/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2014 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "eal_filesystem.h" #include "pci_init.h" #include "private.h" /** * @file * PCI probing under linux (VFIO version) * * This code tries to determine if the PCI device is bound to VFIO driver, * and initialize it (map BARs, set up interrupts) if that's the case. * * This file is only compiled if CONFIG_RTE_EAL_VFIO is set to "y". */ #ifdef VFIO_PRESENT #ifndef PAGE_SIZE #define PAGE_SIZE (sysconf(_SC_PAGESIZE)) #endif #define PAGE_MASK (~(PAGE_SIZE - 1)) static struct rte_tailq_elem rte_vfio_tailq = { .name = "VFIO_RESOURCE_LIST", }; EAL_REGISTER_TAILQ(rte_vfio_tailq) int pci_vfio_read_config(const struct rte_intr_handle *intr_handle, void *buf, size_t len, off_t offs) { return pread64(intr_handle->vfio_dev_fd, buf, len, VFIO_GET_REGION_ADDR(VFIO_PCI_CONFIG_REGION_INDEX) + offs); } int pci_vfio_write_config(const struct rte_intr_handle *intr_handle, const void *buf, size_t len, off_t offs) { return pwrite64(intr_handle->vfio_dev_fd, buf, len, VFIO_GET_REGION_ADDR(VFIO_PCI_CONFIG_REGION_INDEX) + offs); } /* get PCI BAR number where MSI-X interrupts are */ static int pci_vfio_get_msix_bar(int fd, struct pci_msix_table *msix_table) { int ret; uint32_t reg; uint16_t flags; uint8_t cap_id, cap_offset; /* read PCI capability pointer from config space */ ret = pread64(fd, ®, sizeof(reg), VFIO_GET_REGION_ADDR(VFIO_PCI_CONFIG_REGION_INDEX) + PCI_CAPABILITY_LIST); if (ret != sizeof(reg)) { RTE_LOG(ERR, EAL, "Cannot read capability pointer from PCI " "config space!\n"); return -1; } /* we need first byte */ cap_offset = reg & 0xFF; while (cap_offset) { /* read PCI capability ID */ ret = pread64(fd, ®, sizeof(reg), VFIO_GET_REGION_ADDR(VFIO_PCI_CONFIG_REGION_INDEX) + cap_offset); if (ret != sizeof(reg)) { RTE_LOG(ERR, EAL, "Cannot read capability ID from PCI " "config space!\n"); return -1; } /* we need first byte */ cap_id = reg & 0xFF; /* if we haven't reached MSI-X, check next capability */ if (cap_id != PCI_CAP_ID_MSIX) { ret = pread64(fd, ®, sizeof(reg), VFIO_GET_REGION_ADDR(VFIO_PCI_CONFIG_REGION_INDEX) + cap_offset); if (ret != sizeof(reg)) { RTE_LOG(ERR, EAL, "Cannot read capability pointer from PCI " "config space!\n"); return -1; } /* we need second byte */ cap_offset = (reg & 0xFF00) >> 8; continue; } /* else, read table offset */ else { /* table offset resides in the next 4 bytes */ ret = pread64(fd, ®, sizeof(reg), VFIO_GET_REGION_ADDR(VFIO_PCI_CONFIG_REGION_INDEX) + cap_offset + 4); if (ret != sizeof(reg)) { RTE_LOG(ERR, EAL, "Cannot read table offset from PCI config " "space!\n"); return -1; } ret = pread64(fd, &flags, sizeof(flags), VFIO_GET_REGION_ADDR(VFIO_PCI_CONFIG_REGION_INDEX) + cap_offset + 2); if (ret != sizeof(flags)) { RTE_LOG(ERR, EAL, "Cannot read table flags from PCI config " "space!\n"); return -1; } msix_table->bar_index = reg & RTE_PCI_MSIX_TABLE_BIR; msix_table->offset = reg & RTE_PCI_MSIX_TABLE_OFFSET; msix_table->size = 16 * (1 + (flags & RTE_PCI_MSIX_FLAGS_QSIZE)); return 0; } } return 0; } /* enable PCI bus memory space */ static int pci_vfio_enable_bus_memory(int dev_fd) { uint16_t cmd; int ret; ret = pread64(dev_fd, &cmd, sizeof(cmd), VFIO_GET_REGION_ADDR(VFIO_PCI_CONFIG_REGION_INDEX) + PCI_COMMAND); if (ret != sizeof(cmd)) { RTE_LOG(ERR, EAL, "Cannot read command from PCI config space!\n"); return -1; } if (cmd & PCI_COMMAND_MEMORY) return 0; cmd |= PCI_COMMAND_MEMORY; ret = pwrite64(dev_fd, &cmd, sizeof(cmd), VFIO_GET_REGION_ADDR(VFIO_PCI_CONFIG_REGION_INDEX) + PCI_COMMAND); if (ret != sizeof(cmd)) { RTE_LOG(ERR, EAL, "Cannot write command to PCI config space!\n"); return -1; } return 0; } /* set PCI bus mastering */ static int pci_vfio_set_bus_master(int dev_fd, bool op) { uint16_t reg; int ret; ret = pread64(dev_fd, ®, sizeof(reg), VFIO_GET_REGION_ADDR(VFIO_PCI_CONFIG_REGION_INDEX) + PCI_COMMAND); if (ret != sizeof(reg)) { RTE_LOG(ERR, EAL, "Cannot read command from PCI config space!\n"); return -1; } if (op) /* set the master bit */ reg |= PCI_COMMAND_MASTER; else reg &= ~(PCI_COMMAND_MASTER); ret = pwrite64(dev_fd, ®, sizeof(reg), VFIO_GET_REGION_ADDR(VFIO_PCI_CONFIG_REGION_INDEX) + PCI_COMMAND); if (ret != sizeof(reg)) { RTE_LOG(ERR, EAL, "Cannot write command to PCI config space!\n"); return -1; } return 0; } /* set up interrupt support (but not enable interrupts) */ static int pci_vfio_setup_interrupts(struct rte_pci_device *dev, int vfio_dev_fd) { int i, ret, intr_idx; enum rte_intr_mode intr_mode; /* default to invalid index */ intr_idx = VFIO_PCI_NUM_IRQS; /* Get default / configured intr_mode */ intr_mode = rte_eal_vfio_intr_mode(); /* get interrupt type from internal config (MSI-X by default, can be * overridden from the command line */ switch (intr_mode) { case RTE_INTR_MODE_MSIX: intr_idx = VFIO_PCI_MSIX_IRQ_INDEX; break; case RTE_INTR_MODE_MSI: intr_idx = VFIO_PCI_MSI_IRQ_INDEX; break; case RTE_INTR_MODE_LEGACY: intr_idx = VFIO_PCI_INTX_IRQ_INDEX; break; /* don't do anything if we want to automatically determine interrupt type */ case RTE_INTR_MODE_NONE: break; default: RTE_LOG(ERR, EAL, " unknown default interrupt type!\n"); return -1; } /* start from MSI-X interrupt type */ for (i = VFIO_PCI_MSIX_IRQ_INDEX; i >= 0; i--) { struct vfio_irq_info irq = { .argsz = sizeof(irq) }; int fd = -1; /* skip interrupt modes we don't want */ if (intr_mode != RTE_INTR_MODE_NONE && i != intr_idx) continue; irq.index = i; ret = ioctl(vfio_dev_fd, VFIO_DEVICE_GET_IRQ_INFO, &irq); if (ret < 0) { RTE_LOG(ERR, EAL, " cannot get IRQ info, " "error %i (%s)\n", errno, strerror(errno)); return -1; } /* if this vector cannot be used with eventfd, fail if we explicitly * specified interrupt type, otherwise continue */ if ((irq.flags & VFIO_IRQ_INFO_EVENTFD) == 0) { if (intr_mode != RTE_INTR_MODE_NONE) { RTE_LOG(ERR, EAL, " interrupt vector does not support eventfd!\n"); return -1; } else continue; } /* set up an eventfd for interrupts */ fd = eventfd(0, EFD_NONBLOCK | EFD_CLOEXEC); if (fd < 0) { RTE_LOG(ERR, EAL, " cannot set up eventfd, " "error %i (%s)\n", errno, strerror(errno)); return -1; } dev->intr_handle.fd = fd; dev->intr_handle.vfio_dev_fd = vfio_dev_fd; switch (i) { case VFIO_PCI_MSIX_IRQ_INDEX: intr_mode = RTE_INTR_MODE_MSIX; dev->intr_handle.type = RTE_INTR_HANDLE_VFIO_MSIX; break; case VFIO_PCI_MSI_IRQ_INDEX: intr_mode = RTE_INTR_MODE_MSI; dev->intr_handle.type = RTE_INTR_HANDLE_VFIO_MSI; break; case VFIO_PCI_INTX_IRQ_INDEX: intr_mode = RTE_INTR_MODE_LEGACY; dev->intr_handle.type = RTE_INTR_HANDLE_VFIO_LEGACY; break; default: RTE_LOG(ERR, EAL, " unknown interrupt type!\n"); return -1; } return 0; } /* if we're here, we haven't found a suitable interrupt vector */ return -1; } #ifdef HAVE_VFIO_DEV_REQ_INTERFACE /* * Spinlock for device hot-unplug failure handling. * If it tries to access bus or device, such as handle sigbus on bus * or handle memory failure for device, just need to use this lock. * It could protect the bus and the device to avoid race condition. */ static rte_spinlock_t failure_handle_lock = RTE_SPINLOCK_INITIALIZER; static void pci_vfio_req_handler(void *param) { struct rte_bus *bus; int ret; struct rte_device *device = (struct rte_device *)param; rte_spinlock_lock(&failure_handle_lock); bus = rte_bus_find_by_device(device); if (bus == NULL) { RTE_LOG(ERR, EAL, "Cannot find bus for device (%s)\n", device->name); goto handle_end; } /* * vfio kernel module request user space to release allocated * resources before device be deleted in kernel, so it can directly * call the vfio bus hot-unplug handler to process it. */ ret = bus->hot_unplug_handler(device); if (ret) RTE_LOG(ERR, EAL, "Can not handle hot-unplug for device (%s)\n", device->name); handle_end: rte_spinlock_unlock(&failure_handle_lock); } /* enable notifier (only enable req now) */ static int pci_vfio_enable_notifier(struct rte_pci_device *dev, int vfio_dev_fd) { int ret; int fd = -1; /* set up an eventfd for req notifier */ fd = eventfd(0, EFD_NONBLOCK | EFD_CLOEXEC); if (fd < 0) { RTE_LOG(ERR, EAL, "Cannot set up eventfd, error %i (%s)\n", errno, strerror(errno)); return -1; } dev->vfio_req_intr_handle.fd = fd; dev->vfio_req_intr_handle.type = RTE_INTR_HANDLE_VFIO_REQ; dev->vfio_req_intr_handle.vfio_dev_fd = vfio_dev_fd; ret = rte_intr_callback_register(&dev->vfio_req_intr_handle, pci_vfio_req_handler, (void *)&dev->device); if (ret) { RTE_LOG(ERR, EAL, "Fail to register req notifier handler.\n"); goto error; } ret = rte_intr_enable(&dev->vfio_req_intr_handle); if (ret) { RTE_LOG(ERR, EAL, "Fail to enable req notifier.\n"); ret = rte_intr_callback_unregister(&dev->vfio_req_intr_handle, pci_vfio_req_handler, (void *)&dev->device); if (ret < 0) RTE_LOG(ERR, EAL, "Fail to unregister req notifier handler.\n"); goto error; } return 0; error: close(fd); dev->vfio_req_intr_handle.fd = -1; dev->vfio_req_intr_handle.type = RTE_INTR_HANDLE_UNKNOWN; dev->vfio_req_intr_handle.vfio_dev_fd = -1; return -1; } /* disable notifier (only disable req now) */ static int pci_vfio_disable_notifier(struct rte_pci_device *dev) { int ret; ret = rte_intr_disable(&dev->vfio_req_intr_handle); if (ret) { RTE_LOG(ERR, EAL, "fail to disable req notifier.\n"); return -1; } ret = rte_intr_callback_unregister(&dev->vfio_req_intr_handle, pci_vfio_req_handler, (void *)&dev->device); if (ret < 0) { RTE_LOG(ERR, EAL, "fail to unregister req notifier handler.\n"); return -1; } close(dev->vfio_req_intr_handle.fd); dev->vfio_req_intr_handle.fd = -1; dev->vfio_req_intr_handle.type = RTE_INTR_HANDLE_UNKNOWN; dev->vfio_req_intr_handle.vfio_dev_fd = -1; return 0; } #endif static int pci_vfio_is_ioport_bar(int vfio_dev_fd, int bar_index) { uint32_t ioport_bar; int ret; ret = pread64(vfio_dev_fd, &ioport_bar, sizeof(ioport_bar), VFIO_GET_REGION_ADDR(VFIO_PCI_CONFIG_REGION_INDEX) + PCI_BASE_ADDRESS_0 + bar_index*4); if (ret != sizeof(ioport_bar)) { RTE_LOG(ERR, EAL, "Cannot read command (%x) from config space!\n", PCI_BASE_ADDRESS_0 + bar_index*4); return -1; } return (ioport_bar & PCI_BASE_ADDRESS_SPACE_IO) != 0; } static int pci_rte_vfio_setup_device(struct rte_pci_device *dev, int vfio_dev_fd) { if (pci_vfio_setup_interrupts(dev, vfio_dev_fd) != 0) { RTE_LOG(ERR, EAL, "Error setting up interrupts!\n"); return -1; } if (pci_vfio_enable_bus_memory(vfio_dev_fd)) { RTE_LOG(ERR, EAL, "Cannot enable bus memory!\n"); return -1; } /* set bus mastering for the device */ if (pci_vfio_set_bus_master(vfio_dev_fd, true)) { RTE_LOG(ERR, EAL, "Cannot set up bus mastering!\n"); return -1; } /* * Reset the device. If the device is not capable of resetting, * then it updates errno as EINVAL. */ if (ioctl(vfio_dev_fd, VFIO_DEVICE_RESET) && errno != EINVAL) { RTE_LOG(ERR, EAL, "Unable to reset device! Error: %d (%s)\n", errno, strerror(errno)); return -1; } return 0; } static int pci_vfio_mmap_bar(int vfio_dev_fd, struct mapped_pci_resource *vfio_res, int bar_index, int additional_flags) { struct memreg { uint64_t offset; size_t size; } memreg[2] = {}; void *bar_addr; struct pci_msix_table *msix_table = &vfio_res->msix_table; struct pci_map *bar = &vfio_res->maps[bar_index]; if (bar->size == 0) { RTE_LOG(DEBUG, EAL, "Bar size is 0, skip BAR%d\n", bar_index); return 0; } if (msix_table->bar_index == bar_index) { /* * VFIO will not let us map the MSI-X table, * but we can map around it. */ uint32_t table_start = msix_table->offset; uint32_t table_end = table_start + msix_table->size; table_end = RTE_ALIGN(table_end, PAGE_SIZE); table_start = RTE_ALIGN_FLOOR(table_start, PAGE_SIZE); /* If page-aligned start of MSI-X table is less than the * actual MSI-X table start address, reassign to the actual * start address. */ if (table_start < msix_table->offset) table_start = msix_table->offset; if (table_start == 0 && table_end >= bar->size) { /* Cannot map this BAR */ RTE_LOG(DEBUG, EAL, "Skipping BAR%d\n", bar_index); bar->size = 0; bar->addr = 0; return 0; } memreg[0].offset = bar->offset; memreg[0].size = table_start; if (bar->size < table_end) { /* * If MSI-X table end is beyond BAR end, don't attempt * to perform second mapping. */ memreg[1].offset = 0; memreg[1].size = 0; } else { memreg[1].offset = bar->offset + table_end; memreg[1].size = bar->size - table_end; } RTE_LOG(DEBUG, EAL, "Trying to map BAR%d that contains the MSI-X " "table. Trying offsets: " "0x%04" PRIx64 ":0x%04zx, 0x%04" PRIx64 ":0x%04zx\n", bar_index, memreg[0].offset, memreg[0].size, memreg[1].offset, memreg[1].size); } else { memreg[0].offset = bar->offset; memreg[0].size = bar->size; } /* reserve the address using an inaccessible mapping */ bar_addr = mmap(bar->addr, bar->size, 0, MAP_PRIVATE | MAP_ANONYMOUS | additional_flags, -1, 0); if (bar_addr != MAP_FAILED) { void *map_addr = NULL; if (memreg[0].size) { /* actual map of first part */ map_addr = pci_map_resource(bar_addr, vfio_dev_fd, memreg[0].offset, memreg[0].size, MAP_FIXED); } /* if there's a second part, try to map it */ if (map_addr != MAP_FAILED && memreg[1].offset && memreg[1].size) { void *second_addr = RTE_PTR_ADD(bar_addr, (uintptr_t)(memreg[1].offset - bar->offset)); map_addr = pci_map_resource(second_addr, vfio_dev_fd, memreg[1].offset, memreg[1].size, MAP_FIXED); } if (map_addr == MAP_FAILED || !map_addr) { munmap(bar_addr, bar->size); bar_addr = MAP_FAILED; RTE_LOG(ERR, EAL, "Failed to map pci BAR%d\n", bar_index); return -1; } } else { RTE_LOG(ERR, EAL, "Failed to create inaccessible mapping for BAR%d\n", bar_index); return -1; } bar->addr = bar_addr; return 0; } /* * region info may contain capability headers, so we need to keep reallocating * the memory until we match allocated memory size with argsz. */ static int pci_vfio_get_region_info(int vfio_dev_fd, struct vfio_region_info **info, int region) { struct vfio_region_info *ri; size_t argsz = sizeof(*ri); int ret; ri = malloc(sizeof(*ri)); if (ri == NULL) { RTE_LOG(ERR, EAL, "Cannot allocate memory for region info\n"); return -1; } again: memset(ri, 0, argsz); ri->argsz = argsz; ri->index = region; ret = ioctl(vfio_dev_fd, VFIO_DEVICE_GET_REGION_INFO, ri); if (ret < 0) { free(ri); return ret; } if (ri->argsz != argsz) { struct vfio_region_info *tmp; argsz = ri->argsz; tmp = realloc(ri, argsz); if (tmp == NULL) { /* realloc failed but the ri is still there */ free(ri); RTE_LOG(ERR, EAL, "Cannot reallocate memory for region info\n"); return -1; } ri = tmp; goto again; } *info = ri; return 0; } static struct vfio_info_cap_header * pci_vfio_info_cap(struct vfio_region_info *info, int cap) { struct vfio_info_cap_header *h; size_t offset; if ((info->flags & RTE_VFIO_INFO_FLAG_CAPS) == 0) { /* VFIO info does not advertise capabilities */ return NULL; } offset = VFIO_CAP_OFFSET(info); while (offset != 0) { h = RTE_PTR_ADD(info, offset); if (h->id == cap) return h; offset = h->next; } return NULL; } static int pci_vfio_msix_is_mappable(int vfio_dev_fd, int msix_region) { struct vfio_region_info *info; int ret; ret = pci_vfio_get_region_info(vfio_dev_fd, &info, msix_region); if (ret < 0) return -1; ret = pci_vfio_info_cap(info, RTE_VFIO_CAP_MSIX_MAPPABLE) != NULL; /* cleanup */ free(info); return ret; } static int pci_vfio_map_resource_primary(struct rte_pci_device *dev) { struct vfio_device_info device_info = { .argsz = sizeof(device_info) }; char pci_addr[PATH_MAX] = {0}; int vfio_dev_fd; struct rte_pci_addr *loc = &dev->addr; int i, ret; struct mapped_pci_resource *vfio_res = NULL; struct mapped_pci_res_list *vfio_res_list = RTE_TAILQ_CAST(rte_vfio_tailq.head, mapped_pci_res_list); struct pci_map *maps; dev->intr_handle.fd = -1; #ifdef HAVE_VFIO_DEV_REQ_INTERFACE dev->vfio_req_intr_handle.fd = -1; #endif /* store PCI address string */ snprintf(pci_addr, sizeof(pci_addr), PCI_PRI_FMT, loc->domain, loc->bus, loc->devid, loc->function); ret = rte_vfio_setup_device(rte_pci_get_sysfs_path(), pci_addr, &vfio_dev_fd, &device_info); if (ret) return ret; /* allocate vfio_res and get region info */ vfio_res = rte_zmalloc("VFIO_RES", sizeof(*vfio_res), 0); if (vfio_res == NULL) { RTE_LOG(ERR, EAL, "%s(): cannot store vfio mmap details\n", __func__); goto err_vfio_dev_fd; } memcpy(&vfio_res->pci_addr, &dev->addr, sizeof(vfio_res->pci_addr)); /* get number of registers (up to BAR5) */ vfio_res->nb_maps = RTE_MIN((int) device_info.num_regions, VFIO_PCI_BAR5_REGION_INDEX + 1); /* map BARs */ maps = vfio_res->maps; vfio_res->msix_table.bar_index = -1; /* get MSI-X BAR, if any (we have to know where it is because we can't * easily mmap it when using VFIO) */ ret = pci_vfio_get_msix_bar(vfio_dev_fd, &vfio_res->msix_table); if (ret < 0) { RTE_LOG(ERR, EAL, " %s cannot get MSI-X BAR number!\n", pci_addr); goto err_vfio_res; } /* if we found our MSI-X BAR region, check if we can mmap it */ if (vfio_res->msix_table.bar_index != -1) { int ret = pci_vfio_msix_is_mappable(vfio_dev_fd, vfio_res->msix_table.bar_index); if (ret < 0) { RTE_LOG(ERR, EAL, "Couldn't check if MSI-X BAR is mappable\n"); goto err_vfio_res; } else if (ret != 0) { /* we can map it, so we don't care where it is */ RTE_LOG(DEBUG, EAL, "VFIO reports MSI-X BAR as mappable\n"); vfio_res->msix_table.bar_index = -1; } } for (i = 0; i < (int) vfio_res->nb_maps; i++) { struct vfio_region_info *reg = NULL; void *bar_addr; ret = pci_vfio_get_region_info(vfio_dev_fd, ®, i); if (ret < 0) { RTE_LOG(ERR, EAL, " %s cannot get device region info " "error %i (%s)\n", pci_addr, errno, strerror(errno)); goto err_vfio_res; } /* chk for io port region */ ret = pci_vfio_is_ioport_bar(vfio_dev_fd, i); if (ret < 0) { free(reg); goto err_vfio_res; } else if (ret) { RTE_LOG(INFO, EAL, "Ignore mapping IO port bar(%d)\n", i); free(reg); continue; } /* skip non-mmapable BARs */ if ((reg->flags & VFIO_REGION_INFO_FLAG_MMAP) == 0) { free(reg); continue; } /* try mapping somewhere close to the end of hugepages */ if (pci_map_addr == NULL) pci_map_addr = pci_find_max_end_va(); bar_addr = pci_map_addr; pci_map_addr = RTE_PTR_ADD(bar_addr, (size_t) reg->size); pci_map_addr = RTE_PTR_ALIGN(pci_map_addr, sysconf(_SC_PAGE_SIZE)); maps[i].addr = bar_addr; maps[i].offset = reg->offset; maps[i].size = reg->size; maps[i].path = NULL; /* vfio doesn't have per-resource paths */ ret = pci_vfio_mmap_bar(vfio_dev_fd, vfio_res, i, 0); if (ret < 0) { RTE_LOG(ERR, EAL, " %s mapping BAR%i failed: %s\n", pci_addr, i, strerror(errno)); free(reg); goto err_vfio_res; } dev->mem_resource[i].addr = maps[i].addr; free(reg); } if (pci_rte_vfio_setup_device(dev, vfio_dev_fd) < 0) { RTE_LOG(ERR, EAL, " %s setup device failed\n", pci_addr); goto err_vfio_res; } #ifdef HAVE_VFIO_DEV_REQ_INTERFACE if (pci_vfio_enable_notifier(dev, vfio_dev_fd) != 0) { RTE_LOG(ERR, EAL, "Error setting up notifier!\n"); goto err_vfio_res; } #endif TAILQ_INSERT_TAIL(vfio_res_list, vfio_res, next); return 0; err_vfio_res: rte_free(vfio_res); err_vfio_dev_fd: rte_vfio_release_device(rte_pci_get_sysfs_path(), pci_addr, vfio_dev_fd); return -1; } static int pci_vfio_map_resource_secondary(struct rte_pci_device *dev) { struct vfio_device_info device_info = { .argsz = sizeof(device_info) }; char pci_addr[PATH_MAX] = {0}; int vfio_dev_fd; struct rte_pci_addr *loc = &dev->addr; int i, ret; struct mapped_pci_resource *vfio_res = NULL; struct mapped_pci_res_list *vfio_res_list = RTE_TAILQ_CAST(rte_vfio_tailq.head, mapped_pci_res_list); struct pci_map *maps; dev->intr_handle.fd = -1; #ifdef HAVE_VFIO_DEV_REQ_INTERFACE dev->vfio_req_intr_handle.fd = -1; #endif /* store PCI address string */ snprintf(pci_addr, sizeof(pci_addr), PCI_PRI_FMT, loc->domain, loc->bus, loc->devid, loc->function); /* if we're in a secondary process, just find our tailq entry */ TAILQ_FOREACH(vfio_res, vfio_res_list, next) { if (rte_pci_addr_cmp(&vfio_res->pci_addr, &dev->addr)) continue; break; } /* if we haven't found our tailq entry, something's wrong */ if (vfio_res == NULL) { RTE_LOG(ERR, EAL, " %s cannot find TAILQ entry for PCI device!\n", pci_addr); return -1; } ret = rte_vfio_setup_device(rte_pci_get_sysfs_path(), pci_addr, &vfio_dev_fd, &device_info); if (ret) return ret; /* map BARs */ maps = vfio_res->maps; for (i = 0; i < (int) vfio_res->nb_maps; i++) { ret = pci_vfio_mmap_bar(vfio_dev_fd, vfio_res, i, MAP_FIXED); if (ret < 0) { RTE_LOG(ERR, EAL, " %s mapping BAR%i failed: %s\n", pci_addr, i, strerror(errno)); goto err_vfio_dev_fd; } dev->mem_resource[i].addr = maps[i].addr; } /* we need save vfio_dev_fd, so it can be used during release */ dev->intr_handle.vfio_dev_fd = vfio_dev_fd; #ifdef HAVE_VFIO_DEV_REQ_INTERFACE dev->vfio_req_intr_handle.vfio_dev_fd = vfio_dev_fd; #endif return 0; err_vfio_dev_fd: rte_vfio_release_device(rte_pci_get_sysfs_path(), pci_addr, vfio_dev_fd); return -1; } /* * map the PCI resources of a PCI device in virtual memory (VFIO version). * primary and secondary processes follow almost exactly the same path */ int pci_vfio_map_resource(struct rte_pci_device *dev) { if (rte_eal_process_type() == RTE_PROC_PRIMARY) return pci_vfio_map_resource_primary(dev); else return pci_vfio_map_resource_secondary(dev); } static struct mapped_pci_resource * find_and_unmap_vfio_resource(struct mapped_pci_res_list *vfio_res_list, struct rte_pci_device *dev, const char *pci_addr) { struct mapped_pci_resource *vfio_res = NULL; struct pci_map *maps; int i; /* Get vfio_res */ TAILQ_FOREACH(vfio_res, vfio_res_list, next) { if (rte_pci_addr_cmp(&vfio_res->pci_addr, &dev->addr)) continue; break; } if (vfio_res == NULL) return vfio_res; RTE_LOG(INFO, EAL, "Releasing pci mapped resource for %s\n", pci_addr); maps = vfio_res->maps; for (i = 0; i < (int) vfio_res->nb_maps; i++) { /* * We do not need to be aware of MSI-X table BAR mappings as * when mapping. Just using current maps array is enough */ if (maps[i].addr) { RTE_LOG(INFO, EAL, "Calling pci_unmap_resource for %s at %p\n", pci_addr, maps[i].addr); pci_unmap_resource(maps[i].addr, maps[i].size); } } return vfio_res; } static int pci_vfio_unmap_resource_primary(struct rte_pci_device *dev) { char pci_addr[PATH_MAX] = {0}; struct rte_pci_addr *loc = &dev->addr; struct mapped_pci_resource *vfio_res = NULL; struct mapped_pci_res_list *vfio_res_list; int ret; /* store PCI address string */ snprintf(pci_addr, sizeof(pci_addr), PCI_PRI_FMT, loc->domain, loc->bus, loc->devid, loc->function); #ifdef HAVE_VFIO_DEV_REQ_INTERFACE ret = pci_vfio_disable_notifier(dev); if (ret) { RTE_LOG(ERR, EAL, "fail to disable req notifier.\n"); return -1; } #endif if (close(dev->intr_handle.fd) < 0) { RTE_LOG(INFO, EAL, "Error when closing eventfd file descriptor for %s\n", pci_addr); return -1; } if (pci_vfio_set_bus_master(dev->intr_handle.vfio_dev_fd, false)) { RTE_LOG(ERR, EAL, " %s cannot unset bus mastering for PCI device!\n", pci_addr); return -1; } ret = rte_vfio_release_device(rte_pci_get_sysfs_path(), pci_addr, dev->intr_handle.vfio_dev_fd); if (ret < 0) { RTE_LOG(ERR, EAL, "%s(): cannot release device\n", __func__); return ret; } vfio_res_list = RTE_TAILQ_CAST(rte_vfio_tailq.head, mapped_pci_res_list); vfio_res = find_and_unmap_vfio_resource(vfio_res_list, dev, pci_addr); /* if we haven't found our tailq entry, something's wrong */ if (vfio_res == NULL) { RTE_LOG(ERR, EAL, " %s cannot find TAILQ entry for PCI device!\n", pci_addr); return -1; } TAILQ_REMOVE(vfio_res_list, vfio_res, next); rte_free(vfio_res); return 0; } static int pci_vfio_unmap_resource_secondary(struct rte_pci_device *dev) { char pci_addr[PATH_MAX] = {0}; struct rte_pci_addr *loc = &dev->addr; struct mapped_pci_resource *vfio_res = NULL; struct mapped_pci_res_list *vfio_res_list; int ret; /* store PCI address string */ snprintf(pci_addr, sizeof(pci_addr), PCI_PRI_FMT, loc->domain, loc->bus, loc->devid, loc->function); ret = rte_vfio_release_device(rte_pci_get_sysfs_path(), pci_addr, dev->intr_handle.vfio_dev_fd); if (ret < 0) { RTE_LOG(ERR, EAL, "%s(): cannot release device\n", __func__); return ret; } vfio_res_list = RTE_TAILQ_CAST(rte_vfio_tailq.head, mapped_pci_res_list); vfio_res = find_and_unmap_vfio_resource(vfio_res_list, dev, pci_addr); /* if we haven't found our tailq entry, something's wrong */ if (vfio_res == NULL) { RTE_LOG(ERR, EAL, " %s cannot find TAILQ entry for PCI device!\n", pci_addr); return -1; } return 0; } int pci_vfio_unmap_resource(struct rte_pci_device *dev) { if (rte_eal_process_type() == RTE_PROC_PRIMARY) return pci_vfio_unmap_resource_primary(dev); else return pci_vfio_unmap_resource_secondary(dev); } int pci_vfio_ioport_map(struct rte_pci_device *dev, int bar, struct rte_pci_ioport *p) { if (bar < VFIO_PCI_BAR0_REGION_INDEX || bar > VFIO_PCI_BAR5_REGION_INDEX) { RTE_LOG(ERR, EAL, "invalid bar (%d)!\n", bar); return -1; } p->dev = dev; p->base = VFIO_GET_REGION_ADDR(bar); return 0; } void pci_vfio_ioport_read(struct rte_pci_ioport *p, void *data, size_t len, off_t offset) { const struct rte_intr_handle *intr_handle = &p->dev->intr_handle; if (pread64(intr_handle->vfio_dev_fd, data, len, p->base + offset) <= 0) RTE_LOG(ERR, EAL, "Can't read from PCI bar (%" PRIu64 ") : offset (%x)\n", VFIO_GET_REGION_IDX(p->base), (int)offset); } void pci_vfio_ioport_write(struct rte_pci_ioport *p, const void *data, size_t len, off_t offset) { const struct rte_intr_handle *intr_handle = &p->dev->intr_handle; if (pwrite64(intr_handle->vfio_dev_fd, data, len, p->base + offset) <= 0) RTE_LOG(ERR, EAL, "Can't write to PCI bar (%" PRIu64 ") : offset (%x)\n", VFIO_GET_REGION_IDX(p->base), (int)offset); } int pci_vfio_ioport_unmap(struct rte_pci_ioport *p) { RTE_SET_USED(p); return -1; } int pci_vfio_is_enabled(void) { return rte_vfio_is_enabled("vfio_pci"); } #endif