/* SPDX-License-Identifier: BSD-3-Clause * Copyright 2017-2019 NXP */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* RTA header files */ #include #include #include #ifdef RTE_LIBRTE_PMD_CAAM_JR_DEBUG #define CAAM_JR_DBG 1 #else #define CAAM_JR_DBG 0 #endif #define CRYPTODEV_NAME_CAAM_JR_PMD crypto_caam_jr static uint8_t cryptodev_driver_id; int caam_jr_logtype; enum rta_sec_era rta_sec_era; /* Lists the states possible for the SEC user space driver. */ enum sec_driver_state_e { SEC_DRIVER_STATE_IDLE, /* Driver not initialized */ SEC_DRIVER_STATE_STARTED, /* Driver initialized and can be used*/ SEC_DRIVER_STATE_RELEASE, /* Driver release is in progress */ }; /* Job rings used for communication with SEC HW */ static struct sec_job_ring_t g_job_rings[MAX_SEC_JOB_RINGS]; /* The current state of SEC user space driver */ static enum sec_driver_state_e g_driver_state = SEC_DRIVER_STATE_IDLE; /* The number of job rings used by SEC user space driver */ static int g_job_rings_no; static int g_job_rings_max; struct sec_outring_entry { phys_addr_t desc; /* Pointer to completed descriptor */ uint32_t status; /* Status for completed descriptor */ } __rte_packed; /* virtual address conversin when mempool support is available for ctx */ static inline phys_addr_t caam_jr_vtop_ctx(struct caam_jr_op_ctx *ctx, void *vaddr) { return (size_t)vaddr - ctx->vtop_offset; } static inline void caam_jr_op_ending(struct caam_jr_op_ctx *ctx) { /* report op status to sym->op and then free the ctx memory */ rte_mempool_put(ctx->ctx_pool, (void *)ctx); } static inline struct caam_jr_op_ctx * caam_jr_alloc_ctx(struct caam_jr_session *ses) { struct caam_jr_op_ctx *ctx; int ret; ret = rte_mempool_get(ses->ctx_pool, (void **)(&ctx)); if (!ctx || ret) { CAAM_JR_DP_WARN("Alloc sec descriptor failed!"); return NULL; } /* * Clear SG memory. There are 16 SG entries of 16 Bytes each. * one call to dcbz_64() clear 64 bytes, hence calling it 4 times * to clear all the SG entries. caam_jr_alloc_ctx() is called for * each packet, memset is costlier than dcbz_64(). */ dcbz_64(&ctx->sg[SG_CACHELINE_0]); dcbz_64(&ctx->sg[SG_CACHELINE_1]); dcbz_64(&ctx->sg[SG_CACHELINE_2]); dcbz_64(&ctx->sg[SG_CACHELINE_3]); ctx->ctx_pool = ses->ctx_pool; ctx->vtop_offset = (size_t) ctx - rte_mempool_virt2iova(ctx); return ctx; } static void caam_jr_stats_get(struct rte_cryptodev *dev, struct rte_cryptodev_stats *stats) { struct caam_jr_qp **qp = (struct caam_jr_qp **) dev->data->queue_pairs; int i; PMD_INIT_FUNC_TRACE(); if (stats == NULL) { CAAM_JR_ERR("Invalid stats ptr NULL"); return; } for (i = 0; i < dev->data->nb_queue_pairs; i++) { if (qp[i] == NULL) { CAAM_JR_WARN("Uninitialised queue pair"); continue; } stats->enqueued_count += qp[i]->tx_pkts; stats->dequeued_count += qp[i]->rx_pkts; stats->enqueue_err_count += qp[i]->tx_errs; stats->dequeue_err_count += qp[i]->rx_errs; CAAM_JR_INFO("extra stats:\n\tRX Poll ERR = %" PRIu64 "\n\tTX Ring Full = %" PRIu64, qp[i]->rx_poll_err, qp[i]->tx_ring_full); } } static void caam_jr_stats_reset(struct rte_cryptodev *dev) { int i; struct caam_jr_qp **qp = (struct caam_jr_qp **) (dev->data->queue_pairs); PMD_INIT_FUNC_TRACE(); for (i = 0; i < dev->data->nb_queue_pairs; i++) { if (qp[i] == NULL) { CAAM_JR_WARN("Uninitialised queue pair"); continue; } qp[i]->rx_pkts = 0; qp[i]->rx_errs = 0; qp[i]->rx_poll_err = 0; qp[i]->tx_pkts = 0; qp[i]->tx_errs = 0; qp[i]->tx_ring_full = 0; } } static inline int is_cipher_only(struct caam_jr_session *ses) { return ((ses->cipher_alg != RTE_CRYPTO_CIPHER_NULL) && (ses->auth_alg == RTE_CRYPTO_AUTH_NULL)); } static inline int is_auth_only(struct caam_jr_session *ses) { return ((ses->cipher_alg == RTE_CRYPTO_CIPHER_NULL) && (ses->auth_alg != RTE_CRYPTO_AUTH_NULL)); } static inline int is_aead(struct caam_jr_session *ses) { return ((ses->cipher_alg == 0) && (ses->auth_alg == 0) && (ses->aead_alg != 0)); } static inline int is_auth_cipher(struct caam_jr_session *ses) { return ((ses->cipher_alg != RTE_CRYPTO_CIPHER_NULL) && (ses->auth_alg != RTE_CRYPTO_AUTH_NULL) && (ses->proto_alg != RTE_SECURITY_PROTOCOL_IPSEC)); } static inline int is_proto_ipsec(struct caam_jr_session *ses) { return (ses->proto_alg == RTE_SECURITY_PROTOCOL_IPSEC); } static inline int is_encode(struct caam_jr_session *ses) { return ses->dir == DIR_ENC; } static inline int is_decode(struct caam_jr_session *ses) { return ses->dir == DIR_DEC; } static inline void caam_auth_alg(struct caam_jr_session *ses, struct alginfo *alginfo_a) { switch (ses->auth_alg) { case RTE_CRYPTO_AUTH_NULL: ses->digest_length = 0; break; case RTE_CRYPTO_AUTH_MD5_HMAC: alginfo_a->algtype = (ses->proto_alg == RTE_SECURITY_PROTOCOL_IPSEC) ? OP_PCL_IPSEC_HMAC_MD5_96 : OP_ALG_ALGSEL_MD5; alginfo_a->algmode = OP_ALG_AAI_HMAC; break; case RTE_CRYPTO_AUTH_SHA1_HMAC: alginfo_a->algtype = (ses->proto_alg == RTE_SECURITY_PROTOCOL_IPSEC) ? OP_PCL_IPSEC_HMAC_SHA1_96 : OP_ALG_ALGSEL_SHA1; alginfo_a->algmode = OP_ALG_AAI_HMAC; break; case RTE_CRYPTO_AUTH_SHA224_HMAC: alginfo_a->algtype = (ses->proto_alg == RTE_SECURITY_PROTOCOL_IPSEC) ? OP_PCL_IPSEC_HMAC_SHA1_160 : OP_ALG_ALGSEL_SHA224; alginfo_a->algmode = OP_ALG_AAI_HMAC; break; case RTE_CRYPTO_AUTH_SHA256_HMAC: alginfo_a->algtype = (ses->proto_alg == RTE_SECURITY_PROTOCOL_IPSEC) ? OP_PCL_IPSEC_HMAC_SHA2_256_128 : OP_ALG_ALGSEL_SHA256; alginfo_a->algmode = OP_ALG_AAI_HMAC; break; case RTE_CRYPTO_AUTH_SHA384_HMAC: alginfo_a->algtype = (ses->proto_alg == RTE_SECURITY_PROTOCOL_IPSEC) ? OP_PCL_IPSEC_HMAC_SHA2_384_192 : OP_ALG_ALGSEL_SHA384; alginfo_a->algmode = OP_ALG_AAI_HMAC; break; case RTE_CRYPTO_AUTH_SHA512_HMAC: alginfo_a->algtype = (ses->proto_alg == RTE_SECURITY_PROTOCOL_IPSEC) ? OP_PCL_IPSEC_HMAC_SHA2_512_256 : OP_ALG_ALGSEL_SHA512; alginfo_a->algmode = OP_ALG_AAI_HMAC; break; default: CAAM_JR_DEBUG("unsupported auth alg %u", ses->auth_alg); } } static inline void caam_cipher_alg(struct caam_jr_session *ses, struct alginfo *alginfo_c) { switch (ses->cipher_alg) { case RTE_CRYPTO_CIPHER_NULL: break; case RTE_CRYPTO_CIPHER_AES_CBC: alginfo_c->algtype = (ses->proto_alg == RTE_SECURITY_PROTOCOL_IPSEC) ? OP_PCL_IPSEC_AES_CBC : OP_ALG_ALGSEL_AES; alginfo_c->algmode = OP_ALG_AAI_CBC; break; case RTE_CRYPTO_CIPHER_3DES_CBC: alginfo_c->algtype = (ses->proto_alg == RTE_SECURITY_PROTOCOL_IPSEC) ? OP_PCL_IPSEC_3DES : OP_ALG_ALGSEL_3DES; alginfo_c->algmode = OP_ALG_AAI_CBC; break; case RTE_CRYPTO_CIPHER_AES_CTR: alginfo_c->algtype = (ses->proto_alg == RTE_SECURITY_PROTOCOL_IPSEC) ? OP_PCL_IPSEC_AES_CTR : OP_ALG_ALGSEL_AES; alginfo_c->algmode = OP_ALG_AAI_CTR; break; default: CAAM_JR_DEBUG("unsupported cipher alg %d", ses->cipher_alg); } } static inline void caam_aead_alg(struct caam_jr_session *ses, struct alginfo *alginfo) { switch (ses->aead_alg) { case RTE_CRYPTO_AEAD_AES_GCM: alginfo->algtype = OP_ALG_ALGSEL_AES; alginfo->algmode = OP_ALG_AAI_GCM; break; default: CAAM_JR_DEBUG("unsupported AEAD alg %d", ses->aead_alg); } } /* prepare command block of the session */ static int caam_jr_prep_cdb(struct caam_jr_session *ses) { struct alginfo alginfo_c = {0}, alginfo_a = {0}, alginfo = {0}; int32_t shared_desc_len = 0; struct sec_cdb *cdb; int err; #if CAAM_BYTE_ORDER == CORE_BYTE_ORDER int swap = false; #else int swap = true; #endif if (ses->cdb) caam_jr_dma_free(ses->cdb); cdb = caam_jr_dma_mem_alloc(L1_CACHE_BYTES, sizeof(struct sec_cdb)); if (!cdb) { CAAM_JR_ERR("failed to allocate memory for cdb\n"); return -1; } ses->cdb = cdb; memset(cdb, 0, sizeof(struct sec_cdb)); if (is_cipher_only(ses)) { caam_cipher_alg(ses, &alginfo_c); if (alginfo_c.algtype == (unsigned int)CAAM_JR_ALG_UNSUPPORT) { CAAM_JR_ERR("not supported cipher alg"); rte_free(cdb); return -ENOTSUP; } alginfo_c.key = (size_t)ses->cipher_key.data; alginfo_c.keylen = ses->cipher_key.length; alginfo_c.key_enc_flags = 0; alginfo_c.key_type = RTA_DATA_IMM; shared_desc_len = cnstr_shdsc_blkcipher( cdb->sh_desc, true, swap, SHR_NEVER, &alginfo_c, ses->iv.length, ses->dir); } else if (is_auth_only(ses)) { caam_auth_alg(ses, &alginfo_a); if (alginfo_a.algtype == (unsigned int)CAAM_JR_ALG_UNSUPPORT) { CAAM_JR_ERR("not supported auth alg"); rte_free(cdb); return -ENOTSUP; } alginfo_a.key = (size_t)ses->auth_key.data; alginfo_a.keylen = ses->auth_key.length; alginfo_a.key_enc_flags = 0; alginfo_a.key_type = RTA_DATA_IMM; shared_desc_len = cnstr_shdsc_hmac(cdb->sh_desc, true, swap, SHR_NEVER, &alginfo_a, !ses->dir, ses->digest_length); } else if (is_aead(ses)) { caam_aead_alg(ses, &alginfo); if (alginfo.algtype == (unsigned int)CAAM_JR_ALG_UNSUPPORT) { CAAM_JR_ERR("not supported aead alg"); rte_free(cdb); return -ENOTSUP; } alginfo.key = (size_t)ses->aead_key.data; alginfo.keylen = ses->aead_key.length; alginfo.key_enc_flags = 0; alginfo.key_type = RTA_DATA_IMM; if (ses->dir == DIR_ENC) shared_desc_len = cnstr_shdsc_gcm_encap( cdb->sh_desc, true, swap, SHR_NEVER, &alginfo, ses->iv.length, ses->digest_length); else shared_desc_len = cnstr_shdsc_gcm_decap( cdb->sh_desc, true, swap, SHR_NEVER, &alginfo, ses->iv.length, ses->digest_length); } else { caam_cipher_alg(ses, &alginfo_c); if (alginfo_c.algtype == (unsigned int)CAAM_JR_ALG_UNSUPPORT) { CAAM_JR_ERR("not supported cipher alg"); rte_free(cdb); return -ENOTSUP; } alginfo_c.key = (size_t)ses->cipher_key.data; alginfo_c.keylen = ses->cipher_key.length; alginfo_c.key_enc_flags = 0; alginfo_c.key_type = RTA_DATA_IMM; caam_auth_alg(ses, &alginfo_a); if (alginfo_a.algtype == (unsigned int)CAAM_JR_ALG_UNSUPPORT) { CAAM_JR_ERR("not supported auth alg"); rte_free(cdb); return -ENOTSUP; } alginfo_a.key = (size_t)ses->auth_key.data; alginfo_a.keylen = ses->auth_key.length; alginfo_a.key_enc_flags = 0; alginfo_a.key_type = RTA_DATA_IMM; cdb->sh_desc[0] = alginfo_c.keylen; cdb->sh_desc[1] = alginfo_a.keylen; err = rta_inline_query(IPSEC_AUTH_VAR_AES_DEC_BASE_DESC_LEN, MIN_JOB_DESC_SIZE, (unsigned int *)cdb->sh_desc, &cdb->sh_desc[2], 2); if (err < 0) { CAAM_JR_ERR("Crypto: Incorrect key lengths"); rte_free(cdb); return err; } if (cdb->sh_desc[2] & 1) alginfo_c.key_type = RTA_DATA_IMM; else { alginfo_c.key = (size_t)caam_jr_mem_vtop( (void *)(size_t)alginfo_c.key); alginfo_c.key_type = RTA_DATA_PTR; } if (cdb->sh_desc[2] & (1<<1)) alginfo_a.key_type = RTA_DATA_IMM; else { alginfo_a.key = (size_t)caam_jr_mem_vtop( (void *)(size_t)alginfo_a.key); alginfo_a.key_type = RTA_DATA_PTR; } cdb->sh_desc[0] = 0; cdb->sh_desc[1] = 0; cdb->sh_desc[2] = 0; if (is_proto_ipsec(ses)) { if (ses->dir == DIR_ENC) { shared_desc_len = cnstr_shdsc_ipsec_new_encap( cdb->sh_desc, true, swap, SHR_SERIAL, &ses->encap_pdb, (uint8_t *)&ses->ip4_hdr, &alginfo_c, &alginfo_a); } else if (ses->dir == DIR_DEC) { shared_desc_len = cnstr_shdsc_ipsec_new_decap( cdb->sh_desc, true, swap, SHR_SERIAL, &ses->decap_pdb, &alginfo_c, &alginfo_a); } } else { /* Auth_only_len is overwritten in fd for each job */ shared_desc_len = cnstr_shdsc_authenc(cdb->sh_desc, true, swap, SHR_SERIAL, &alginfo_c, &alginfo_a, ses->iv.length, ses->digest_length, ses->dir); } } if (shared_desc_len < 0) { CAAM_JR_ERR("error in preparing command block"); return shared_desc_len; } #if CAAM_JR_DBG SEC_DUMP_DESC(cdb->sh_desc); #endif cdb->sh_hdr.hi.field.idlen = shared_desc_len; return 0; } /* @brief Poll the HW for already processed jobs in the JR * and silently discard the available jobs or notify them to UA * with indicated error code. * * @param [in,out] job_ring The job ring to poll. * @param [in] do_notify Can be #TRUE or #FALSE. Indicates if * descriptors are to be discarded * or notified to UA with given error_code. * @param [out] notified_descs Number of notified descriptors. Can be NULL * if do_notify is #FALSE */ static void hw_flush_job_ring(struct sec_job_ring_t *job_ring, uint32_t do_notify, uint32_t *notified_descs) { int32_t jobs_no_to_discard = 0; int32_t discarded_descs_no = 0; CAAM_JR_DEBUG("Jr[%p] pi[%d] ci[%d].Flushing jr notify desc=[%d]", job_ring, job_ring->pidx, job_ring->cidx, do_notify); jobs_no_to_discard = hw_get_no_finished_jobs(job_ring); /* Discard all jobs */ CAAM_JR_DEBUG("Jr[%p] pi[%d] ci[%d].Discarding %d descs", job_ring, job_ring->pidx, job_ring->cidx, jobs_no_to_discard); while (jobs_no_to_discard > discarded_descs_no) { discarded_descs_no++; /* Now increment the consumer index for the current job ring, * AFTER saving job in temporary location! * Increment the consumer index for the current job ring */ job_ring->cidx = SEC_CIRCULAR_COUNTER(job_ring->cidx, SEC_JOB_RING_SIZE); hw_remove_entries(job_ring, 1); } if (do_notify == true) { ASSERT(notified_descs != NULL); *notified_descs = discarded_descs_no; } } /* @brief Poll the HW for already processed jobs in the JR * and notify the available jobs to UA. * * @param [in] job_ring The job ring to poll. * @param [in] limit The maximum number of jobs to notify. * If set to negative value, all available jobs are * notified. * * @retval >=0 for No of jobs notified to UA. * @retval -1 for error */ static int hw_poll_job_ring(struct sec_job_ring_t *job_ring, struct rte_crypto_op **ops, int32_t limit, struct caam_jr_qp *jr_qp) { int32_t jobs_no_to_notify = 0; /* the number of done jobs to notify*/ int32_t number_of_jobs_available = 0; int32_t notified_descs_no = 0; uint32_t sec_error_code = 0; struct job_descriptor *current_desc; phys_addr_t current_desc_addr; phys_addr_t *temp_addr; struct caam_jr_op_ctx *ctx; /* TODO check for ops have memory*/ /* check here if any JR error that cannot be written * in the output status word has occurred */ if (JR_REG_JRINT_JRE_EXTRACT(GET_JR_REG(JRINT, job_ring))) { CAAM_JR_INFO("err received"); sec_error_code = JR_REG_JRINT_ERR_TYPE_EXTRACT( GET_JR_REG(JRINT, job_ring)); if (unlikely(sec_error_code)) { hw_job_ring_error_print(job_ring, sec_error_code); return -1; } } /* compute the number of jobs available in the job ring based on the * producer and consumer index values. */ number_of_jobs_available = hw_get_no_finished_jobs(job_ring); /* Compute the number of notifications that need to be raised to UA * If limit > total number of done jobs -> notify all done jobs * If limit = 0 -> error * If limit < total number of done jobs -> notify a number * of done jobs equal with limit */ jobs_no_to_notify = (limit > number_of_jobs_available) ? number_of_jobs_available : limit; CAAM_JR_DP_DEBUG( "Jr[%p] pi[%d] ci[%d].limit =%d Available=%d.Jobs to notify=%d", job_ring, job_ring->pidx, job_ring->cidx, limit, number_of_jobs_available, jobs_no_to_notify); rte_smp_rmb(); while (jobs_no_to_notify > notified_descs_no) { static uint64_t false_alarm; static uint64_t real_poll; /* Get job status here */ sec_error_code = job_ring->output_ring[job_ring->cidx].status; /* Get completed descriptor */ temp_addr = &(job_ring->output_ring[job_ring->cidx].desc); current_desc_addr = (phys_addr_t)sec_read_addr(temp_addr); real_poll++; /* todo check if it is false alarm no desc present */ if (!current_desc_addr) { false_alarm++; printf("false alarm %" PRIu64 "real %" PRIu64 " sec_err =0x%x cidx Index =0%d\n", false_alarm, real_poll, sec_error_code, job_ring->cidx); rte_panic("CAAM JR descriptor NULL"); return notified_descs_no; } current_desc = (struct job_descriptor *) caam_jr_dma_ptov(current_desc_addr); /* now increment the consumer index for the current job ring, * AFTER saving job in temporary location! */ job_ring->cidx = SEC_CIRCULAR_COUNTER(job_ring->cidx, SEC_JOB_RING_SIZE); /* Signal that the job has been processed and the slot is free*/ hw_remove_entries(job_ring, 1); /*TODO for multiple ops, packets*/ ctx = container_of(current_desc, struct caam_jr_op_ctx, jobdes); if (unlikely(sec_error_code)) { CAAM_JR_ERR("desc at cidx %d generated error 0x%x\n", job_ring->cidx, sec_error_code); hw_handle_job_ring_error(job_ring, sec_error_code); //todo improve with exact errors ctx->op->status = RTE_CRYPTO_OP_STATUS_ERROR; jr_qp->rx_errs++; } else { ctx->op->status = RTE_CRYPTO_OP_STATUS_SUCCESS; #if CAAM_JR_DBG if (ctx->op->sym->m_dst) { rte_hexdump(stdout, "PROCESSED", rte_pktmbuf_mtod(ctx->op->sym->m_dst, void *), rte_pktmbuf_data_len(ctx->op->sym->m_dst)); } else { rte_hexdump(stdout, "PROCESSED", rte_pktmbuf_mtod(ctx->op->sym->m_src, void *), rte_pktmbuf_data_len(ctx->op->sym->m_src)); } #endif } if (ctx->op->sess_type == RTE_CRYPTO_OP_SECURITY_SESSION) { struct ip *ip4_hdr; if (ctx->op->sym->m_dst) { /*TODO check for ip header or other*/ ip4_hdr = (struct ip *) rte_pktmbuf_mtod(ctx->op->sym->m_dst, char*); ctx->op->sym->m_dst->pkt_len = rte_be_to_cpu_16(ip4_hdr->ip_len); ctx->op->sym->m_dst->data_len = rte_be_to_cpu_16(ip4_hdr->ip_len); } else { ip4_hdr = (struct ip *) rte_pktmbuf_mtod(ctx->op->sym->m_src, char*); ctx->op->sym->m_src->pkt_len = rte_be_to_cpu_16(ip4_hdr->ip_len); ctx->op->sym->m_src->data_len = rte_be_to_cpu_16(ip4_hdr->ip_len); } } *ops = ctx->op; caam_jr_op_ending(ctx); ops++; notified_descs_no++; } return notified_descs_no; } static uint16_t caam_jr_dequeue_burst(void *qp, struct rte_crypto_op **ops, uint16_t nb_ops) { struct caam_jr_qp *jr_qp = (struct caam_jr_qp *)qp; struct sec_job_ring_t *ring = jr_qp->ring; int num_rx; int ret; CAAM_JR_DP_DEBUG("Jr[%p]Polling. limit[%d]", ring, nb_ops); /* Poll job ring * If nb_ops < 0 -> poll JR until no more notifications are available. * If nb_ops > 0 -> poll JR until limit is reached. */ /* Run hw poll job ring */ num_rx = hw_poll_job_ring(ring, ops, nb_ops, jr_qp); if (num_rx < 0) { CAAM_JR_ERR("Error polling SEC engine (%d)", num_rx); return 0; } CAAM_JR_DP_DEBUG("Jr[%p].Jobs notified[%d]. ", ring, num_rx); if (ring->jr_mode == SEC_NOTIFICATION_TYPE_NAPI) { if (num_rx < nb_ops) { ret = caam_jr_enable_irqs(ring->irq_fd); SEC_ASSERT(ret == 0, ret, "Failed to enable irqs for job ring %p", ring); } } else if (ring->jr_mode == SEC_NOTIFICATION_TYPE_IRQ) { /* Always enable IRQ generation when in pure IRQ mode */ ret = caam_jr_enable_irqs(ring->irq_fd); SEC_ASSERT(ret == 0, ret, "Failed to enable irqs for job ring %p", ring); } jr_qp->rx_pkts += num_rx; return num_rx; } /** * packet looks like: * |<----data_len------->| * |ip_header|ah_header|icv|payload| * ^ * | * mbuf->pkt.data */ static inline struct caam_jr_op_ctx * build_auth_only_sg(struct rte_crypto_op *op, struct caam_jr_session *ses) { struct rte_crypto_sym_op *sym = op->sym; struct rte_mbuf *mbuf = sym->m_src; struct caam_jr_op_ctx *ctx; struct sec4_sg_entry *sg; int length; struct sec_cdb *cdb; uint64_t sdesc_offset; struct sec_job_descriptor_t *jobdescr; uint8_t extra_segs; if (is_decode(ses)) extra_segs = 2; else extra_segs = 1; if ((mbuf->nb_segs + extra_segs) > MAX_SG_ENTRIES) { CAAM_JR_DP_ERR("Auth: Max sec segs supported is %d", MAX_SG_ENTRIES); return NULL; } ctx = caam_jr_alloc_ctx(ses); if (!ctx) return NULL; ctx->op = op; cdb = ses->cdb; sdesc_offset = (size_t) ((char *)&cdb->sh_desc - (char *)cdb); jobdescr = (struct sec_job_descriptor_t *) ctx->jobdes.desc; SEC_JD_INIT(jobdescr); SEC_JD_SET_SD(jobdescr, (phys_addr_t)(caam_jr_dma_vtop(cdb)) + sdesc_offset, cdb->sh_hdr.hi.field.idlen); /* output */ SEC_JD_SET_OUT_PTR(jobdescr, (uint64_t)sym->auth.digest.phys_addr, 0, ses->digest_length); /*input */ sg = &ctx->sg[0]; length = sym->auth.data.length; sg->ptr = cpu_to_caam64(rte_pktmbuf_iova(mbuf) + sym->auth.data.offset); sg->len = cpu_to_caam32(mbuf->data_len - sym->auth.data.offset); /* Successive segs */ mbuf = mbuf->next; while (mbuf) { sg++; sg->ptr = cpu_to_caam64(rte_pktmbuf_iova(mbuf)); sg->len = cpu_to_caam32(mbuf->data_len); mbuf = mbuf->next; } if (is_decode(ses)) { /* digest verification case */ sg++; /* hash result or digest, save digest first */ rte_memcpy(ctx->digest, sym->auth.digest.data, ses->digest_length); #if CAAM_JR_DBG rte_hexdump(stdout, "ICV", ctx->digest, ses->digest_length); #endif sg->ptr = cpu_to_caam64(caam_jr_vtop_ctx(ctx, ctx->digest)); sg->len = cpu_to_caam32(ses->digest_length); length += ses->digest_length; } else { sg->len -= ses->digest_length; } /* last element*/ sg->len |= cpu_to_caam32(SEC4_SG_LEN_FIN); SEC_JD_SET_IN_PTR(jobdescr, (uint64_t)caam_jr_vtop_ctx(ctx, &ctx->sg[0]), 0, length); /* enabling sg list */ (jobdescr)->seq_in.command.word |= 0x01000000; return ctx; } static inline struct caam_jr_op_ctx * build_auth_only(struct rte_crypto_op *op, struct caam_jr_session *ses) { struct rte_crypto_sym_op *sym = op->sym; struct caam_jr_op_ctx *ctx; struct sec4_sg_entry *sg; rte_iova_t start_addr; struct sec_cdb *cdb; uint64_t sdesc_offset; struct sec_job_descriptor_t *jobdescr; ctx = caam_jr_alloc_ctx(ses); if (!ctx) return NULL; ctx->op = op; cdb = ses->cdb; sdesc_offset = (size_t) ((char *)&cdb->sh_desc - (char *)cdb); start_addr = rte_pktmbuf_iova(sym->m_src); jobdescr = (struct sec_job_descriptor_t *) ctx->jobdes.desc; SEC_JD_INIT(jobdescr); SEC_JD_SET_SD(jobdescr, (phys_addr_t)(caam_jr_dma_vtop(cdb)) + sdesc_offset, cdb->sh_hdr.hi.field.idlen); /* output */ SEC_JD_SET_OUT_PTR(jobdescr, (uint64_t)sym->auth.digest.phys_addr, 0, ses->digest_length); /*input */ if (is_decode(ses)) { sg = &ctx->sg[0]; SEC_JD_SET_IN_PTR(jobdescr, (uint64_t)caam_jr_vtop_ctx(ctx, sg), 0, (sym->auth.data.length + ses->digest_length)); /* enabling sg list */ (jobdescr)->seq_in.command.word |= 0x01000000; /* hash result or digest, save digest first */ rte_memcpy(ctx->digest, sym->auth.digest.data, ses->digest_length); sg->ptr = cpu_to_caam64(start_addr + sym->auth.data.offset); sg->len = cpu_to_caam32(sym->auth.data.length); #if CAAM_JR_DBG rte_hexdump(stdout, "ICV", ctx->digest, ses->digest_length); #endif /* let's check digest by hw */ sg++; sg->ptr = cpu_to_caam64(caam_jr_vtop_ctx(ctx, ctx->digest)); sg->len = cpu_to_caam32(ses->digest_length); /* last element*/ sg->len |= cpu_to_caam32(SEC4_SG_LEN_FIN); } else { SEC_JD_SET_IN_PTR(jobdescr, (uint64_t)start_addr, sym->auth.data.offset, sym->auth.data.length); } return ctx; } static inline struct caam_jr_op_ctx * build_cipher_only_sg(struct rte_crypto_op *op, struct caam_jr_session *ses) { struct rte_crypto_sym_op *sym = op->sym; struct rte_mbuf *mbuf = sym->m_src; struct caam_jr_op_ctx *ctx; struct sec4_sg_entry *sg, *in_sg; int length; struct sec_cdb *cdb; uint64_t sdesc_offset; uint8_t *IV_ptr = rte_crypto_op_ctod_offset(op, uint8_t *, ses->iv.offset); struct sec_job_descriptor_t *jobdescr; uint8_t reg_segs; if (sym->m_dst) { mbuf = sym->m_dst; reg_segs = mbuf->nb_segs + sym->m_src->nb_segs + 2; } else { mbuf = sym->m_src; reg_segs = mbuf->nb_segs * 2 + 2; } if (reg_segs > MAX_SG_ENTRIES) { CAAM_JR_DP_ERR("Cipher: Max sec segs supported is %d", MAX_SG_ENTRIES); return NULL; } ctx = caam_jr_alloc_ctx(ses); if (!ctx) return NULL; ctx->op = op; cdb = ses->cdb; sdesc_offset = (size_t) ((char *)&cdb->sh_desc - (char *)cdb); jobdescr = (struct sec_job_descriptor_t *) ctx->jobdes.desc; SEC_JD_INIT(jobdescr); SEC_JD_SET_SD(jobdescr, (phys_addr_t)(caam_jr_dma_vtop(cdb)) + sdesc_offset, cdb->sh_hdr.hi.field.idlen); #if CAAM_JR_DBG CAAM_JR_INFO("mbuf offset =%d, cipher offset = %d, length =%d+%d", sym->m_src->data_off, sym->cipher.data.offset, sym->cipher.data.length, ses->iv.length); #endif /* output */ if (sym->m_dst) mbuf = sym->m_dst; else mbuf = sym->m_src; sg = &ctx->sg[0]; length = sym->cipher.data.length; sg->ptr = cpu_to_caam64(rte_pktmbuf_iova(mbuf) + sym->cipher.data.offset); sg->len = cpu_to_caam32(mbuf->data_len - sym->cipher.data.offset); /* Successive segs */ mbuf = mbuf->next; while (mbuf) { sg++; sg->ptr = cpu_to_caam64(rte_pktmbuf_iova(mbuf)); sg->len = cpu_to_caam32(mbuf->data_len); mbuf = mbuf->next; } /* last element*/ sg->len |= cpu_to_caam32(SEC4_SG_LEN_FIN); SEC_JD_SET_OUT_PTR(jobdescr, (uint64_t)caam_jr_vtop_ctx(ctx, &ctx->sg[0]), 0, length); /*enabling sg bit */ (jobdescr)->seq_out.command.word |= 0x01000000; /*input */ sg++; mbuf = sym->m_src; in_sg = sg; length = sym->cipher.data.length + ses->iv.length; /* IV */ sg->ptr = cpu_to_caam64(caam_jr_dma_vtop(IV_ptr)); sg->len = cpu_to_caam32(ses->iv.length); /* 1st seg */ sg++; sg->ptr = cpu_to_caam64(rte_pktmbuf_iova(mbuf) + sym->cipher.data.offset); sg->len = cpu_to_caam32(mbuf->data_len - sym->cipher.data.offset); /* Successive segs */ mbuf = mbuf->next; while (mbuf) { sg++; sg->ptr = cpu_to_caam64(rte_pktmbuf_iova(mbuf)); sg->len = cpu_to_caam32(mbuf->data_len); mbuf = mbuf->next; } /* last element*/ sg->len |= cpu_to_caam32(SEC4_SG_LEN_FIN); SEC_JD_SET_IN_PTR(jobdescr, (uint64_t)caam_jr_vtop_ctx(ctx, in_sg), 0, length); /*enabling sg bit */ (jobdescr)->seq_in.command.word |= 0x01000000; return ctx; } static inline struct caam_jr_op_ctx * build_cipher_only(struct rte_crypto_op *op, struct caam_jr_session *ses) { struct rte_crypto_sym_op *sym = op->sym; struct caam_jr_op_ctx *ctx; struct sec4_sg_entry *sg; rte_iova_t src_start_addr, dst_start_addr; struct sec_cdb *cdb; uint64_t sdesc_offset; uint8_t *IV_ptr = rte_crypto_op_ctod_offset(op, uint8_t *, ses->iv.offset); struct sec_job_descriptor_t *jobdescr; ctx = caam_jr_alloc_ctx(ses); if (!ctx) return NULL; ctx->op = op; cdb = ses->cdb; sdesc_offset = (size_t) ((char *)&cdb->sh_desc - (char *)cdb); src_start_addr = rte_pktmbuf_iova(sym->m_src); if (sym->m_dst) dst_start_addr = rte_pktmbuf_iova(sym->m_dst); else dst_start_addr = src_start_addr; jobdescr = (struct sec_job_descriptor_t *) ctx->jobdes.desc; SEC_JD_INIT(jobdescr); SEC_JD_SET_SD(jobdescr, (phys_addr_t)(caam_jr_dma_vtop(cdb)) + sdesc_offset, cdb->sh_hdr.hi.field.idlen); #if CAAM_JR_DBG CAAM_JR_INFO("mbuf offset =%d, cipher offset = %d, length =%d+%d", sym->m_src->data_off, sym->cipher.data.offset, sym->cipher.data.length, ses->iv.length); #endif /* output */ SEC_JD_SET_OUT_PTR(jobdescr, (uint64_t)dst_start_addr, sym->cipher.data.offset, sym->cipher.data.length + ses->iv.length); /*input */ sg = &ctx->sg[0]; SEC_JD_SET_IN_PTR(jobdescr, (uint64_t)caam_jr_vtop_ctx(ctx, sg), 0, sym->cipher.data.length + ses->iv.length); /*enabling sg bit */ (jobdescr)->seq_in.command.word |= 0x01000000; sg->ptr = cpu_to_caam64(caam_jr_dma_vtop(IV_ptr)); sg->len = cpu_to_caam32(ses->iv.length); sg = &ctx->sg[1]; sg->ptr = cpu_to_caam64(src_start_addr + sym->cipher.data.offset); sg->len = cpu_to_caam32(sym->cipher.data.length); /* last element*/ sg->len |= cpu_to_caam32(SEC4_SG_LEN_FIN); return ctx; } /* For decapsulation: * Input: * +----+----------------+--------------------------------+-----+ * | IV | Auth-only data | Authenticated & Encrypted data | ICV | * +----+----------------+--------------------------------+-----+ * Output: * +----+--------------------------+ * | Decrypted & authenticated data | * +----+--------------------------+ */ static inline struct caam_jr_op_ctx * build_cipher_auth_sg(struct rte_crypto_op *op, struct caam_jr_session *ses) { struct rte_crypto_sym_op *sym = op->sym; struct caam_jr_op_ctx *ctx; struct sec4_sg_entry *sg, *out_sg, *in_sg; struct rte_mbuf *mbuf; uint32_t length = 0; struct sec_cdb *cdb; uint64_t sdesc_offset; uint8_t req_segs; uint8_t *IV_ptr = rte_crypto_op_ctod_offset(op, uint8_t *, ses->iv.offset); struct sec_job_descriptor_t *jobdescr; uint16_t auth_hdr_len = sym->cipher.data.offset - sym->auth.data.offset; uint16_t auth_tail_len = sym->auth.data.length - sym->cipher.data.length - auth_hdr_len; uint32_t auth_only_len = (auth_tail_len << 16) | auth_hdr_len; if (sym->m_dst) { mbuf = sym->m_dst; req_segs = mbuf->nb_segs + sym->m_src->nb_segs + 3; } else { mbuf = sym->m_src; req_segs = mbuf->nb_segs * 2 + 3; } if (req_segs > MAX_SG_ENTRIES) { CAAM_JR_DP_ERR("Cipher-Auth: Max sec segs supported is %d", MAX_SG_ENTRIES); return NULL; } ctx = caam_jr_alloc_ctx(ses); if (!ctx) return NULL; ctx->op = op; cdb = ses->cdb; sdesc_offset = (size_t) ((char *)&cdb->sh_desc - (char *)cdb); jobdescr = (struct sec_job_descriptor_t *) ctx->jobdes.desc; SEC_JD_INIT(jobdescr); SEC_JD_SET_SD(jobdescr, (phys_addr_t)(caam_jr_dma_vtop(cdb)) + sdesc_offset, cdb->sh_hdr.hi.field.idlen); /* output */ if (sym->m_dst) mbuf = sym->m_dst; else mbuf = sym->m_src; out_sg = &ctx->sg[0]; if (is_encode(ses)) length = sym->auth.data.length + ses->digest_length; else length = sym->auth.data.length; sg = &ctx->sg[0]; /* 1st seg */ sg->ptr = cpu_to_caam64(rte_pktmbuf_iova(mbuf) + sym->auth.data.offset); sg->len = cpu_to_caam32(mbuf->data_len - sym->auth.data.offset); /* Successive segs */ mbuf = mbuf->next; while (mbuf) { sg++; sg->ptr = cpu_to_caam64(rte_pktmbuf_iova(mbuf)); sg->len = cpu_to_caam32(mbuf->data_len); mbuf = mbuf->next; } if (is_encode(ses)) { /* set auth output */ sg++; sg->ptr = cpu_to_caam64(sym->auth.digest.phys_addr); sg->len = cpu_to_caam32(ses->digest_length); } /* last element*/ sg->len |= cpu_to_caam32(SEC4_SG_LEN_FIN); SEC_JD_SET_OUT_PTR(jobdescr, (uint64_t)caam_jr_dma_vtop(out_sg), 0, length); /* set sg bit */ (jobdescr)->seq_out.command.word |= 0x01000000; /* input */ sg++; mbuf = sym->m_src; in_sg = sg; if (is_encode(ses)) length = ses->iv.length + sym->auth.data.length; else length = ses->iv.length + sym->auth.data.length + ses->digest_length; sg->ptr = cpu_to_caam64(caam_jr_dma_vtop(IV_ptr)); sg->len = cpu_to_caam32(ses->iv.length); sg++; /* 1st seg */ sg->ptr = cpu_to_caam64(rte_pktmbuf_iova(mbuf) + sym->auth.data.offset); sg->len = cpu_to_caam32(mbuf->data_len - sym->auth.data.offset); /* Successive segs */ mbuf = mbuf->next; while (mbuf) { sg++; sg->ptr = cpu_to_caam64(rte_pktmbuf_iova(mbuf)); sg->len = cpu_to_caam32(mbuf->data_len); mbuf = mbuf->next; } if (is_decode(ses)) { sg++; rte_memcpy(ctx->digest, sym->auth.digest.data, ses->digest_length); sg->ptr = cpu_to_caam64(caam_jr_dma_vtop(ctx->digest)); sg->len = cpu_to_caam32(ses->digest_length); } /* last element*/ sg->len |= cpu_to_caam32(SEC4_SG_LEN_FIN); SEC_JD_SET_IN_PTR(jobdescr, (uint64_t)caam_jr_dma_vtop(in_sg), 0, length); /* set sg bit */ (jobdescr)->seq_in.command.word |= 0x01000000; /* Auth_only_len is set as 0 in descriptor and it is * overwritten here in the jd which will update * the DPOVRD reg. */ if (auth_only_len) /* set sg bit */ (jobdescr)->dpovrd = 0x80000000 | auth_only_len; return ctx; } static inline struct caam_jr_op_ctx * build_cipher_auth(struct rte_crypto_op *op, struct caam_jr_session *ses) { struct rte_crypto_sym_op *sym = op->sym; struct caam_jr_op_ctx *ctx; struct sec4_sg_entry *sg; rte_iova_t src_start_addr, dst_start_addr; uint32_t length = 0; struct sec_cdb *cdb; uint64_t sdesc_offset; uint8_t *IV_ptr = rte_crypto_op_ctod_offset(op, uint8_t *, ses->iv.offset); struct sec_job_descriptor_t *jobdescr; uint16_t auth_hdr_len = sym->cipher.data.offset - sym->auth.data.offset; uint16_t auth_tail_len = sym->auth.data.length - sym->cipher.data.length - auth_hdr_len; uint32_t auth_only_len = (auth_tail_len << 16) | auth_hdr_len; src_start_addr = rte_pktmbuf_iova(sym->m_src); if (sym->m_dst) dst_start_addr = rte_pktmbuf_iova(sym->m_dst); else dst_start_addr = src_start_addr; ctx = caam_jr_alloc_ctx(ses); if (!ctx) return NULL; ctx->op = op; cdb = ses->cdb; sdesc_offset = (size_t) ((char *)&cdb->sh_desc - (char *)cdb); jobdescr = (struct sec_job_descriptor_t *) ctx->jobdes.desc; SEC_JD_INIT(jobdescr); SEC_JD_SET_SD(jobdescr, (phys_addr_t)(caam_jr_dma_vtop(cdb)) + sdesc_offset, cdb->sh_hdr.hi.field.idlen); /* input */ sg = &ctx->sg[0]; if (is_encode(ses)) { sg->ptr = cpu_to_caam64(caam_jr_dma_vtop(IV_ptr)); sg->len = cpu_to_caam32(ses->iv.length); length += ses->iv.length; sg++; sg->ptr = cpu_to_caam64(src_start_addr + sym->auth.data.offset); sg->len = cpu_to_caam32(sym->auth.data.length); length += sym->auth.data.length; /* last element*/ sg->len |= cpu_to_caam32(SEC4_SG_LEN_FIN); } else { sg->ptr = cpu_to_caam64(caam_jr_dma_vtop(IV_ptr)); sg->len = cpu_to_caam32(ses->iv.length); length += ses->iv.length; sg++; sg->ptr = cpu_to_caam64(src_start_addr + sym->auth.data.offset); sg->len = cpu_to_caam32(sym->auth.data.length); length += sym->auth.data.length; rte_memcpy(ctx->digest, sym->auth.digest.data, ses->digest_length); sg++; sg->ptr = cpu_to_caam64(caam_jr_dma_vtop(ctx->digest)); sg->len = cpu_to_caam32(ses->digest_length); length += ses->digest_length; /* last element*/ sg->len |= cpu_to_caam32(SEC4_SG_LEN_FIN); } SEC_JD_SET_IN_PTR(jobdescr, (uint64_t)caam_jr_dma_vtop(&ctx->sg[0]), 0, length); /* set sg bit */ (jobdescr)->seq_in.command.word |= 0x01000000; /* output */ sg = &ctx->sg[6]; sg->ptr = cpu_to_caam64(dst_start_addr + sym->cipher.data.offset); sg->len = cpu_to_caam32(sym->cipher.data.length); length = sym->cipher.data.length; if (is_encode(ses)) { /* set auth output */ sg++; sg->ptr = cpu_to_caam64(sym->auth.digest.phys_addr); sg->len = cpu_to_caam32(ses->digest_length); length += ses->digest_length; } /* last element*/ sg->len |= cpu_to_caam32(SEC4_SG_LEN_FIN); SEC_JD_SET_OUT_PTR(jobdescr, (uint64_t)caam_jr_dma_vtop(&ctx->sg[6]), 0, length); /* set sg bit */ (jobdescr)->seq_out.command.word |= 0x01000000; /* Auth_only_len is set as 0 in descriptor and it is * overwritten here in the jd which will update * the DPOVRD reg. */ if (auth_only_len) /* set sg bit */ (jobdescr)->dpovrd = 0x80000000 | auth_only_len; return ctx; } static inline struct caam_jr_op_ctx * build_proto(struct rte_crypto_op *op, struct caam_jr_session *ses) { struct rte_crypto_sym_op *sym = op->sym; struct caam_jr_op_ctx *ctx = NULL; phys_addr_t src_start_addr, dst_start_addr; struct sec_cdb *cdb; uint64_t sdesc_offset; struct sec_job_descriptor_t *jobdescr; ctx = caam_jr_alloc_ctx(ses); if (!ctx) return NULL; ctx->op = op; src_start_addr = rte_pktmbuf_iova(sym->m_src); if (sym->m_dst) dst_start_addr = rte_pktmbuf_iova(sym->m_dst); else dst_start_addr = src_start_addr; cdb = ses->cdb; sdesc_offset = (size_t) ((char *)&cdb->sh_desc - (char *)cdb); jobdescr = (struct sec_job_descriptor_t *) ctx->jobdes.desc; SEC_JD_INIT(jobdescr); SEC_JD_SET_SD(jobdescr, (phys_addr_t)(caam_jr_dma_vtop(cdb)) + sdesc_offset, cdb->sh_hdr.hi.field.idlen); /* output */ SEC_JD_SET_OUT_PTR(jobdescr, (uint64_t)dst_start_addr, 0, sym->m_src->buf_len - sym->m_src->data_off); /* input */ SEC_JD_SET_IN_PTR(jobdescr, (uint64_t)src_start_addr, 0, sym->m_src->pkt_len); sym->m_src->packet_type &= ~RTE_PTYPE_L4_MASK; return ctx; } static int caam_jr_enqueue_op(struct rte_crypto_op *op, struct caam_jr_qp *qp) { struct sec_job_ring_t *ring = qp->ring; struct caam_jr_session *ses; struct caam_jr_op_ctx *ctx = NULL; struct sec_job_descriptor_t *jobdescr __rte_unused; switch (op->sess_type) { case RTE_CRYPTO_OP_WITH_SESSION: ses = (struct caam_jr_session *) get_sym_session_private_data(op->sym->session, cryptodev_driver_id); break; case RTE_CRYPTO_OP_SECURITY_SESSION: ses = (struct caam_jr_session *) get_sec_session_private_data( op->sym->sec_session); break; default: CAAM_JR_DP_ERR("sessionless crypto op not supported"); qp->tx_errs++; return -1; } if (unlikely(!ses->qp || ses->qp != qp)) { CAAM_JR_DP_DEBUG("Old:sess->qp=%p New qp = %p\n", ses->qp, qp); ses->qp = qp; caam_jr_prep_cdb(ses); } if (rte_pktmbuf_is_contiguous(op->sym->m_src)) { if (is_auth_cipher(ses)) ctx = build_cipher_auth(op, ses); else if (is_aead(ses)) goto err1; else if (is_auth_only(ses)) ctx = build_auth_only(op, ses); else if (is_cipher_only(ses)) ctx = build_cipher_only(op, ses); else if (is_proto_ipsec(ses)) ctx = build_proto(op, ses); } else { if (is_auth_cipher(ses)) ctx = build_cipher_auth_sg(op, ses); else if (is_aead(ses)) goto err1; else if (is_auth_only(ses)) ctx = build_auth_only_sg(op, ses); else if (is_cipher_only(ses)) ctx = build_cipher_only_sg(op, ses); } err1: if (unlikely(!ctx)) { qp->tx_errs++; CAAM_JR_ERR("not supported sec op"); return -1; } #if CAAM_JR_DBG if (is_decode(ses)) rte_hexdump(stdout, "DECODE", rte_pktmbuf_mtod(op->sym->m_src, void *), rte_pktmbuf_data_len(op->sym->m_src)); else rte_hexdump(stdout, "ENCODE", rte_pktmbuf_mtod(op->sym->m_src, void *), rte_pktmbuf_data_len(op->sym->m_src)); printf("\n JD before conversion\n"); for (int i = 0; i < 12; i++) printf("\n 0x%08x", ctx->jobdes.desc[i]); #endif CAAM_JR_DP_DEBUG("Jr[%p] pi[%d] ci[%d].Before sending desc", ring, ring->pidx, ring->cidx); /* todo - do we want to retry */ if (SEC_JOB_RING_IS_FULL(ring->pidx, ring->cidx, SEC_JOB_RING_SIZE, SEC_JOB_RING_SIZE)) { CAAM_JR_DP_DEBUG("Ring FULL Jr[%p] pi[%d] ci[%d].Size = %d", ring, ring->pidx, ring->cidx, SEC_JOB_RING_SIZE); caam_jr_op_ending(ctx); qp->tx_ring_full++; return -EBUSY; } #if CORE_BYTE_ORDER != CAAM_BYTE_ORDER jobdescr = (struct sec_job_descriptor_t *) ctx->jobdes.desc; jobdescr->deschdr.command.word = cpu_to_caam32(jobdescr->deschdr.command.word); jobdescr->sd_ptr = cpu_to_caam64(jobdescr->sd_ptr); jobdescr->seq_out.command.word = cpu_to_caam32(jobdescr->seq_out.command.word); jobdescr->seq_out_ptr = cpu_to_caam64(jobdescr->seq_out_ptr); jobdescr->out_ext_length = cpu_to_caam32(jobdescr->out_ext_length); jobdescr->seq_in.command.word = cpu_to_caam32(jobdescr->seq_in.command.word); jobdescr->seq_in_ptr = cpu_to_caam64(jobdescr->seq_in_ptr); jobdescr->in_ext_length = cpu_to_caam32(jobdescr->in_ext_length); jobdescr->load_dpovrd.command.word = cpu_to_caam32(jobdescr->load_dpovrd.command.word); jobdescr->dpovrd = cpu_to_caam32(jobdescr->dpovrd); #endif /* Set ptr in input ring to current descriptor */ sec_write_addr(&ring->input_ring[ring->pidx], (phys_addr_t)caam_jr_vtop_ctx(ctx, ctx->jobdes.desc)); rte_smp_wmb(); /* Notify HW that a new job is enqueued */ hw_enqueue_desc_on_job_ring(ring); /* increment the producer index for the current job ring */ ring->pidx = SEC_CIRCULAR_COUNTER(ring->pidx, SEC_JOB_RING_SIZE); return 0; } static uint16_t caam_jr_enqueue_burst(void *qp, struct rte_crypto_op **ops, uint16_t nb_ops) { /* Function to transmit the frames to given device and queuepair */ uint32_t loop; int32_t ret; struct caam_jr_qp *jr_qp = (struct caam_jr_qp *)qp; uint16_t num_tx = 0; /*Prepare each packet which is to be sent*/ for (loop = 0; loop < nb_ops; loop++) { ret = caam_jr_enqueue_op(ops[loop], jr_qp); if (!ret) num_tx++; } jr_qp->tx_pkts += num_tx; return num_tx; } /* Release queue pair */ static int caam_jr_queue_pair_release(struct rte_cryptodev *dev, uint16_t qp_id) { struct sec_job_ring_t *internals; struct caam_jr_qp *qp = NULL; PMD_INIT_FUNC_TRACE(); CAAM_JR_DEBUG("dev =%p, queue =%d", dev, qp_id); internals = dev->data->dev_private; if (qp_id >= internals->max_nb_queue_pairs) { CAAM_JR_ERR("Max supported qpid %d", internals->max_nb_queue_pairs); return -EINVAL; } qp = &internals->qps[qp_id]; qp->ring = NULL; dev->data->queue_pairs[qp_id] = NULL; return 0; } /* Setup a queue pair */ static int caam_jr_queue_pair_setup( struct rte_cryptodev *dev, uint16_t qp_id, __rte_unused const struct rte_cryptodev_qp_conf *qp_conf, __rte_unused int socket_id) { struct sec_job_ring_t *internals; struct caam_jr_qp *qp = NULL; PMD_INIT_FUNC_TRACE(); CAAM_JR_DEBUG("dev =%p, queue =%d, conf =%p", dev, qp_id, qp_conf); internals = dev->data->dev_private; if (qp_id >= internals->max_nb_queue_pairs) { CAAM_JR_ERR("Max supported qpid %d", internals->max_nb_queue_pairs); return -EINVAL; } qp = &internals->qps[qp_id]; qp->ring = internals; dev->data->queue_pairs[qp_id] = qp; return 0; } /* Return the number of allocated queue pairs */ static uint32_t caam_jr_queue_pair_count(struct rte_cryptodev *dev) { PMD_INIT_FUNC_TRACE(); return dev->data->nb_queue_pairs; } /* Returns the size of the aesni gcm session structure */ static unsigned int caam_jr_sym_session_get_size(struct rte_cryptodev *dev __rte_unused) { PMD_INIT_FUNC_TRACE(); return sizeof(struct caam_jr_session); } static int caam_jr_cipher_init(struct rte_cryptodev *dev __rte_unused, struct rte_crypto_sym_xform *xform, struct caam_jr_session *session) { session->cipher_alg = xform->cipher.algo; session->iv.length = xform->cipher.iv.length; session->iv.offset = xform->cipher.iv.offset; session->cipher_key.data = rte_zmalloc(NULL, xform->cipher.key.length, RTE_CACHE_LINE_SIZE); if (session->cipher_key.data == NULL && xform->cipher.key.length > 0) { CAAM_JR_ERR("No Memory for cipher key\n"); return -ENOMEM; } session->cipher_key.length = xform->cipher.key.length; memcpy(session->cipher_key.data, xform->cipher.key.data, xform->cipher.key.length); session->dir = (xform->cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) ? DIR_ENC : DIR_DEC; return 0; } static int caam_jr_auth_init(struct rte_cryptodev *dev __rte_unused, struct rte_crypto_sym_xform *xform, struct caam_jr_session *session) { session->auth_alg = xform->auth.algo; session->auth_key.data = rte_zmalloc(NULL, xform->auth.key.length, RTE_CACHE_LINE_SIZE); if (session->auth_key.data == NULL && xform->auth.key.length > 0) { CAAM_JR_ERR("No Memory for auth key\n"); return -ENOMEM; } session->auth_key.length = xform->auth.key.length; session->digest_length = xform->auth.digest_length; memcpy(session->auth_key.data, xform->auth.key.data, xform->auth.key.length); session->dir = (xform->auth.op == RTE_CRYPTO_AUTH_OP_GENERATE) ? DIR_ENC : DIR_DEC; return 0; } static int caam_jr_aead_init(struct rte_cryptodev *dev __rte_unused, struct rte_crypto_sym_xform *xform, struct caam_jr_session *session) { session->aead_alg = xform->aead.algo; session->iv.length = xform->aead.iv.length; session->iv.offset = xform->aead.iv.offset; session->auth_only_len = xform->aead.aad_length; session->aead_key.data = rte_zmalloc(NULL, xform->aead.key.length, RTE_CACHE_LINE_SIZE); if (session->aead_key.data == NULL && xform->aead.key.length > 0) { CAAM_JR_ERR("No Memory for aead key\n"); return -ENOMEM; } session->aead_key.length = xform->aead.key.length; session->digest_length = xform->aead.digest_length; memcpy(session->aead_key.data, xform->aead.key.data, xform->aead.key.length); session->dir = (xform->aead.op == RTE_CRYPTO_AEAD_OP_ENCRYPT) ? DIR_ENC : DIR_DEC; return 0; } static int caam_jr_set_session_parameters(struct rte_cryptodev *dev, struct rte_crypto_sym_xform *xform, void *sess) { struct sec_job_ring_t *internals = dev->data->dev_private; struct caam_jr_session *session = sess; PMD_INIT_FUNC_TRACE(); if (unlikely(sess == NULL)) { CAAM_JR_ERR("invalid session struct"); return -EINVAL; } /* Default IV length = 0 */ session->iv.length = 0; /* Cipher Only */ if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER && xform->next == NULL) { session->auth_alg = RTE_CRYPTO_AUTH_NULL; caam_jr_cipher_init(dev, xform, session); /* Authentication Only */ } else if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH && xform->next == NULL) { session->cipher_alg = RTE_CRYPTO_CIPHER_NULL; caam_jr_auth_init(dev, xform, session); /* Cipher then Authenticate */ } else if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER && xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH) { if (xform->cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) { caam_jr_cipher_init(dev, xform, session); caam_jr_auth_init(dev, xform->next, session); } else { CAAM_JR_ERR("Not supported: Auth then Cipher"); goto err1; } /* Authenticate then Cipher */ } else if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH && xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER) { if (xform->next->cipher.op == RTE_CRYPTO_CIPHER_OP_DECRYPT) { caam_jr_auth_init(dev, xform, session); caam_jr_cipher_init(dev, xform->next, session); } else { CAAM_JR_ERR("Not supported: Auth then Cipher"); goto err1; } /* AEAD operation for AES-GCM kind of Algorithms */ } else if (xform->type == RTE_CRYPTO_SYM_XFORM_AEAD && xform->next == NULL) { caam_jr_aead_init(dev, xform, session); } else { CAAM_JR_ERR("Invalid crypto type"); return -EINVAL; } session->ctx_pool = internals->ctx_pool; return 0; err1: rte_free(session->cipher_key.data); rte_free(session->auth_key.data); memset(session, 0, sizeof(struct caam_jr_session)); return -EINVAL; } static int caam_jr_sym_session_configure(struct rte_cryptodev *dev, struct rte_crypto_sym_xform *xform, struct rte_cryptodev_sym_session *sess, struct rte_mempool *mempool) { void *sess_private_data; int ret; PMD_INIT_FUNC_TRACE(); if (rte_mempool_get(mempool, &sess_private_data)) { CAAM_JR_ERR("Couldn't get object from session mempool"); return -ENOMEM; } memset(sess_private_data, 0, sizeof(struct caam_jr_session)); ret = caam_jr_set_session_parameters(dev, xform, sess_private_data); if (ret != 0) { CAAM_JR_ERR("failed to configure session parameters"); /* Return session to mempool */ rte_mempool_put(mempool, sess_private_data); return ret; } set_sym_session_private_data(sess, dev->driver_id, sess_private_data); return 0; } /* Clear the memory of session so it doesn't leave key material behind */ static void caam_jr_sym_session_clear(struct rte_cryptodev *dev, struct rte_cryptodev_sym_session *sess) { uint8_t index = dev->driver_id; void *sess_priv = get_sym_session_private_data(sess, index); struct caam_jr_session *s = (struct caam_jr_session *)sess_priv; PMD_INIT_FUNC_TRACE(); if (sess_priv) { struct rte_mempool *sess_mp = rte_mempool_from_obj(sess_priv); rte_free(s->cipher_key.data); rte_free(s->auth_key.data); memset(s, 0, sizeof(struct caam_jr_session)); set_sym_session_private_data(sess, index, NULL); rte_mempool_put(sess_mp, sess_priv); } } static int caam_jr_set_ipsec_session(__rte_unused struct rte_cryptodev *dev, struct rte_security_session_conf *conf, void *sess) { struct sec_job_ring_t *internals = dev->data->dev_private; struct rte_security_ipsec_xform *ipsec_xform = &conf->ipsec; struct rte_crypto_auth_xform *auth_xform; struct rte_crypto_cipher_xform *cipher_xform; struct caam_jr_session *session = (struct caam_jr_session *)sess; PMD_INIT_FUNC_TRACE(); if (ipsec_xform->direction == RTE_SECURITY_IPSEC_SA_DIR_EGRESS) { cipher_xform = &conf->crypto_xform->cipher; auth_xform = &conf->crypto_xform->next->auth; } else { auth_xform = &conf->crypto_xform->auth; cipher_xform = &conf->crypto_xform->next->cipher; } session->proto_alg = conf->protocol; session->cipher_key.data = rte_zmalloc(NULL, cipher_xform->key.length, RTE_CACHE_LINE_SIZE); if (session->cipher_key.data == NULL && cipher_xform->key.length > 0) { CAAM_JR_ERR("No Memory for cipher key\n"); return -ENOMEM; } session->cipher_key.length = cipher_xform->key.length; session->auth_key.data = rte_zmalloc(NULL, auth_xform->key.length, RTE_CACHE_LINE_SIZE); if (session->auth_key.data == NULL && auth_xform->key.length > 0) { CAAM_JR_ERR("No Memory for auth key\n"); rte_free(session->cipher_key.data); return -ENOMEM; } session->auth_key.length = auth_xform->key.length; memcpy(session->cipher_key.data, cipher_xform->key.data, cipher_xform->key.length); memcpy(session->auth_key.data, auth_xform->key.data, auth_xform->key.length); switch (auth_xform->algo) { case RTE_CRYPTO_AUTH_SHA1_HMAC: session->auth_alg = RTE_CRYPTO_AUTH_SHA1_HMAC; break; case RTE_CRYPTO_AUTH_MD5_HMAC: session->auth_alg = RTE_CRYPTO_AUTH_MD5_HMAC; break; case RTE_CRYPTO_AUTH_SHA256_HMAC: session->auth_alg = RTE_CRYPTO_AUTH_SHA256_HMAC; break; case RTE_CRYPTO_AUTH_SHA384_HMAC: session->auth_alg = RTE_CRYPTO_AUTH_SHA384_HMAC; break; case RTE_CRYPTO_AUTH_SHA512_HMAC: session->auth_alg = RTE_CRYPTO_AUTH_SHA512_HMAC; break; case RTE_CRYPTO_AUTH_AES_CMAC: session->auth_alg = RTE_CRYPTO_AUTH_AES_CMAC; break; case RTE_CRYPTO_AUTH_NULL: session->auth_alg = RTE_CRYPTO_AUTH_NULL; break; case RTE_CRYPTO_AUTH_SHA224_HMAC: case RTE_CRYPTO_AUTH_AES_XCBC_MAC: case RTE_CRYPTO_AUTH_SNOW3G_UIA2: case RTE_CRYPTO_AUTH_SHA1: case RTE_CRYPTO_AUTH_SHA256: case RTE_CRYPTO_AUTH_SHA512: case RTE_CRYPTO_AUTH_SHA224: case RTE_CRYPTO_AUTH_SHA384: case RTE_CRYPTO_AUTH_MD5: case RTE_CRYPTO_AUTH_AES_GMAC: case RTE_CRYPTO_AUTH_KASUMI_F9: case RTE_CRYPTO_AUTH_AES_CBC_MAC: case RTE_CRYPTO_AUTH_ZUC_EIA3: CAAM_JR_ERR("Crypto: Unsupported auth alg %u\n", auth_xform->algo); goto out; default: CAAM_JR_ERR("Crypto: Undefined Auth specified %u\n", auth_xform->algo); goto out; } switch (cipher_xform->algo) { case RTE_CRYPTO_CIPHER_AES_CBC: session->cipher_alg = RTE_CRYPTO_CIPHER_AES_CBC; break; case RTE_CRYPTO_CIPHER_3DES_CBC: session->cipher_alg = RTE_CRYPTO_CIPHER_3DES_CBC; break; case RTE_CRYPTO_CIPHER_AES_CTR: session->cipher_alg = RTE_CRYPTO_CIPHER_AES_CTR; break; case RTE_CRYPTO_CIPHER_NULL: case RTE_CRYPTO_CIPHER_SNOW3G_UEA2: case RTE_CRYPTO_CIPHER_3DES_ECB: case RTE_CRYPTO_CIPHER_AES_ECB: case RTE_CRYPTO_CIPHER_KASUMI_F8: CAAM_JR_ERR("Crypto: Unsupported Cipher alg %u\n", cipher_xform->algo); goto out; default: CAAM_JR_ERR("Crypto: Undefined Cipher specified %u\n", cipher_xform->algo); goto out; } if (ipsec_xform->direction == RTE_SECURITY_IPSEC_SA_DIR_EGRESS) { memset(&session->encap_pdb, 0, sizeof(struct ipsec_encap_pdb) + sizeof(session->ip4_hdr)); session->ip4_hdr.ip_v = IPVERSION; session->ip4_hdr.ip_hl = 5; session->ip4_hdr.ip_len = rte_cpu_to_be_16( sizeof(session->ip4_hdr)); session->ip4_hdr.ip_tos = ipsec_xform->tunnel.ipv4.dscp; session->ip4_hdr.ip_id = 0; session->ip4_hdr.ip_off = 0; session->ip4_hdr.ip_ttl = ipsec_xform->tunnel.ipv4.ttl; session->ip4_hdr.ip_p = (ipsec_xform->proto == RTE_SECURITY_IPSEC_SA_PROTO_ESP) ? IPPROTO_ESP : IPPROTO_AH; session->ip4_hdr.ip_sum = 0; session->ip4_hdr.ip_src = ipsec_xform->tunnel.ipv4.src_ip; session->ip4_hdr.ip_dst = ipsec_xform->tunnel.ipv4.dst_ip; session->ip4_hdr.ip_sum = calc_chksum((uint16_t *) (void *)&session->ip4_hdr, sizeof(struct ip)); session->encap_pdb.options = (IPVERSION << PDBNH_ESP_ENCAP_SHIFT) | PDBOPTS_ESP_OIHI_PDB_INL | PDBOPTS_ESP_IVSRC | PDBHMO_ESP_ENCAP_DTTL; if (ipsec_xform->options.esn) session->encap_pdb.options |= PDBOPTS_ESP_ESN; session->encap_pdb.spi = ipsec_xform->spi; session->encap_pdb.ip_hdr_len = sizeof(struct ip); session->dir = DIR_ENC; } else if (ipsec_xform->direction == RTE_SECURITY_IPSEC_SA_DIR_INGRESS) { memset(&session->decap_pdb, 0, sizeof(struct ipsec_decap_pdb)); session->decap_pdb.options = sizeof(struct ip) << 16; if (ipsec_xform->options.esn) session->decap_pdb.options |= PDBOPTS_ESP_ESN; session->dir = DIR_DEC; } else goto out; session->ctx_pool = internals->ctx_pool; return 0; out: rte_free(session->auth_key.data); rte_free(session->cipher_key.data); memset(session, 0, sizeof(struct caam_jr_session)); return -1; } static int caam_jr_security_session_create(void *dev, struct rte_security_session_conf *conf, struct rte_security_session *sess, struct rte_mempool *mempool) { void *sess_private_data; struct rte_cryptodev *cdev = (struct rte_cryptodev *)dev; int ret; if (rte_mempool_get(mempool, &sess_private_data)) { CAAM_JR_ERR("Couldn't get object from session mempool"); return -ENOMEM; } switch (conf->protocol) { case RTE_SECURITY_PROTOCOL_IPSEC: ret = caam_jr_set_ipsec_session(cdev, conf, sess_private_data); break; case RTE_SECURITY_PROTOCOL_MACSEC: return -ENOTSUP; default: return -EINVAL; } if (ret != 0) { CAAM_JR_ERR("failed to configure session parameters"); /* Return session to mempool */ rte_mempool_put(mempool, sess_private_data); return ret; } set_sec_session_private_data(sess, sess_private_data); return ret; } /* Clear the memory of session so it doesn't leave key material behind */ static int caam_jr_security_session_destroy(void *dev __rte_unused, struct rte_security_session *sess) { PMD_INIT_FUNC_TRACE(); void *sess_priv = get_sec_session_private_data(sess); struct caam_jr_session *s = (struct caam_jr_session *)sess_priv; if (sess_priv) { struct rte_mempool *sess_mp = rte_mempool_from_obj(sess_priv); rte_free(s->cipher_key.data); rte_free(s->auth_key.data); memset(sess, 0, sizeof(struct caam_jr_session)); set_sec_session_private_data(sess, NULL); rte_mempool_put(sess_mp, sess_priv); } return 0; } static int caam_jr_dev_configure(struct rte_cryptodev *dev, struct rte_cryptodev_config *config __rte_unused) { char str[20]; struct sec_job_ring_t *internals; PMD_INIT_FUNC_TRACE(); internals = dev->data->dev_private; snprintf(str, sizeof(str), "ctx_pool_%d", dev->data->dev_id); if (!internals->ctx_pool) { internals->ctx_pool = rte_mempool_create((const char *)str, CTX_POOL_NUM_BUFS, sizeof(struct caam_jr_op_ctx), CTX_POOL_CACHE_SIZE, 0, NULL, NULL, NULL, NULL, SOCKET_ID_ANY, 0); if (!internals->ctx_pool) { CAAM_JR_ERR("%s create failed\n", str); return -ENOMEM; } } else CAAM_JR_INFO("mempool already created for dev_id : %d", dev->data->dev_id); return 0; } static int caam_jr_dev_start(struct rte_cryptodev *dev __rte_unused) { PMD_INIT_FUNC_TRACE(); return 0; } static void caam_jr_dev_stop(struct rte_cryptodev *dev __rte_unused) { PMD_INIT_FUNC_TRACE(); } static int caam_jr_dev_close(struct rte_cryptodev *dev) { struct sec_job_ring_t *internals; PMD_INIT_FUNC_TRACE(); if (dev == NULL) return -ENOMEM; internals = dev->data->dev_private; rte_mempool_free(internals->ctx_pool); internals->ctx_pool = NULL; return 0; } static void caam_jr_dev_infos_get(struct rte_cryptodev *dev, struct rte_cryptodev_info *info) { struct sec_job_ring_t *internals = dev->data->dev_private; PMD_INIT_FUNC_TRACE(); if (info != NULL) { info->max_nb_queue_pairs = internals->max_nb_queue_pairs; info->feature_flags = dev->feature_flags; info->capabilities = caam_jr_get_cryptodev_capabilities(); info->sym.max_nb_sessions = internals->max_nb_sessions; info->driver_id = cryptodev_driver_id; } } static struct rte_cryptodev_ops caam_jr_ops = { .dev_configure = caam_jr_dev_configure, .dev_start = caam_jr_dev_start, .dev_stop = caam_jr_dev_stop, .dev_close = caam_jr_dev_close, .dev_infos_get = caam_jr_dev_infos_get, .stats_get = caam_jr_stats_get, .stats_reset = caam_jr_stats_reset, .queue_pair_setup = caam_jr_queue_pair_setup, .queue_pair_release = caam_jr_queue_pair_release, .queue_pair_count = caam_jr_queue_pair_count, .sym_session_get_size = caam_jr_sym_session_get_size, .sym_session_configure = caam_jr_sym_session_configure, .sym_session_clear = caam_jr_sym_session_clear }; static struct rte_security_ops caam_jr_security_ops = { .session_create = caam_jr_security_session_create, .session_update = NULL, .session_stats_get = NULL, .session_destroy = caam_jr_security_session_destroy, .set_pkt_metadata = NULL, .capabilities_get = caam_jr_get_security_capabilities }; /* @brief Flush job rings of any processed descs. * The processed descs are silently dropped, * WITHOUT being notified to UA. */ static void close_job_ring(struct sec_job_ring_t *job_ring) { if (job_ring->irq_fd != -1) { /* Producer index is frozen. If consumer index is not equal * with producer index, then we have descs to flush. */ while (job_ring->pidx != job_ring->cidx) hw_flush_job_ring(job_ring, false, NULL); /* free the uio job ring */ free_job_ring(job_ring->irq_fd); job_ring->irq_fd = -1; caam_jr_dma_free(job_ring->input_ring); caam_jr_dma_free(job_ring->output_ring); g_job_rings_no--; } } /** @brief Release the software and hardware resources tied to a job ring. * @param [in] job_ring The job ring * * @retval 0 for success * @retval -1 for error */ static int shutdown_job_ring(struct sec_job_ring_t *job_ring) { int ret = 0; PMD_INIT_FUNC_TRACE(); ASSERT(job_ring != NULL); ret = hw_shutdown_job_ring(job_ring); SEC_ASSERT(ret == 0, ret, "Failed to shutdown hardware job ring %p", job_ring); if (job_ring->coalescing_en) hw_job_ring_disable_coalescing(job_ring); if (job_ring->jr_mode != SEC_NOTIFICATION_TYPE_POLL) { ret = caam_jr_disable_irqs(job_ring->irq_fd); SEC_ASSERT(ret == 0, ret, "Failed to disable irqs for job ring %p", job_ring); } return ret; } /* * @brief Release the resources used by the SEC user space driver. * * Reset and release SEC's job rings indicated by the User Application at * init_job_ring() and free any memory allocated internally. * Call once during application tear down. * * @note In case there are any descriptors in-flight (descriptors received by * SEC driver for processing and for which no response was yet provided to UA), * the descriptors are discarded without any notifications to User Application. * * @retval ::0 is returned for a successful execution * @retval ::-1 is returned if SEC driver release is in progress */ static int caam_jr_dev_uninit(struct rte_cryptodev *dev) { struct sec_job_ring_t *internals; PMD_INIT_FUNC_TRACE(); if (dev == NULL) return -ENODEV; internals = dev->data->dev_private; rte_free(dev->security_ctx); /* If any descriptors in flight , poll and wait * until all descriptors are received and silently discarded. */ if (internals) { shutdown_job_ring(internals); close_job_ring(internals); rte_mempool_free(internals->ctx_pool); } CAAM_JR_INFO("Closing crypto device %s", dev->data->name); /* last caam jr instance) */ if (g_job_rings_no == 0) g_driver_state = SEC_DRIVER_STATE_IDLE; return SEC_SUCCESS; } /* @brief Initialize the software and hardware resources tied to a job ring. * @param [in] jr_mode; Model to be used by SEC Driver to receive * notifications from SEC. Can be either * of the three: #SEC_NOTIFICATION_TYPE_NAPI * #SEC_NOTIFICATION_TYPE_IRQ or * #SEC_NOTIFICATION_TYPE_POLL * @param [in] NAPI_mode The NAPI work mode to configure a job ring at * startup. Used only when #SEC_NOTIFICATION_TYPE * is set to #SEC_NOTIFICATION_TYPE_NAPI. * @param [in] irq_coalescing_timer This value determines the maximum * amount of time after processing a * descriptor before raising an interrupt. * @param [in] irq_coalescing_count This value determines how many * descriptors are completed before * raising an interrupt. * @param [in] reg_base_addr, The job ring base address register * @param [in] irq_id The job ring interrupt identification number. * @retval job_ring_handle for successful job ring configuration * @retval NULL on error * */ static void * init_job_ring(void *reg_base_addr, int irq_id) { struct sec_job_ring_t *job_ring = NULL; int i, ret = 0; int jr_mode = SEC_NOTIFICATION_TYPE_POLL; int napi_mode = 0; int irq_coalescing_timer = 0; int irq_coalescing_count = 0; for (i = 0; i < MAX_SEC_JOB_RINGS; i++) { if (g_job_rings[i].irq_fd == -1) { job_ring = &g_job_rings[i]; g_job_rings_no++; break; } } if (job_ring == NULL) { CAAM_JR_ERR("No free job ring\n"); return NULL; } job_ring->register_base_addr = reg_base_addr; job_ring->jr_mode = jr_mode; job_ring->napi_mode = 0; job_ring->irq_fd = irq_id; /* Allocate mem for input and output ring */ /* Allocate memory for input ring */ job_ring->input_ring = caam_jr_dma_mem_alloc(L1_CACHE_BYTES, SEC_DMA_MEM_INPUT_RING_SIZE); memset(job_ring->input_ring, 0, SEC_DMA_MEM_INPUT_RING_SIZE); /* Allocate memory for output ring */ job_ring->output_ring = caam_jr_dma_mem_alloc(L1_CACHE_BYTES, SEC_DMA_MEM_OUTPUT_RING_SIZE); memset(job_ring->output_ring, 0, SEC_DMA_MEM_OUTPUT_RING_SIZE); /* Reset job ring in SEC hw and configure job ring registers */ ret = hw_reset_job_ring(job_ring); if (ret != 0) { CAAM_JR_ERR("Failed to reset hardware job ring"); goto cleanup; } if (jr_mode == SEC_NOTIFICATION_TYPE_NAPI) { /* When SEC US driver works in NAPI mode, the UA can select * if the driver starts with IRQs on or off. */ if (napi_mode == SEC_STARTUP_INTERRUPT_MODE) { CAAM_JR_INFO("Enabling DONE IRQ generationon job ring - %p", job_ring); ret = caam_jr_enable_irqs(job_ring->irq_fd); if (ret != 0) { CAAM_JR_ERR("Failed to enable irqs for job ring"); goto cleanup; } } } else if (jr_mode == SEC_NOTIFICATION_TYPE_IRQ) { /* When SEC US driver works in pure interrupt mode, * IRQ's are always enabled. */ CAAM_JR_INFO("Enabling DONE IRQ generation on job ring - %p", job_ring); ret = caam_jr_enable_irqs(job_ring->irq_fd); if (ret != 0) { CAAM_JR_ERR("Failed to enable irqs for job ring"); goto cleanup; } } if (irq_coalescing_timer || irq_coalescing_count) { hw_job_ring_set_coalescing_param(job_ring, irq_coalescing_timer, irq_coalescing_count); hw_job_ring_enable_coalescing(job_ring); job_ring->coalescing_en = 1; } job_ring->jr_state = SEC_JOB_RING_STATE_STARTED; job_ring->max_nb_queue_pairs = RTE_CAAM_MAX_NB_SEC_QPS; job_ring->max_nb_sessions = RTE_CAAM_JR_PMD_MAX_NB_SESSIONS; return job_ring; cleanup: caam_jr_dma_free(job_ring->output_ring); caam_jr_dma_free(job_ring->input_ring); return NULL; } static int caam_jr_dev_init(const char *name, struct rte_vdev_device *vdev, struct rte_cryptodev_pmd_init_params *init_params) { struct rte_cryptodev *dev; struct rte_security_ctx *security_instance; struct uio_job_ring *job_ring; char str[RTE_CRYPTODEV_NAME_MAX_LEN]; PMD_INIT_FUNC_TRACE(); /* Validate driver state */ if (g_driver_state == SEC_DRIVER_STATE_IDLE) { g_job_rings_max = sec_configure(); if (!g_job_rings_max) { CAAM_JR_ERR("No job ring detected on UIO !!!!"); return -1; } /* Update driver state */ g_driver_state = SEC_DRIVER_STATE_STARTED; } if (g_job_rings_no >= g_job_rings_max) { CAAM_JR_ERR("No more job rings available max=%d!!!!", g_job_rings_max); return -1; } job_ring = config_job_ring(); if (job_ring == NULL) { CAAM_JR_ERR("failed to create job ring"); goto init_error; } snprintf(str, sizeof(str), "caam_jr%d", job_ring->jr_id); dev = rte_cryptodev_pmd_create(name, &vdev->device, init_params); if (dev == NULL) { CAAM_JR_ERR("failed to create cryptodev vdev"); goto cleanup; } /*TODO free it during teardown*/ dev->data->dev_private = init_job_ring(job_ring->register_base_addr, job_ring->uio_fd); if (!dev->data->dev_private) { CAAM_JR_ERR("Ring memory allocation failed\n"); goto cleanup2; } dev->driver_id = cryptodev_driver_id; dev->dev_ops = &caam_jr_ops; /* register rx/tx burst functions for data path */ dev->dequeue_burst = caam_jr_dequeue_burst; dev->enqueue_burst = caam_jr_enqueue_burst; dev->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO | RTE_CRYPTODEV_FF_HW_ACCELERATED | RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING | RTE_CRYPTODEV_FF_SECURITY | RTE_CRYPTODEV_FF_IN_PLACE_SGL | RTE_CRYPTODEV_FF_OOP_SGL_IN_SGL_OUT | RTE_CRYPTODEV_FF_OOP_SGL_IN_LB_OUT | RTE_CRYPTODEV_FF_OOP_LB_IN_SGL_OUT | RTE_CRYPTODEV_FF_OOP_LB_IN_LB_OUT; /* For secondary processes, we don't initialise any further as primary * has already done this work. Only check we don't need a different * RX function */ if (rte_eal_process_type() != RTE_PROC_PRIMARY) { CAAM_JR_WARN("Device already init by primary process"); return 0; } /*TODO free it during teardown*/ security_instance = rte_malloc("caam_jr", sizeof(struct rte_security_ctx), 0); if (security_instance == NULL) { CAAM_JR_ERR("memory allocation failed\n"); //todo error handling. goto cleanup2; } security_instance->device = (void *)dev; security_instance->ops = &caam_jr_security_ops; security_instance->sess_cnt = 0; dev->security_ctx = security_instance; RTE_LOG(INFO, PMD, "%s cryptodev init\n", dev->data->name); return 0; cleanup2: caam_jr_dev_uninit(dev); rte_cryptodev_pmd_release_device(dev); cleanup: free_job_ring(job_ring->uio_fd); init_error: CAAM_JR_ERR("driver %s: cryptodev_caam_jr_create failed", init_params->name); return -ENXIO; } /** Initialise CAAM JR crypto device */ static int cryptodev_caam_jr_probe(struct rte_vdev_device *vdev) { int ret; struct rte_cryptodev_pmd_init_params init_params = { "", sizeof(struct sec_job_ring_t), rte_socket_id(), RTE_CRYPTODEV_PMD_DEFAULT_MAX_NB_QUEUE_PAIRS }; const char *name; const char *input_args; name = rte_vdev_device_name(vdev); if (name == NULL) return -EINVAL; input_args = rte_vdev_device_args(vdev); rte_cryptodev_pmd_parse_input_args(&init_params, input_args); ret = of_init(); if (ret) { RTE_LOG(ERR, PMD, "of_init failed\n"); return -EINVAL; } /* if sec device version is not configured */ if (!rta_get_sec_era()) { const struct device_node *caam_node; for_each_compatible_node(caam_node, NULL, "fsl,sec-v4.0") { const uint32_t *prop = of_get_property(caam_node, "fsl,sec-era", NULL); if (prop) { rta_set_sec_era( INTL_SEC_ERA(rte_be_to_cpu_32(*prop))); break; } } } #ifdef RTE_LIBRTE_PMD_CAAM_JR_BE if (rta_get_sec_era() > RTA_SEC_ERA_8) { RTE_LOG(ERR, PMD, "CAAM is compiled in BE mode for device with sec era > 8???\n"); return -EINVAL; } #endif return caam_jr_dev_init(name, vdev, &init_params); } /** Uninitialise CAAM JR crypto device */ static int cryptodev_caam_jr_remove(struct rte_vdev_device *vdev) { struct rte_cryptodev *cryptodev; const char *name; name = rte_vdev_device_name(vdev); if (name == NULL) return -EINVAL; cryptodev = rte_cryptodev_pmd_get_named_dev(name); if (cryptodev == NULL) return -ENODEV; caam_jr_dev_uninit(cryptodev); return rte_cryptodev_pmd_destroy(cryptodev); } static void sec_job_rings_init(void) { int i; for (i = 0; i < MAX_SEC_JOB_RINGS; i++) g_job_rings[i].irq_fd = -1; } static struct rte_vdev_driver cryptodev_caam_jr_drv = { .probe = cryptodev_caam_jr_probe, .remove = cryptodev_caam_jr_remove }; static struct cryptodev_driver caam_jr_crypto_drv; RTE_PMD_REGISTER_VDEV(CRYPTODEV_NAME_CAAM_JR_PMD, cryptodev_caam_jr_drv); RTE_PMD_REGISTER_PARAM_STRING(CRYPTODEV_NAME_CAAM_JR_PMD, "max_nb_queue_pairs=" "socket_id="); RTE_PMD_REGISTER_CRYPTO_DRIVER(caam_jr_crypto_drv, cryptodev_caam_jr_drv.driver, cryptodev_driver_id); RTE_INIT(caam_jr_init) { sec_uio_job_rings_init(); sec_job_rings_init(); } RTE_INIT(caam_jr_init_log) { caam_jr_logtype = rte_log_register("pmd.crypto.caam"); if (caam_jr_logtype >= 0) rte_log_set_level(caam_jr_logtype, RTE_LOG_NOTICE); }