/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2001 - 2015 Intel Corporation */ /* 80003ES2LAN Gigabit Ethernet Controller (Copper) * 80003ES2LAN Gigabit Ethernet Controller (Serdes) */ #include "e1000_api.h" STATIC s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw); STATIC void e1000_release_phy_80003es2lan(struct e1000_hw *hw); STATIC s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw); STATIC void e1000_release_nvm_80003es2lan(struct e1000_hw *hw); STATIC s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw, u32 offset, u16 *data); STATIC s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw, u32 offset, u16 data); STATIC s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); STATIC s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw); STATIC s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw); STATIC s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw); STATIC s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed, u16 *duplex); STATIC s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw); STATIC s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw); STATIC s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw); STATIC void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw); STATIC s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask); STATIC s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex); STATIC s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw); STATIC s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw); STATIC s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset, u16 *data); STATIC s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset, u16 data); STATIC void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw); STATIC void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask); STATIC s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw); STATIC void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw); /* A table for the GG82563 cable length where the range is defined * with a lower bound at "index" and the upper bound at * "index + 5". */ STATIC const u16 e1000_gg82563_cable_length_table[] = { 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF }; #define GG82563_CABLE_LENGTH_TABLE_SIZE \ (sizeof(e1000_gg82563_cable_length_table) / \ sizeof(e1000_gg82563_cable_length_table[0])) /** * e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs. * @hw: pointer to the HW structure **/ STATIC s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; DEBUGFUNC("e1000_init_phy_params_80003es2lan"); if (hw->phy.media_type != e1000_media_type_copper) { phy->type = e1000_phy_none; return E1000_SUCCESS; } else { phy->ops.power_up = e1000_power_up_phy_copper; phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan; } phy->addr = 1; phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; phy->reset_delay_us = 100; phy->type = e1000_phy_gg82563; phy->ops.acquire = e1000_acquire_phy_80003es2lan; phy->ops.check_polarity = e1000_check_polarity_m88; phy->ops.check_reset_block = e1000_check_reset_block_generic; phy->ops.commit = e1000_phy_sw_reset_generic; phy->ops.get_cfg_done = e1000_get_cfg_done_80003es2lan; phy->ops.get_info = e1000_get_phy_info_m88; phy->ops.release = e1000_release_phy_80003es2lan; phy->ops.reset = e1000_phy_hw_reset_generic; phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic; phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_80003es2lan; phy->ops.get_cable_length = e1000_get_cable_length_80003es2lan; phy->ops.read_reg = e1000_read_phy_reg_gg82563_80003es2lan; phy->ops.write_reg = e1000_write_phy_reg_gg82563_80003es2lan; phy->ops.cfg_on_link_up = e1000_cfg_on_link_up_80003es2lan; /* This can only be done after all function pointers are setup. */ ret_val = e1000_get_phy_id(hw); /* Verify phy id */ if (phy->id != GG82563_E_PHY_ID) return -E1000_ERR_PHY; return ret_val; } /** * e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs. * @hw: pointer to the HW structure **/ STATIC s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw) { struct e1000_nvm_info *nvm = &hw->nvm; u32 eecd = E1000_READ_REG(hw, E1000_EECD); u16 size; DEBUGFUNC("e1000_init_nvm_params_80003es2lan"); nvm->opcode_bits = 8; nvm->delay_usec = 1; switch (nvm->override) { case e1000_nvm_override_spi_large: nvm->page_size = 32; nvm->address_bits = 16; break; case e1000_nvm_override_spi_small: nvm->page_size = 8; nvm->address_bits = 8; break; default: nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8; nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8; break; } nvm->type = e1000_nvm_eeprom_spi; size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> E1000_EECD_SIZE_EX_SHIFT); /* Added to a constant, "size" becomes the left-shift value * for setting word_size. */ size += NVM_WORD_SIZE_BASE_SHIFT; /* EEPROM access above 16k is unsupported */ if (size > 14) size = 14; nvm->word_size = 1 << size; /* Function Pointers */ nvm->ops.acquire = e1000_acquire_nvm_80003es2lan; nvm->ops.read = e1000_read_nvm_eerd; nvm->ops.release = e1000_release_nvm_80003es2lan; nvm->ops.update = e1000_update_nvm_checksum_generic; nvm->ops.valid_led_default = e1000_valid_led_default_generic; nvm->ops.validate = e1000_validate_nvm_checksum_generic; nvm->ops.write = e1000_write_nvm_80003es2lan; return E1000_SUCCESS; } /** * e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs. * @hw: pointer to the HW structure **/ STATIC s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; DEBUGFUNC("e1000_init_mac_params_80003es2lan"); /* Set media type and media-dependent function pointers */ switch (hw->device_id) { case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: hw->phy.media_type = e1000_media_type_internal_serdes; mac->ops.check_for_link = e1000_check_for_serdes_link_generic; mac->ops.setup_physical_interface = e1000_setup_fiber_serdes_link_generic; break; default: hw->phy.media_type = e1000_media_type_copper; mac->ops.check_for_link = e1000_check_for_copper_link_generic; mac->ops.setup_physical_interface = e1000_setup_copper_link_80003es2lan; break; } /* Set mta register count */ mac->mta_reg_count = 128; /* Set rar entry count */ mac->rar_entry_count = E1000_RAR_ENTRIES; /* Set if part includes ASF firmware */ mac->asf_firmware_present = true; /* FWSM register */ mac->has_fwsm = true; /* ARC supported; valid only if manageability features are enabled. */ mac->arc_subsystem_valid = !!(E1000_READ_REG(hw, E1000_FWSM) & E1000_FWSM_MODE_MASK); /* Adaptive IFS not supported */ mac->adaptive_ifs = false; /* Function pointers */ /* bus type/speed/width */ mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic; /* reset */ mac->ops.reset_hw = e1000_reset_hw_80003es2lan; /* hw initialization */ mac->ops.init_hw = e1000_init_hw_80003es2lan; /* link setup */ mac->ops.setup_link = e1000_setup_link_generic; /* check management mode */ mac->ops.check_mng_mode = e1000_check_mng_mode_generic; /* multicast address update */ mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic; /* writing VFTA */ mac->ops.write_vfta = e1000_write_vfta_generic; /* clearing VFTA */ mac->ops.clear_vfta = e1000_clear_vfta_generic; /* read mac address */ mac->ops.read_mac_addr = e1000_read_mac_addr_80003es2lan; /* ID LED init */ mac->ops.id_led_init = e1000_id_led_init_generic; /* blink LED */ mac->ops.blink_led = e1000_blink_led_generic; /* setup LED */ mac->ops.setup_led = e1000_setup_led_generic; /* cleanup LED */ mac->ops.cleanup_led = e1000_cleanup_led_generic; /* turn on/off LED */ mac->ops.led_on = e1000_led_on_generic; mac->ops.led_off = e1000_led_off_generic; /* clear hardware counters */ mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_80003es2lan; /* link info */ mac->ops.get_link_up_info = e1000_get_link_up_info_80003es2lan; /* set lan id for port to determine which phy lock to use */ hw->mac.ops.set_lan_id(hw); return E1000_SUCCESS; } /** * e1000_init_function_pointers_80003es2lan - Init ESB2 func ptrs. * @hw: pointer to the HW structure * * Called to initialize all function pointers and parameters. **/ void e1000_init_function_pointers_80003es2lan(struct e1000_hw *hw) { DEBUGFUNC("e1000_init_function_pointers_80003es2lan"); hw->mac.ops.init_params = e1000_init_mac_params_80003es2lan; hw->nvm.ops.init_params = e1000_init_nvm_params_80003es2lan; hw->phy.ops.init_params = e1000_init_phy_params_80003es2lan; } /** * e1000_acquire_phy_80003es2lan - Acquire rights to access PHY * @hw: pointer to the HW structure * * A wrapper to acquire access rights to the correct PHY. **/ STATIC s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw) { u16 mask; DEBUGFUNC("e1000_acquire_phy_80003es2lan"); mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM; return e1000_acquire_swfw_sync_80003es2lan(hw, mask); } /** * e1000_release_phy_80003es2lan - Release rights to access PHY * @hw: pointer to the HW structure * * A wrapper to release access rights to the correct PHY. **/ STATIC void e1000_release_phy_80003es2lan(struct e1000_hw *hw) { u16 mask; DEBUGFUNC("e1000_release_phy_80003es2lan"); mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM; e1000_release_swfw_sync_80003es2lan(hw, mask); } /** * e1000_acquire_mac_csr_80003es2lan - Acquire right to access Kumeran register * @hw: pointer to the HW structure * * Acquire the semaphore to access the Kumeran interface. * **/ STATIC s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw) { u16 mask; DEBUGFUNC("e1000_acquire_mac_csr_80003es2lan"); mask = E1000_SWFW_CSR_SM; return e1000_acquire_swfw_sync_80003es2lan(hw, mask); } /** * e1000_release_mac_csr_80003es2lan - Release right to access Kumeran Register * @hw: pointer to the HW structure * * Release the semaphore used to access the Kumeran interface **/ STATIC void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw) { u16 mask; DEBUGFUNC("e1000_release_mac_csr_80003es2lan"); mask = E1000_SWFW_CSR_SM; e1000_release_swfw_sync_80003es2lan(hw, mask); } /** * e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM * @hw: pointer to the HW structure * * Acquire the semaphore to access the EEPROM. **/ STATIC s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw) { s32 ret_val; DEBUGFUNC("e1000_acquire_nvm_80003es2lan"); ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM); if (ret_val) return ret_val; ret_val = e1000_acquire_nvm_generic(hw); if (ret_val) e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM); return ret_val; } /** * e1000_release_nvm_80003es2lan - Relinquish rights to access NVM * @hw: pointer to the HW structure * * Release the semaphore used to access the EEPROM. **/ STATIC void e1000_release_nvm_80003es2lan(struct e1000_hw *hw) { DEBUGFUNC("e1000_release_nvm_80003es2lan"); e1000_release_nvm_generic(hw); e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM); } /** * e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore * @hw: pointer to the HW structure * @mask: specifies which semaphore to acquire * * Acquire the SW/FW semaphore to access the PHY or NVM. The mask * will also specify which port we're acquiring the lock for. **/ STATIC s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask) { u32 swfw_sync; u32 swmask = mask; u32 fwmask = mask << 16; s32 i = 0; s32 timeout = 50; DEBUGFUNC("e1000_acquire_swfw_sync_80003es2lan"); while (i < timeout) { if (e1000_get_hw_semaphore_generic(hw)) return -E1000_ERR_SWFW_SYNC; swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC); if (!(swfw_sync & (fwmask | swmask))) break; /* Firmware currently using resource (fwmask) * or other software thread using resource (swmask) */ e1000_put_hw_semaphore_generic(hw); msec_delay_irq(5); i++; } if (i == timeout) { DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n"); return -E1000_ERR_SWFW_SYNC; } swfw_sync |= swmask; E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync); e1000_put_hw_semaphore_generic(hw); return E1000_SUCCESS; } /** * e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore * @hw: pointer to the HW structure * @mask: specifies which semaphore to acquire * * Release the SW/FW semaphore used to access the PHY or NVM. The mask * will also specify which port we're releasing the lock for. **/ STATIC void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask) { u32 swfw_sync; DEBUGFUNC("e1000_release_swfw_sync_80003es2lan"); while (e1000_get_hw_semaphore_generic(hw) != E1000_SUCCESS) ; /* Empty */ swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC); swfw_sync &= ~mask; E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync); e1000_put_hw_semaphore_generic(hw); } /** * e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register * @hw: pointer to the HW structure * @offset: offset of the register to read * @data: pointer to the data returned from the operation * * Read the GG82563 PHY register. **/ STATIC s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw, u32 offset, u16 *data) { s32 ret_val; u32 page_select; u16 temp; DEBUGFUNC("e1000_read_phy_reg_gg82563_80003es2lan"); ret_val = e1000_acquire_phy_80003es2lan(hw); if (ret_val) return ret_val; /* Select Configuration Page */ if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) { page_select = GG82563_PHY_PAGE_SELECT; } else { /* Use Alternative Page Select register to access * registers 30 and 31 */ page_select = GG82563_PHY_PAGE_SELECT_ALT; } temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT); ret_val = e1000_write_phy_reg_mdic(hw, page_select, temp); if (ret_val) { e1000_release_phy_80003es2lan(hw); return ret_val; } if (hw->dev_spec._80003es2lan.mdic_wa_enable) { /* The "ready" bit in the MDIC register may be incorrectly set * before the device has completed the "Page Select" MDI * transaction. So we wait 200us after each MDI command... */ usec_delay(200); /* ...and verify the command was successful. */ ret_val = e1000_read_phy_reg_mdic(hw, page_select, &temp); if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) { e1000_release_phy_80003es2lan(hw); return -E1000_ERR_PHY; } usec_delay(200); ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, data); usec_delay(200); } else { ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, data); } e1000_release_phy_80003es2lan(hw); return ret_val; } /** * e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register * @hw: pointer to the HW structure * @offset: offset of the register to read * @data: value to write to the register * * Write to the GG82563 PHY register. **/ STATIC s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw, u32 offset, u16 data) { s32 ret_val; u32 page_select; u16 temp; DEBUGFUNC("e1000_write_phy_reg_gg82563_80003es2lan"); ret_val = e1000_acquire_phy_80003es2lan(hw); if (ret_val) return ret_val; /* Select Configuration Page */ if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) { page_select = GG82563_PHY_PAGE_SELECT; } else { /* Use Alternative Page Select register to access * registers 30 and 31 */ page_select = GG82563_PHY_PAGE_SELECT_ALT; } temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT); ret_val = e1000_write_phy_reg_mdic(hw, page_select, temp); if (ret_val) { e1000_release_phy_80003es2lan(hw); return ret_val; } if (hw->dev_spec._80003es2lan.mdic_wa_enable) { /* The "ready" bit in the MDIC register may be incorrectly set * before the device has completed the "Page Select" MDI * transaction. So we wait 200us after each MDI command... */ usec_delay(200); /* ...and verify the command was successful. */ ret_val = e1000_read_phy_reg_mdic(hw, page_select, &temp); if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) { e1000_release_phy_80003es2lan(hw); return -E1000_ERR_PHY; } usec_delay(200); ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, data); usec_delay(200); } else { ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, data); } e1000_release_phy_80003es2lan(hw); return ret_val; } /** * e1000_write_nvm_80003es2lan - Write to ESB2 NVM * @hw: pointer to the HW structure * @offset: offset of the register to read * @words: number of words to write * @data: buffer of data to write to the NVM * * Write "words" of data to the ESB2 NVM. **/ STATIC s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) { DEBUGFUNC("e1000_write_nvm_80003es2lan"); return e1000_write_nvm_spi(hw, offset, words, data); } /** * e1000_get_cfg_done_80003es2lan - Wait for configuration to complete * @hw: pointer to the HW structure * * Wait a specific amount of time for manageability processes to complete. * This is a function pointer entry point called by the phy module. **/ STATIC s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw) { s32 timeout = PHY_CFG_TIMEOUT; u32 mask = E1000_NVM_CFG_DONE_PORT_0; DEBUGFUNC("e1000_get_cfg_done_80003es2lan"); if (hw->bus.func == 1) mask = E1000_NVM_CFG_DONE_PORT_1; while (timeout) { if (E1000_READ_REG(hw, E1000_EEMNGCTL) & mask) break; msec_delay(1); timeout--; } if (!timeout) { DEBUGOUT("MNG configuration cycle has not completed.\n"); return -E1000_ERR_RESET; } return E1000_SUCCESS; } /** * e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex * @hw: pointer to the HW structure * * Force the speed and duplex settings onto the PHY. This is a * function pointer entry point called by the phy module. **/ STATIC s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw) { s32 ret_val; u16 phy_data; bool link; DEBUGFUNC("e1000_phy_force_speed_duplex_80003es2lan"); if (!(hw->phy.ops.read_reg)) return E1000_SUCCESS; /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI * forced whenever speed and duplex are forced. */ ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); if (ret_val) return ret_val; phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO; ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data); if (ret_val) return ret_val; DEBUGOUT1("GG82563 PSCR: %X\n", phy_data); ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_data); if (ret_val) return ret_val; e1000_phy_force_speed_duplex_setup(hw, &phy_data); /* Reset the phy to commit changes. */ phy_data |= MII_CR_RESET; ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_data); if (ret_val) return ret_val; usec_delay(1); if (hw->phy.autoneg_wait_to_complete) { DEBUGOUT("Waiting for forced speed/duplex link on GG82563 phy.\n"); ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 100000, &link); if (ret_val) return ret_val; if (!link) { /* We didn't get link. * Reset the DSP and cross our fingers. */ ret_val = e1000_phy_reset_dsp_generic(hw); if (ret_val) return ret_val; } /* Try once more */ ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 100000, &link); if (ret_val) return ret_val; } ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data); if (ret_val) return ret_val; /* Resetting the phy means we need to verify the TX_CLK corresponds * to the link speed. 10Mbps -> 2.5MHz, else 25MHz. */ phy_data &= ~GG82563_MSCR_TX_CLK_MASK; if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED) phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5; else phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25; /* In addition, we must re-enable CRS on Tx for both half and full * duplex. */ phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX; ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data); return ret_val; } /** * e1000_get_cable_length_80003es2lan - Set approximate cable length * @hw: pointer to the HW structure * * Find the approximate cable length as measured by the GG82563 PHY. * This is a function pointer entry point called by the phy module. **/ STATIC s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 phy_data, index; DEBUGFUNC("e1000_get_cable_length_80003es2lan"); if (!(hw->phy.ops.read_reg)) return E1000_SUCCESS; ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_DSP_DISTANCE, &phy_data); if (ret_val) return ret_val; index = phy_data & GG82563_DSPD_CABLE_LENGTH; if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5) return -E1000_ERR_PHY; phy->min_cable_length = e1000_gg82563_cable_length_table[index]; phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5]; phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; return E1000_SUCCESS; } /** * e1000_get_link_up_info_80003es2lan - Report speed and duplex * @hw: pointer to the HW structure * @speed: pointer to speed buffer * @duplex: pointer to duplex buffer * * Retrieve the current speed and duplex configuration. **/ STATIC s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed, u16 *duplex) { s32 ret_val; DEBUGFUNC("e1000_get_link_up_info_80003es2lan"); if (hw->phy.media_type == e1000_media_type_copper) { ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex); hw->phy.ops.cfg_on_link_up(hw); } else { ret_val = e1000_get_speed_and_duplex_fiber_serdes_generic(hw, speed, duplex); } return ret_val; } /** * e1000_reset_hw_80003es2lan - Reset the ESB2 controller * @hw: pointer to the HW structure * * Perform a global reset to the ESB2 controller. **/ STATIC s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw) { u32 ctrl; s32 ret_val; u16 kum_reg_data; DEBUGFUNC("e1000_reset_hw_80003es2lan"); /* Prevent the PCI-E bus from sticking if there is no TLP connection * on the last TLP read/write transaction when MAC is reset. */ ret_val = e1000_disable_pcie_master_generic(hw); if (ret_val) DEBUGOUT("PCI-E Master disable polling has failed.\n"); DEBUGOUT("Masking off all interrupts\n"); E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); E1000_WRITE_REG(hw, E1000_RCTL, 0); E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP); E1000_WRITE_FLUSH(hw); msec_delay(10); ctrl = E1000_READ_REG(hw, E1000_CTRL); ret_val = e1000_acquire_phy_80003es2lan(hw); if (ret_val) return ret_val; DEBUGOUT("Issuing a global reset to MAC\n"); E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST); e1000_release_phy_80003es2lan(hw); /* Disable IBIST slave mode (far-end loopback) */ ret_val = e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, &kum_reg_data); if (!ret_val) { kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE; ret_val = e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, kum_reg_data); if (ret_val) DEBUGOUT("Error disabling far-end loopback\n"); } else DEBUGOUT("Error disabling far-end loopback\n"); ret_val = e1000_get_auto_rd_done_generic(hw); if (ret_val) /* We don't want to continue accessing MAC registers. */ return ret_val; /* Clear any pending interrupt events. */ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); E1000_READ_REG(hw, E1000_ICR); return e1000_check_alt_mac_addr_generic(hw); } /** * e1000_init_hw_80003es2lan - Initialize the ESB2 controller * @hw: pointer to the HW structure * * Initialize the hw bits, LED, VFTA, MTA, link and hw counters. **/ STATIC s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; u32 reg_data; s32 ret_val; u16 kum_reg_data; u16 i; DEBUGFUNC("e1000_init_hw_80003es2lan"); e1000_initialize_hw_bits_80003es2lan(hw); /* Initialize identification LED */ ret_val = mac->ops.id_led_init(hw); /* An error is not fatal and we should not stop init due to this */ if (ret_val) DEBUGOUT("Error initializing identification LED\n"); /* Disabling VLAN filtering */ DEBUGOUT("Initializing the IEEE VLAN\n"); mac->ops.clear_vfta(hw); /* Setup the receive address. */ e1000_init_rx_addrs_generic(hw, mac->rar_entry_count); /* Zero out the Multicast HASH table */ DEBUGOUT("Zeroing the MTA\n"); for (i = 0; i < mac->mta_reg_count; i++) E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); /* Setup link and flow control */ ret_val = mac->ops.setup_link(hw); if (ret_val) return ret_val; /* Disable IBIST slave mode (far-end loopback) */ ret_val = e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, &kum_reg_data); if (!ret_val) { kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE; ret_val = e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, kum_reg_data); if (ret_val) DEBUGOUT("Error disabling far-end loopback\n"); } else DEBUGOUT("Error disabling far-end loopback\n"); /* Set the transmit descriptor write-back policy */ reg_data = E1000_READ_REG(hw, E1000_TXDCTL(0)); reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC); E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg_data); /* ...for both queues. */ reg_data = E1000_READ_REG(hw, E1000_TXDCTL(1)); reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC); E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg_data); /* Enable retransmit on late collisions */ reg_data = E1000_READ_REG(hw, E1000_TCTL); reg_data |= E1000_TCTL_RTLC; E1000_WRITE_REG(hw, E1000_TCTL, reg_data); /* Configure Gigabit Carry Extend Padding */ reg_data = E1000_READ_REG(hw, E1000_TCTL_EXT); reg_data &= ~E1000_TCTL_EXT_GCEX_MASK; reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN; E1000_WRITE_REG(hw, E1000_TCTL_EXT, reg_data); /* Configure Transmit Inter-Packet Gap */ reg_data = E1000_READ_REG(hw, E1000_TIPG); reg_data &= ~E1000_TIPG_IPGT_MASK; reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN; E1000_WRITE_REG(hw, E1000_TIPG, reg_data); reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001); reg_data &= ~0x00100000; E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data); /* default to true to enable the MDIC W/A */ hw->dev_spec._80003es2lan.mdic_wa_enable = true; ret_val = e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_OFFSET >> E1000_KMRNCTRLSTA_OFFSET_SHIFT, &i); if (!ret_val) { if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) == E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO) hw->dev_spec._80003es2lan.mdic_wa_enable = false; } /* Clear all of the statistics registers (clear on read). It is * important that we do this after we have tried to establish link * because the symbol error count will increment wildly if there * is no link. */ e1000_clear_hw_cntrs_80003es2lan(hw); return ret_val; } /** * e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2 * @hw: pointer to the HW structure * * Initializes required hardware-dependent bits needed for normal operation. **/ STATIC void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw) { u32 reg; DEBUGFUNC("e1000_initialize_hw_bits_80003es2lan"); /* Transmit Descriptor Control 0 */ reg = E1000_READ_REG(hw, E1000_TXDCTL(0)); reg |= (1 << 22); E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg); /* Transmit Descriptor Control 1 */ reg = E1000_READ_REG(hw, E1000_TXDCTL(1)); reg |= (1 << 22); E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg); /* Transmit Arbitration Control 0 */ reg = E1000_READ_REG(hw, E1000_TARC(0)); reg &= ~(0xF << 27); /* 30:27 */ if (hw->phy.media_type != e1000_media_type_copper) reg &= ~(1 << 20); E1000_WRITE_REG(hw, E1000_TARC(0), reg); /* Transmit Arbitration Control 1 */ reg = E1000_READ_REG(hw, E1000_TARC(1)); if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR) reg &= ~(1 << 28); else reg |= (1 << 28); E1000_WRITE_REG(hw, E1000_TARC(1), reg); /* Disable IPv6 extension header parsing because some malformed * IPv6 headers can hang the Rx. */ reg = E1000_READ_REG(hw, E1000_RFCTL); reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS); E1000_WRITE_REG(hw, E1000_RFCTL, reg); return; } /** * e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link * @hw: pointer to the HW structure * * Setup some GG82563 PHY registers for obtaining link **/ STATIC s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u32 reg; u16 data; DEBUGFUNC("e1000_copper_link_setup_gg82563_80003es2lan"); ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &data); if (ret_val) return ret_val; data |= GG82563_MSCR_ASSERT_CRS_ON_TX; /* Use 25MHz for both link down and 1000Base-T for Tx clock. */ data |= GG82563_MSCR_TX_CLK_1000MBPS_25; ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, data); if (ret_val) return ret_val; /* Options: * MDI/MDI-X = 0 (default) * 0 - Auto for all speeds * 1 - MDI mode * 2 - MDI-X mode * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) */ ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_SPEC_CTRL, &data); if (ret_val) return ret_val; data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK; switch (phy->mdix) { case 1: data |= GG82563_PSCR_CROSSOVER_MODE_MDI; break; case 2: data |= GG82563_PSCR_CROSSOVER_MODE_MDIX; break; case 0: default: data |= GG82563_PSCR_CROSSOVER_MODE_AUTO; break; } /* Options: * disable_polarity_correction = 0 (default) * Automatic Correction for Reversed Cable Polarity * 0 - Disabled * 1 - Enabled */ data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE; if (phy->disable_polarity_correction) data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE; ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_SPEC_CTRL, data); if (ret_val) return ret_val; /* SW Reset the PHY so all changes take effect */ ret_val = hw->phy.ops.commit(hw); if (ret_val) { DEBUGOUT("Error Resetting the PHY\n"); return ret_val; } /* Bypass Rx and Tx FIFO's */ reg = E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL; data = (E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS | E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS); ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data); if (ret_val) return ret_val; reg = E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE; ret_val = e1000_read_kmrn_reg_80003es2lan(hw, reg, &data); if (ret_val) return ret_val; data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE; ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data); if (ret_val) return ret_val; ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_SPEC_CTRL_2, &data); if (ret_val) return ret_val; data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG; ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_SPEC_CTRL_2, data); if (ret_val) return ret_val; reg = E1000_READ_REG(hw, E1000_CTRL_EXT); reg &= ~E1000_CTRL_EXT_LINK_MODE_MASK; E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg); ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_PWR_MGMT_CTRL, &data); if (ret_val) return ret_val; /* Do not init these registers when the HW is in IAMT mode, since the * firmware will have already initialized them. We only initialize * them if the HW is not in IAMT mode. */ if (!hw->mac.ops.check_mng_mode(hw)) { /* Enable Electrical Idle on the PHY */ data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE; ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_PWR_MGMT_CTRL, data); if (ret_val) return ret_val; ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &data); if (ret_val) return ret_val; data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, data); if (ret_val) return ret_val; } /* Workaround: Disable padding in Kumeran interface in the MAC * and in the PHY to avoid CRC errors. */ ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_INBAND_CTRL, &data); if (ret_val) return ret_val; data |= GG82563_ICR_DIS_PADDING; ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_INBAND_CTRL, data); if (ret_val) return ret_val; return E1000_SUCCESS; } /** * e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2 * @hw: pointer to the HW structure * * Essentially a wrapper for setting up all things "copper" related. * This is a function pointer entry point called by the mac module. **/ STATIC s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw) { u32 ctrl; s32 ret_val; u16 reg_data; DEBUGFUNC("e1000_setup_copper_link_80003es2lan"); ctrl = E1000_READ_REG(hw, E1000_CTRL); ctrl |= E1000_CTRL_SLU; ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); E1000_WRITE_REG(hw, E1000_CTRL, ctrl); /* Set the mac to wait the maximum time between each * iteration and increase the max iterations when * polling the phy; this fixes erroneous timeouts at 10Mbps. */ ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4), 0xFFFF); if (ret_val) return ret_val; ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9), ®_data); if (ret_val) return ret_val; reg_data |= 0x3F; ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9), reg_data); if (ret_val) return ret_val; ret_val = e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_OFFSET_INB_CTRL, ®_data); if (ret_val) return ret_val; reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING; ret_val = e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_OFFSET_INB_CTRL, reg_data); if (ret_val) return ret_val; ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw); if (ret_val) return ret_val; return e1000_setup_copper_link_generic(hw); } /** * e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up * @hw: pointer to the HW structure * @duplex: current duplex setting * * Configure the KMRN interface by applying last minute quirks for * 10/100 operation. **/ STATIC s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw) { s32 ret_val = E1000_SUCCESS; u16 speed; u16 duplex; DEBUGFUNC("e1000_configure_on_link_up"); if (hw->phy.media_type == e1000_media_type_copper) { ret_val = e1000_get_speed_and_duplex_copper_generic(hw, &speed, &duplex); if (ret_val) return ret_val; if (speed == SPEED_1000) ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw); else ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex); } return ret_val; } /** * e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation * @hw: pointer to the HW structure * @duplex: current duplex setting * * Configure the KMRN interface by applying last minute quirks for * 10/100 operation. **/ STATIC s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex) { s32 ret_val; u32 tipg; u32 i = 0; u16 reg_data, reg_data2; DEBUGFUNC("e1000_configure_kmrn_for_10_100"); reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT; ret_val = e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_OFFSET_HD_CTRL, reg_data); if (ret_val) return ret_val; /* Configure Transmit Inter-Packet Gap */ tipg = E1000_READ_REG(hw, E1000_TIPG); tipg &= ~E1000_TIPG_IPGT_MASK; tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN; E1000_WRITE_REG(hw, E1000_TIPG, tipg); do { ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); if (ret_val) return ret_val; ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data2); if (ret_val) return ret_val; i++; } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY)); if (duplex == HALF_DUPLEX) reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER; else reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; return hw->phy.ops.write_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); } /** * e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation * @hw: pointer to the HW structure * * Configure the KMRN interface by applying last minute quirks for * gigabit operation. **/ STATIC s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw) { s32 ret_val; u16 reg_data, reg_data2; u32 tipg; u32 i = 0; DEBUGFUNC("e1000_configure_kmrn_for_1000"); reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT; ret_val = e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_OFFSET_HD_CTRL, reg_data); if (ret_val) return ret_val; /* Configure Transmit Inter-Packet Gap */ tipg = E1000_READ_REG(hw, E1000_TIPG); tipg &= ~E1000_TIPG_IPGT_MASK; tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN; E1000_WRITE_REG(hw, E1000_TIPG, tipg); do { ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); if (ret_val) return ret_val; ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data2); if (ret_val) return ret_val; i++; } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY)); reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; return hw->phy.ops.write_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); } /** * e1000_read_kmrn_reg_80003es2lan - Read kumeran register * @hw: pointer to the HW structure * @offset: register offset to be read * @data: pointer to the read data * * Acquire semaphore, then read the PHY register at offset * using the kumeran interface. The information retrieved is stored in data. * Release the semaphore before exiting. **/ STATIC s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset, u16 *data) { u32 kmrnctrlsta; s32 ret_val; DEBUGFUNC("e1000_read_kmrn_reg_80003es2lan"); ret_val = e1000_acquire_mac_csr_80003es2lan(hw); if (ret_val) return ret_val; kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN; E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta); E1000_WRITE_FLUSH(hw); usec_delay(2); kmrnctrlsta = E1000_READ_REG(hw, E1000_KMRNCTRLSTA); *data = (u16)kmrnctrlsta; e1000_release_mac_csr_80003es2lan(hw); return ret_val; } /** * e1000_write_kmrn_reg_80003es2lan - Write kumeran register * @hw: pointer to the HW structure * @offset: register offset to write to * @data: data to write at register offset * * Acquire semaphore, then write the data to PHY register * at the offset using the kumeran interface. Release semaphore * before exiting. **/ STATIC s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset, u16 data) { u32 kmrnctrlsta; s32 ret_val; DEBUGFUNC("e1000_write_kmrn_reg_80003es2lan"); ret_val = e1000_acquire_mac_csr_80003es2lan(hw); if (ret_val) return ret_val; kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & E1000_KMRNCTRLSTA_OFFSET) | data; E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta); E1000_WRITE_FLUSH(hw); usec_delay(2); e1000_release_mac_csr_80003es2lan(hw); return ret_val; } /** * e1000_read_mac_addr_80003es2lan - Read device MAC address * @hw: pointer to the HW structure **/ STATIC s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw) { s32 ret_val; DEBUGFUNC("e1000_read_mac_addr_80003es2lan"); /* If there's an alternate MAC address place it in RAR0 * so that it will override the Si installed default perm * address. */ ret_val = e1000_check_alt_mac_addr_generic(hw); if (ret_val) return ret_val; return e1000_read_mac_addr_generic(hw); } /** * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down * @hw: pointer to the HW structure * * In the case of a PHY power down to save power, or to turn off link during a * driver unload, or wake on lan is not enabled, remove the link. **/ STATIC void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw) { /* If the management interface is not enabled, then power down */ if (!(hw->mac.ops.check_mng_mode(hw) || hw->phy.ops.check_reset_block(hw))) e1000_power_down_phy_copper(hw); return; } /** * e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters * @hw: pointer to the HW structure * * Clears the hardware counters by reading the counter registers. **/ STATIC void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw) { DEBUGFUNC("e1000_clear_hw_cntrs_80003es2lan"); e1000_clear_hw_cntrs_base_generic(hw); E1000_READ_REG(hw, E1000_PRC64); E1000_READ_REG(hw, E1000_PRC127); E1000_READ_REG(hw, E1000_PRC255); E1000_READ_REG(hw, E1000_PRC511); E1000_READ_REG(hw, E1000_PRC1023); E1000_READ_REG(hw, E1000_PRC1522); E1000_READ_REG(hw, E1000_PTC64); E1000_READ_REG(hw, E1000_PTC127); E1000_READ_REG(hw, E1000_PTC255); E1000_READ_REG(hw, E1000_PTC511); E1000_READ_REG(hw, E1000_PTC1023); E1000_READ_REG(hw, E1000_PTC1522); E1000_READ_REG(hw, E1000_ALGNERRC); E1000_READ_REG(hw, E1000_RXERRC); E1000_READ_REG(hw, E1000_TNCRS); E1000_READ_REG(hw, E1000_CEXTERR); E1000_READ_REG(hw, E1000_TSCTC); E1000_READ_REG(hw, E1000_TSCTFC); E1000_READ_REG(hw, E1000_MGTPRC); E1000_READ_REG(hw, E1000_MGTPDC); E1000_READ_REG(hw, E1000_MGTPTC); E1000_READ_REG(hw, E1000_IAC); E1000_READ_REG(hw, E1000_ICRXOC); E1000_READ_REG(hw, E1000_ICRXPTC); E1000_READ_REG(hw, E1000_ICRXATC); E1000_READ_REG(hw, E1000_ICTXPTC); E1000_READ_REG(hw, E1000_ICTXATC); E1000_READ_REG(hw, E1000_ICTXQEC); E1000_READ_REG(hw, E1000_ICTXQMTC); E1000_READ_REG(hw, E1000_ICRXDMTC); }