDIA_XFP); EFX_STATIC_ASSERT(MC_CMD_MEDIA_SFP_PLUS == EFX_PHY_MEDIA_SFP_PLUS); EFX_STATIC_ASSERT(MC_CMD_MEDIA_BASE_T == EFX_PHY_MEDIA_BASE_T); EFX_STATIC_ASSERT(MC_CMD_MEDIA_QSFP_PLUS == EFX_PHY_MEDIA_QSFP_PLUS); phy_media_type = MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_MEDIA_TYPE); epp->ep_fixed_port_type = (efx_phy_media_type_t)phy_media_type; if (epp->ep_fixed_port_type >= EFX_PHY_MEDIA_NTYPES) epp->ep_fixed_port_type = EFX_PHY_MEDIA_INVALID; epp->ep_phy_cap_mask = MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_SUPPORTED_CAP); #if EFSYS_OPT_PHY_FLAGS encp->enc_phy_flags_mask = MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_FLAGS); #endif /* EFSYS_OPT_PHY_FLAGS */ encp->enc_port = (uint8_t)MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_PRT); /* Populate internal state */ encp->enc_mcdi_mdio_channel = (uint8_t)MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_CHANNEL); #if EFSYS_OPT_PHY_STATS encp->enc_mcdi_phy_stat_mask = MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_STATS_MASK); #endif /* EFSYS_OPT_PHY_STATS */ #if EFSYS_OPT_BIST encp->enc_bist_mask = 0; if (MCDI_OUT_DWORD_FIELD(req, GET_PHY_CFG_OUT_FLAGS, GET_PHY_CFG_OUT_BIST_CABLE_SHORT)) encp->enc_bist_mask |= (1 << EFX_BIST_TYPE_PHY_CABLE_SHORT); if (MCDI_OUT_DWORD_FIELD(req, GET_PHY_CFG_OUT_FLAGS, GET_PHY_CFG_OUT_BIST_CABLE_LONG)) encp->enc_bist_mask |= (1 << EFX_BIST_TYPE_PHY_CABLE_LONG); if (MCDI_OUT_DWORD_FIELD(req, GET_PHY_CFG_OUT_FLAGS, GET_PHY_CFG_OUT_BIST)) encp->enc_bist_mask |= (1 << EFX_BIST_TYPE_PHY_NORMAL); #endif /* EFSYS_OPT_BIST */ return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_firmware_update_supported( __in efx_nic_t *enp, __out boolean_t *supportedp) { const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop; efx_rc_t rc; if (emcop != NULL) { if ((rc = emcop->emco_feature_supported(enp, EFX_MCDI_FEATURE_FW_UPDATE, supportedp)) != 0) goto fail1; } else { /* Earlier devices always supported updates */ *supportedp = B_TRUE; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_macaddr_change_supported( __in efx_nic_t *enp, __out boolean_t *supportedp) { const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop; efx_rc_t rc; if (emcop != NULL) { if ((rc = emcop->emco_feature_supported(enp, EFX_MCDI_FEATURE_MACADDR_CHANGE, supportedp)) != 0) goto fail1; } else { /* Earlier devices always supported MAC changes */ *supportedp = B_TRUE; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_link_control_supported( __in efx_nic_t *enp, __out boolean_t *supportedp) { const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop; efx_rc_t rc; if (emcop != NULL) { if ((rc = emcop->emco_feature_supported(enp, EFX_MCDI_FEATURE_LINK_CONTROL, supportedp)) != 0) goto fail1; } else { /* Earlier devices always supported link control */ *supportedp = B_TRUE; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_mac_spoofing_supported( __in efx_nic_t *enp, __out boolean_t *supportedp) { const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop; efx_rc_t rc; if (emcop != NULL) { if ((rc = emcop->emco_feature_supported(enp, EFX_MCDI_FEATURE_MAC_SPOOFING, supportedp)) != 0) goto fail1; } else { /* Earlier devices always supported MAC spoofing */ *supportedp = B_TRUE; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #if EFSYS_OPT_BIST #if EFX_OPTS_EF10() /* * Enter bist offline mode. This is a fw mode which puts the NIC into a state * where memory BIST tests can be run and not much else can interfere or happen. * A reboot is required to exit this mode. */ __checkReturn efx_rc_t efx_mcdi_bist_enable_offline( __in efx_nic_t *enp) { efx_mcdi_req_t req; efx_rc_t rc; EFX_STATIC_ASSERT(MC_CMD_ENABLE_OFFLINE_BIST_IN_LEN == 0); EFX_STATIC_ASSERT(MC_CMD_ENABLE_OFFLINE_BIST_OUT_LEN == 0); req.emr_cmd = MC_CMD_ENABLE_OFFLINE_BIST; req.emr_in_buf = NULL; req.emr_in_length = 0; req.emr_out_buf = NULL; req.emr_out_length = 0; efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFX_OPTS_EF10() */ __checkReturn efx_rc_t efx_mcdi_bist_start( __in efx_nic_t *enp, __in efx_bist_type_t type) { efx_mcdi_req_t req; EFX_MCDI_DECLARE_BUF(payload, MC_CMD_START_BIST_IN_LEN, MC_CMD_START_BIST_OUT_LEN); efx_rc_t rc; req.emr_cmd = MC_CMD_START_BIST; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_START_BIST_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_START_BIST_OUT_LEN; switch (type) { case EFX_BIST_TYPE_PHY_NORMAL: MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE, MC_CMD_PHY_BIST); break; case EFX_BIST_TYPE_PHY_CABLE_SHORT: MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE, MC_CMD_PHY_BIST_CABLE_SHORT); break; case EFX_BIST_TYPE_PHY_CABLE_LONG: MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE, MC_CMD_PHY_BIST_CABLE_LONG); break; case EFX_BIST_TYPE_MC_MEM: MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE, MC_CMD_MC_MEM_BIST); break; case EFX_BIST_TYPE_SAT_MEM: MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE, MC_CMD_PORT_MEM_BIST); break; case EFX_BIST_TYPE_REG: MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE, MC_CMD_REG_BIST); break; default: EFSYS_ASSERT(0); } efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_BIST */ /* Enable logging of some events (e.g. link state changes) */ __checkReturn efx_rc_t efx_mcdi_log_ctrl( __in efx_nic_t *enp) { efx_mcdi_req_t req; EFX_MCDI_DECLARE_BUF(payload, MC_CMD_LOG_CTRL_IN_LEN, MC_CMD_LOG_CTRL_OUT_LEN); efx_rc_t rc; req.emr_cmd = MC_CMD_LOG_CTRL; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_LOG_CTRL_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_LOG_CTRL_OUT_LEN; MCDI_IN_SET_DWORD(req, LOG_CTRL_IN_LOG_DEST, MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ); MCDI_IN_SET_DWORD(req, LOG_CTRL_IN_LOG_DEST_EVQ, 0); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #if EFSYS_OPT_MAC_STATS __checkReturn efx_rc_t efx_mcdi_mac_stats( __in efx_nic_t *enp, __in uint32_t vport_id, __in_opt efsys_mem_t *esmp, __in efx_stats_action_t action, __in uint16_t period_ms) { efx_mcdi_req_t req; EFX_MCDI_DECLARE_BUF(payload, MC_CMD_MAC_STATS_IN_LEN, MC_CMD_MAC_STATS_V2_OUT_DMA_LEN); int clear = (action == EFX_STATS_CLEAR); int upload = (action == EFX_STATS_UPLOAD); int enable = (action == EFX_STATS_ENABLE_NOEVENTS); int events = (action == EFX_STATS_ENABLE_EVENTS); int disable = (action == EFX_STATS_DISABLE); efx_rc_t rc; req.emr_cmd = MC_CMD_MAC_STATS; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_MAC_STATS_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_MAC_STATS_V2_OUT_DMA_LEN; MCDI_IN_POPULATE_DWORD_6(req, MAC_STATS_IN_CMD, MAC_STATS_IN_DMA, upload, MAC_STATS_IN_CLEAR, clear, MAC_STATS_IN_PERIODIC_CHANGE, enable | events | disable, MAC_STATS_IN_PERIODIC_ENABLE, enable | events, MAC_STATS_IN_PERIODIC_NOEVENT, !events, MAC_STATS_IN_PERIOD_MS, (enable | events) ? period_ms : 0); if (enable || events || upload) { const efx_nic_cfg_t *encp = &enp->en_nic_cfg; uint32_t bytes; /* Periodic stats or stats upload require a DMA buffer */ if (esmp == NULL) { rc = EINVAL; goto fail1; } if (encp->enc_mac_stats_nstats < MC_CMD_MAC_NSTATS) { /* MAC stats count too small for legacy MAC stats */ rc = ENOSPC; goto fail2; } bytes = encp->enc_mac_stats_nstats * sizeof (efx_qword_t); if (EFSYS_MEM_SIZE(esmp) < bytes) { /* DMA buffer too small */ rc = ENOSPC; goto fail3; } MCDI_IN_SET_DWORD(req, MAC_STATS_IN_DMA_ADDR_LO, EFSYS_MEM_ADDR(esmp) & 0xffffffff); MCDI_IN_SET_DWORD(req, MAC_STATS_IN_DMA_ADDR_HI, EFSYS_MEM_ADDR(esmp) >> 32); MCDI_IN_SET_DWORD(req, MAC_STATS_IN_DMA_LEN, bytes); } /* * NOTE: Do not use EVB_PORT_ID_ASSIGNED when disabling periodic stats, * as this may fail (and leave periodic DMA enabled) if the * vadapter has already been deleted. */ MCDI_IN_SET_DWORD(req, MAC_STATS_IN_PORT_ID, (disable ? EVB_PORT_ID_NULL : vport_id)); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { /* EF10: Expect ENOENT if no DMA queues are initialised */ if ((req.emr_rc != ENOENT) || (enp->en_rx_qcount + enp->en_tx_qcount != 0)) { rc = req.emr_rc; goto fail4; } } return (0); fail4: EFSYS_PROBE(fail4); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_mac_stats_clear( __in efx_nic_t *enp) { efx_rc_t rc; if ((rc = efx_mcdi_mac_stats(enp, enp->en_vport_id, NULL, EFX_STATS_CLEAR, 0)) != 0) goto fail1; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_mac_stats_upload( __in efx_nic_t *enp, __in efsys_mem_t *esmp) { efx_rc_t rc; /* * The MC DMAs aggregate statistics for our convenience, so we can * avoid having to pull the statistics buffer into the cache to * maintain cumulative statistics. */ if ((rc = efx_mcdi_mac_stats(enp, enp->en_vport_id, esmp, EFX_STATS_UPLOAD, 0)) != 0) goto fail1; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_mac_stats_periodic( __in efx_nic_t *enp, __in efsys_mem_t *esmp, __in uint16_t period_ms, __in boolean_t events) { efx_rc_t rc; /* * The MC DMAs aggregate statistics for our convenience, so we can * avoid having to pull the statistics buffer into the cache to * maintain cumulative statistics. * Huntington uses a fixed 1sec period. * Medford uses a fixed 1sec period before v6.2.1.1033 firmware. */ if (period_ms == 0) rc = efx_mcdi_mac_stats(enp, enp->en_vport_id, NULL, EFX_STATS_DISABLE, 0); else if (events) rc = efx_mcdi_mac_stats(enp, enp->en_vport_id, esmp, EFX_STATS_ENABLE_EVENTS, period_ms); else rc = efx_mcdi_mac_stats(enp, enp->en_vport_id, esmp, EFX_STATS_ENABLE_NOEVENTS, period_ms); if (rc != 0) goto fail1; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_MAC_STATS */ #if EFX_OPTS_EF10() /* * This function returns the pf and vf number of a function. If it is a pf the * vf number is 0xffff. The vf number is the index of the vf on that * function. So if you have 3 vfs on pf 0 the 3 vfs will return (pf=0,vf=0), * (pf=0,vf=1), (pf=0,vf=2) aand the pf will return (pf=0, vf=0xffff). */ __checkReturn efx_rc_t efx_mcdi_get_function_info( __in efx_nic_t *enp, __out uint32_t *pfp, __out_opt uint32_t *vfp) { efx_mcdi_req_t req; EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_FUNCTION_INFO_IN_LEN, MC_CMD_GET_FUNCTION_INFO_OUT_LEN); efx_rc_t rc; req.emr_cmd = MC_CMD_GET_FUNCTION_INFO; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_FUNCTION_INFO_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_FUNCTION_INFO_OUT_LEN; efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_GET_FUNCTION_INFO_OUT_LEN) { rc = EMSGSIZE; goto fail2; } *pfp = MCDI_OUT_DWORD(req, GET_FUNCTION_INFO_OUT_PF); if (vfp != NULL) *vfp = MCDI_OUT_DWORD(req, GET_FUNCTION_INFO_OUT_VF); return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_privilege_mask( __in efx_nic_t *enp, __in uint32_t pf, __in uint32_t vf, __out uint32_t *maskp) { efx_mcdi_req_t req; EFX_MCDI_DECLARE_BUF(payload, MC_CMD_PRIVILEGE_MASK_IN_LEN, MC_CMD_PRIVILEGE_MASK_OUT_LEN); efx_rc_t rc; req.emr_cmd = MC_CMD_PRIVILEGE_MASK; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_PRIVILEGE_MASK_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_PRIVILEGE_MASK_OUT_LEN; MCDI_IN_POPULATE_DWORD_2(req, PRIVILEGE_MASK_IN_FUNCTION, PRIVILEGE_MASK_IN_FUNCTION_PF, pf, PRIVILEGE_MASK_IN_FUNCTION_VF, vf); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_PRIVILEGE_MASK_OUT_LEN) { rc = EMSGSIZE; goto fail2; } *maskp = MCDI_OUT_DWORD(req, PRIVILEGE_MASK_OUT_OLD_MASK); return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFX_OPTS_EF10() */ __checkReturn efx_rc_t efx_mcdi_set_workaround( __in efx_nic_t *enp, __in uint32_t type, __in boolean_t enabled, __out_opt uint32_t *flagsp) { efx_mcdi_req_t req; EFX_MCDI_DECLARE_BUF(payload, MC_CMD_WORKAROUND_IN_LEN, MC_CMD_WORKAROUND_EXT_OUT_LEN); efx_rc_t rc; req.emr_cmd = MC_CMD_WORKAROUND; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_WORKAROUND_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_WORKAROUND_OUT_LEN; MCDI_IN_SET_DWORD(req, WORKAROUND_IN_TYPE, type); MCDI_IN_SET_DWORD(req, WORKAROUND_IN_ENABLED, enabled ? 1 : 0); efx_mcdi_execute_quiet(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (flagsp != NULL) { if (req.emr_out_length_used >= MC_CMD_WORKAROUND_EXT_OUT_LEN) *flagsp = MCDI_OUT_DWORD(req, WORKAROUND_EXT_OUT_FLAGS); else *flagsp = 0; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_get_workarounds( __in efx_nic_t *enp, __out_opt uint32_t *implementedp, __out_opt uint32_t *enabledp) { efx_mcdi_req_t req; EFX_MCDI_DECLARE_BUF(payload, 0, MC_CMD_GET_WORKAROUNDS_OUT_LEN); efx_rc_t rc; req.emr_cmd = MC_CMD_GET_WORKAROUNDS; req.emr_in_buf = NULL; req.emr_in_length = 0; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_WORKAROUNDS_OUT_LEN; efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (implementedp != NULL) { *implementedp = MCDI_OUT_DWORD(req, GET_WORKAROUNDS_OUT_IMPLEMENTED); } if (enabledp != NULL) { *enabledp = MCDI_OUT_DWORD(req, GET_WORKAROUNDS_OUT_ENABLED); } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } /* * Size of media information page in accordance with SFF-8472 and SFF-8436. * It is used in MCDI interface as well. */ #define EFX_PHY_MEDIA_INFO_PAGE_SIZE 0x80 /* * Transceiver identifiers from SFF-8024 Table 4-1. */ #define EFX_SFF_TRANSCEIVER_ID_SFP 0x03 /* SFP/SFP+/SFP28 */ #define EFX_SFF_TRANSCEIVER_ID_QSFP 0x0c /* QSFP */ #define EFX_SFF_TRANSCEIVER_ID_QSFP_PLUS 0x0d /* QSFP+ or later */ #define EFX_SFF_TRANSCEIVER_ID_QSFP28 0x11 /* QSFP28 or later */ static __checkReturn efx_rc_t efx_mcdi_get_phy_media_info( __in efx_nic_t *enp, __in uint32_t mcdi_page, __in uint8_t offset, __in uint8_t len, __out_bcount(len) uint8_t *data) { efx_mcdi_req_t req; EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_PHY_MEDIA_INFO_IN_LEN, MC_CMD_GET_PHY_MEDIA_INFO_OUT_LEN( EFX_PHY_MEDIA_INFO_PAGE_SIZE)); efx_rc_t rc; EFSYS_ASSERT((uint32_t)offset + len <= EFX_PHY_MEDIA_INFO_PAGE_SIZE); req.emr_cmd = MC_CMD_GET_PHY_MEDIA_INFO; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_PHY_MEDIA_INFO_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_PHY_MEDIA_INFO_OUT_LEN(EFX_PHY_MEDIA_INFO_PAGE_SIZE); MCDI_IN_SET_DWORD(req, GET_PHY_MEDIA_INFO_IN_PAGE, mcdi_page); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used != MC_CMD_GET_PHY_MEDIA_INFO_OUT_LEN(EFX_PHY_MEDIA_INFO_PAGE_SIZE)) { rc = EMSGSIZE; goto fail2; } if (MCDI_OUT_DWORD(req, GET_PHY_MEDIA_INFO_OUT_DATALEN) != EFX_PHY_MEDIA_INFO_PAGE_SIZE) { rc = EIO; goto fail3; } memcpy(data, MCDI_OUT2(req, uint8_t, GET_PHY_MEDIA_INFO_OUT_DATA) + offset, len); return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_phy_module_get_info( __in efx_nic_t *enp, __in uint8_t dev_addr, __in size_t offset, __in size_t len, __out_bcount(len) uint8_t *data) { efx_port_t *epp = &(enp->en_port); efx_rc_t rc; uint32_t mcdi_lower_page; uint32_t mcdi_upper_page; uint8_t id; EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE); /* * Map device address to MC_CMD_GET_PHY_MEDIA_INFO pages. * Offset plus length interface allows to access page 0 only. * I.e. non-zero upper pages are not accessible. * See SFF-8472 section 4 Memory Organization and SFF-8436 section 7.6 * QSFP+ Memory Map for details on how information is structured * and accessible. */ switch (epp->ep_fixed_port_type) { case EFX_PHY_MEDIA_SFP_PLUS: case EFX_PHY_MEDIA_QSFP_PLUS: /* Port type supports modules */ break; default: rc = ENOTSUP; goto fail1; } /* * For all supported port types, MCDI page 0 offset 0 holds the * transceiver identifier. Probe to determine the data layout. * Definitions from SFF-8024 Table 4-1. */ rc = efx_mcdi_get_phy_media_info(enp, 0, 0, sizeof(id), &id); if (rc != 0) goto fail2; switch (id) { case EFX_SFF_TRANSCEIVER_ID_SFP: /* * In accordance with SFF-8472 Diagnostic Monitoring * Interface for Optical Transceivers section 4 Memory * Organization two 2-wire addresses are defined. */ switch (dev_addr) { /* Base information */ case EFX_PHY_MEDIA_INFO_DEV_ADDR_SFP_BASE: /* * MCDI page 0 should be used to access lower * page 0 (0x00 - 0x7f) at the device address 0xA0. */ mcdi_lower_page = 0; /* * MCDI page 1 should be used to access upper * page 0 (0x80 - 0xff) at the device address 0xA0. */ mcdi_upper_page = 1; break; /* Diagnostics */ case EFX_PHY_MEDIA_INFO_DEV_ADDR_SFP_DDM: /* * MCDI page 2 should be used to access lower * page 0 (0x00 - 0x7f) at the device address 0xA2. */ mcdi_lower_page = 2; /* * MCDI page 3 should be used to access upper * page 0 (0x80 - 0xff) at the device address 0xA2. */ mcdi_upper_page = 3; break; default: rc = ENOTSUP; goto fail3; } break; case EFX_SFF_TRANSCEIVER_ID_QSFP: case EFX_SFF_TRANSCEIVER_ID_QSFP_PLUS: case EFX_SFF_TRANSCEIVER_ID_QSFP28: switch (dev_addr) { case EFX_PHY_MEDIA_INFO_DEV_ADDR_QSFP: /* * MCDI page -1 should be used to access lower page 0 * (0x00 - 0x7f). */ mcdi_lower_page = (uint32_t)-1; /* * MCDI page 0 should be used to access upper page 0 * (0x80h - 0xff). */ mcdi_upper_page = 0; break; default: rc = ENOTSUP; goto fail3; } break; default: rc = ENOTSUP; goto fail3; } EFX_STATIC_ASSERT(EFX_PHY_MEDIA_INFO_PAGE_SIZE <= 0xFF); if (offset < EFX_PHY_MEDIA_INFO_PAGE_SIZE) { size_t read_len = MIN(len, EFX_PHY_MEDIA_INFO_PAGE_SIZE - offset); rc = efx_mcdi_get_phy_media_info(enp, mcdi_lower_page, (uint8_t)offset, (uint8_t)read_len, data); if (rc != 0) goto fail4; data += read_len; len -= read_len; offset = 0; } else { offset -= EFX_PHY_MEDIA_INFO_PAGE_SIZE; } if (len > 0) { EFSYS_ASSERT3U(len, <=, EFX_PHY_MEDIA_INFO_PAGE_SIZE); EFSYS_ASSERT3U(offset, <, EFX_PHY_MEDIA_INFO_PAGE_SIZE); rc = efx_mcdi_get_phy_media_info(enp, mcdi_upper_page, (uint8_t)offset, (uint8_t)len, data); if (rc != 0) goto fail5; } return (0); fail5: EFSYS_PROBE(fail5); fail4: EFSYS_PROBE(fail4); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_MCDI */