/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2014 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include #include "eal_filesystem.h" #include "private.h" #include "pci_init.h" /** * @file * PCI probing under linux * * This code is used to simulate a PCI probe by parsing information in sysfs. * When a registered device matches a driver, it is then initialized with * IGB_UIO driver (or doesn't initialize, if the device wasn't bound to it). */ extern struct rte_pci_bus rte_pci_bus; static int pci_get_kernel_driver_by_path(const char *filename, char *dri_name, size_t len) { int count; char path[PATH_MAX]; char *name; if (!filename || !dri_name) return -1; count = readlink(filename, path, PATH_MAX); if (count >= PATH_MAX) return -1; /* For device does not have a driver */ if (count < 0) return 1; path[count] = '\0'; name = strrchr(path, '/'); if (name) { strlcpy(dri_name, name + 1, len); return 0; } return -1; } /* Map pci device */ int rte_pci_map_device(struct rte_pci_device *dev) { int ret = -1; /* try mapping the NIC resources using VFIO if it exists */ switch (dev->kdrv) { case RTE_KDRV_VFIO: #ifdef VFIO_PRESENT if (pci_vfio_is_enabled()) ret = pci_vfio_map_resource(dev); #endif break; case RTE_KDRV_IGB_UIO: case RTE_KDRV_UIO_GENERIC: if (rte_eal_using_phys_addrs()) { /* map resources for devices that use uio */ ret = pci_uio_map_resource(dev); } break; default: RTE_LOG(DEBUG, EAL, " Not managed by a supported kernel driver, skipped\n"); ret = 1; break; } return ret; } /* Unmap pci device */ void rte_pci_unmap_device(struct rte_pci_device *dev) { /* try unmapping the NIC resources using VFIO if it exists */ switch (dev->kdrv) { case RTE_KDRV_VFIO: #ifdef VFIO_PRESENT if (pci_vfio_is_enabled()) pci_vfio_unmap_resource(dev); #endif break; case RTE_KDRV_IGB_UIO: case RTE_KDRV_UIO_GENERIC: /* unmap resources for devices that use uio */ pci_uio_unmap_resource(dev); break; default: RTE_LOG(DEBUG, EAL, " Not managed by a supported kernel driver, skipped\n"); break; } } static int find_max_end_va(const struct rte_memseg_list *msl, void *arg) { size_t sz = msl->len; void *end_va = RTE_PTR_ADD(msl->base_va, sz); void **max_va = arg; if (*max_va < end_va) *max_va = end_va; return 0; } void * pci_find_max_end_va(void) { void *va = NULL; rte_memseg_list_walk(find_max_end_va, &va); return va; } /* parse one line of the "resource" sysfs file (note that the 'line' * string is modified) */ int pci_parse_one_sysfs_resource(char *line, size_t len, uint64_t *phys_addr, uint64_t *end_addr, uint64_t *flags) { union pci_resource_info { struct { char *phys_addr; char *end_addr; char *flags; }; char *ptrs[PCI_RESOURCE_FMT_NVAL]; } res_info; if (rte_strsplit(line, len, res_info.ptrs, 3, ' ') != 3) { RTE_LOG(ERR, EAL, "%s(): bad resource format\n", __func__); return -1; } errno = 0; *phys_addr = strtoull(res_info.phys_addr, NULL, 16); *end_addr = strtoull(res_info.end_addr, NULL, 16); *flags = strtoull(res_info.flags, NULL, 16); if (errno != 0) { RTE_LOG(ERR, EAL, "%s(): bad resource format\n", __func__); return -1; } return 0; } /* parse the "resource" sysfs file */ static int pci_parse_sysfs_resource(const char *filename, struct rte_pci_device *dev) { FILE *f; char buf[BUFSIZ]; int i; uint64_t phys_addr, end_addr, flags; f = fopen(filename, "r"); if (f == NULL) { RTE_LOG(ERR, EAL, "Cannot open sysfs resource\n"); return -1; } for (i = 0; imem_resource[i].phys_addr = phys_addr; dev->mem_resource[i].len = end_addr - phys_addr + 1; /* not mapped for now */ dev->mem_resource[i].addr = NULL; } } fclose(f); return 0; error: fclose(f); return -1; } /* Scan one pci sysfs entry, and fill the devices list from it. */ static int pci_scan_one(const char *dirname, const struct rte_pci_addr *addr) { char filename[PATH_MAX]; unsigned long tmp; struct rte_pci_device *dev; char driver[PATH_MAX]; int ret; dev = malloc(sizeof(*dev)); if (dev == NULL) return -1; memset(dev, 0, sizeof(*dev)); dev->device.bus = &rte_pci_bus.bus; dev->addr = *addr; /* get vendor id */ snprintf(filename, sizeof(filename), "%s/vendor", dirname); if (eal_parse_sysfs_value(filename, &tmp) < 0) { free(dev); return -1; } dev->id.vendor_id = (uint16_t)tmp; /* get device id */ snprintf(filename, sizeof(filename), "%s/device", dirname); if (eal_parse_sysfs_value(filename, &tmp) < 0) { free(dev); return -1; } dev->id.device_id = (uint16_t)tmp; /* get subsystem_vendor id */ snprintf(filename, sizeof(filename), "%s/subsystem_vendor", dirname); if (eal_parse_sysfs_value(filename, &tmp) < 0) { free(dev); return -1; } dev->id.subsystem_vendor_id = (uint16_t)tmp; /* get subsystem_device id */ snprintf(filename, sizeof(filename), "%s/subsystem_device", dirname); if (eal_parse_sysfs_value(filename, &tmp) < 0) { free(dev); return -1; } dev->id.subsystem_device_id = (uint16_t)tmp; /* get class_id */ snprintf(filename, sizeof(filename), "%s/class", dirname); if (eal_parse_sysfs_value(filename, &tmp) < 0) { free(dev); return -1; } /* the least 24 bits are valid: class, subclass, program interface */ dev->id.class_id = (uint32_t)tmp & RTE_CLASS_ANY_ID; /* get max_vfs */ dev->max_vfs = 0; snprintf(filename, sizeof(filename), "%s/max_vfs", dirname); if (!access(filename, F_OK) && eal_parse_sysfs_value(filename, &tmp) == 0) dev->max_vfs = (uint16_t)tmp; else { /* for non igb_uio driver, need kernel version >= 3.8 */ snprintf(filename, sizeof(filename), "%s/sriov_numvfs", dirname); if (!access(filename, F_OK) && eal_parse_sysfs_value(filename, &tmp) == 0) dev->max_vfs = (uint16_t)tmp; } /* get numa node, default to 0 if not present */ snprintf(filename, sizeof(filename), "%s/numa_node", dirname); if (access(filename, F_OK) != -1) { if (eal_parse_sysfs_value(filename, &tmp) == 0) dev->device.numa_node = tmp; else dev->device.numa_node = -1; } else { dev->device.numa_node = 0; } pci_name_set(dev); /* parse resources */ snprintf(filename, sizeof(filename), "%s/resource", dirname); if (pci_parse_sysfs_resource(filename, dev) < 0) { RTE_LOG(ERR, EAL, "%s(): cannot parse resource\n", __func__); free(dev); return -1; } /* parse driver */ snprintf(filename, sizeof(filename), "%s/driver", dirname); ret = pci_get_kernel_driver_by_path(filename, driver, sizeof(driver)); if (ret < 0) { RTE_LOG(ERR, EAL, "Fail to get kernel driver\n"); free(dev); return -1; } if (!ret) { if (!strcmp(driver, "vfio-pci")) dev->kdrv = RTE_KDRV_VFIO; else if (!strcmp(driver, "igb_uio")) dev->kdrv = RTE_KDRV_IGB_UIO; else if (!strcmp(driver, "uio_pci_generic")) dev->kdrv = RTE_KDRV_UIO_GENERIC; else dev->kdrv = RTE_KDRV_UNKNOWN; } else dev->kdrv = RTE_KDRV_NONE; /* device is valid, add in list (sorted) */ if (TAILQ_EMPTY(&rte_pci_bus.device_list)) { rte_pci_add_device(dev); } else { struct rte_pci_device *dev2; int ret; TAILQ_FOREACH(dev2, &rte_pci_bus.device_list, next) { ret = rte_pci_addr_cmp(&dev->addr, &dev2->addr); if (ret > 0) continue; if (ret < 0) { rte_pci_insert_device(dev2, dev); } else { /* already registered */ if (!rte_dev_is_probed(&dev2->device)) { dev2->kdrv = dev->kdrv; dev2->max_vfs = dev->max_vfs; pci_name_set(dev2); memmove(dev2->mem_resource, dev->mem_resource, sizeof(dev->mem_resource)); } else { /** * If device is plugged and driver is * probed already, (This happens when * we call rte_dev_probe which will * scan all device on the bus) we don't * need to do anything here unless... **/ if (dev2->kdrv != dev->kdrv || dev2->max_vfs != dev->max_vfs) /* * This should not happens. * But it is still possible if * we unbind a device from * vfio or uio before hotplug * remove and rebind it with * a different configure. * So we just print out the * error as an alarm. */ RTE_LOG(ERR, EAL, "Unexpected device scan at %s!\n", filename); else if (dev2->device.devargs != dev->device.devargs) { rte_devargs_remove(dev2->device.devargs); pci_name_set(dev2); } } free(dev); } return 0; } rte_pci_add_device(dev); } return 0; } /* * split up a pci address into its constituent parts. */ static int parse_pci_addr_format(const char *buf, int bufsize, struct rte_pci_addr *addr) { /* first split on ':' */ union splitaddr { struct { char *domain; char *bus; char *devid; char *function; }; char *str[PCI_FMT_NVAL]; /* last element-separator is "." not ":" */ } splitaddr; char *buf_copy = strndup(buf, bufsize); if (buf_copy == NULL) return -1; if (rte_strsplit(buf_copy, bufsize, splitaddr.str, PCI_FMT_NVAL, ':') != PCI_FMT_NVAL - 1) goto error; /* final split is on '.' between devid and function */ splitaddr.function = strchr(splitaddr.devid,'.'); if (splitaddr.function == NULL) goto error; *splitaddr.function++ = '\0'; /* now convert to int values */ errno = 0; addr->domain = strtoul(splitaddr.domain, NULL, 16); addr->bus = strtoul(splitaddr.bus, NULL, 16); addr->devid = strtoul(splitaddr.devid, NULL, 16); addr->function = strtoul(splitaddr.function, NULL, 10); if (errno != 0) goto error; free(buf_copy); /* free the copy made with strdup */ return 0; error: free(buf_copy); return -1; } /* * Scan the content of the PCI bus, and the devices in the devices * list */ int rte_pci_scan(void) { struct dirent *e; DIR *dir; char dirname[PATH_MAX]; struct rte_pci_addr addr; /* for debug purposes, PCI can be disabled */ if (!rte_eal_has_pci()) return 0; #ifdef VFIO_PRESENT if (!pci_vfio_is_enabled()) RTE_LOG(DEBUG, EAL, "VFIO PCI modules not loaded\n"); #endif dir = opendir(rte_pci_get_sysfs_path()); if (dir == NULL) { RTE_LOG(ERR, EAL, "%s(): opendir failed: %s\n", __func__, strerror(errno)); return -1; } while ((e = readdir(dir)) != NULL) { if (e->d_name[0] == '.') continue; if (parse_pci_addr_format(e->d_name, sizeof(e->d_name), &addr) != 0) continue; snprintf(dirname, sizeof(dirname), "%s/%s", rte_pci_get_sysfs_path(), e->d_name); if (pci_scan_one(dirname, &addr) < 0) goto error; } closedir(dir); return 0; error: closedir(dir); return -1; } #if defined(RTE_ARCH_X86) bool pci_device_iommu_support_va(const struct rte_pci_device *dev) { #define VTD_CAP_MGAW_SHIFT 16 #define VTD_CAP_MGAW_MASK (0x3fULL << VTD_CAP_MGAW_SHIFT) const struct rte_pci_addr *addr = &dev->addr; char filename[PATH_MAX]; FILE *fp; uint64_t mgaw, vtd_cap_reg = 0; snprintf(filename, sizeof(filename), "%s/" PCI_PRI_FMT "/iommu/intel-iommu/cap", rte_pci_get_sysfs_path(), addr->domain, addr->bus, addr->devid, addr->function); fp = fopen(filename, "r"); if (fp == NULL) { /* We don't have an Intel IOMMU, assume VA supported */ if (errno == ENOENT) return true; RTE_LOG(ERR, EAL, "%s(): can't open %s: %s\n", __func__, filename, strerror(errno)); return false; } /* We have an Intel IOMMU */ if (fscanf(fp, "%" PRIx64, &vtd_cap_reg) != 1) { RTE_LOG(ERR, EAL, "%s(): can't read %s\n", __func__, filename); fclose(fp); return false; } fclose(fp); mgaw = ((vtd_cap_reg & VTD_CAP_MGAW_MASK) >> VTD_CAP_MGAW_SHIFT) + 1; /* * Assuming there is no limitation by now. We can not know at this point * because the memory has not been initialized yet. Setting the dma mask * will force a check once memory initialization is done. We can not do * a fallback to IOVA PA now, but if the dma check fails, the error * message should advice for using '--iova-mode pa' if IOVA VA is the * current mode. */ rte_mem_set_dma_mask(mgaw); return true; } #elif defined(RTE_ARCH_PPC_64) bool pci_device_iommu_support_va(__rte_unused const struct rte_pci_device *dev) { return false; } #else bool pci_device_iommu_support_va(__rte_unused const struct rte_pci_device *dev) { return true; } #endif enum rte_iova_mode pci_device_iova_mode(const struct rte_pci_driver *pdrv, const struct rte_pci_device *pdev) { enum rte_iova_mode iova_mode = RTE_IOVA_DC; switch (pdev->kdrv) { case RTE_KDRV_VFIO: { #ifdef VFIO_PRESENT static int is_vfio_noiommu_enabled = -1; if (is_vfio_noiommu_enabled == -1) { if (rte_vfio_noiommu_is_enabled() == 1) is_vfio_noiommu_enabled = 1; else is_vfio_noiommu_enabled = 0; } if (is_vfio_noiommu_enabled != 0) iova_mode = RTE_IOVA_PA; else if ((pdrv->drv_flags & RTE_PCI_DRV_NEED_IOVA_AS_VA) != 0) iova_mode = RTE_IOVA_VA; #endif break; } case RTE_KDRV_IGB_UIO: case RTE_KDRV_UIO_GENERIC: iova_mode = RTE_IOVA_PA; break; default: if ((pdrv->drv_flags & RTE_PCI_DRV_NEED_IOVA_AS_VA) != 0) iova_mode = RTE_IOVA_VA; break; } return iova_mode; } /* Read PCI config space. */ int rte_pci_read_config(const struct rte_pci_device *device, void *buf, size_t len, off_t offset) { char devname[RTE_DEV_NAME_MAX_LEN] = ""; const struct rte_intr_handle *intr_handle = &device->intr_handle; switch (device->kdrv) { case RTE_KDRV_IGB_UIO: case RTE_KDRV_UIO_GENERIC: return pci_uio_read_config(intr_handle, buf, len, offset); #ifdef VFIO_PRESENT case RTE_KDRV_VFIO: return pci_vfio_read_config(intr_handle, buf, len, offset); #endif default: rte_pci_device_name(&device->addr, devname, RTE_DEV_NAME_MAX_LEN); RTE_LOG(ERR, EAL, "Unknown driver type for %s\n", devname); return -1; } } /* Write PCI config space. */ int rte_pci_write_config(const struct rte_pci_device *device, const void *buf, size_t len, off_t offset) { char devname[RTE_DEV_NAME_MAX_LEN] = ""; const struct rte_intr_handle *intr_handle = &device->intr_handle; switch (device->kdrv) { case RTE_KDRV_IGB_UIO: case RTE_KDRV_UIO_GENERIC: return pci_uio_write_config(intr_handle, buf, len, offset); #ifdef VFIO_PRESENT case RTE_KDRV_VFIO: return pci_vfio_write_config(intr_handle, buf, len, offset); #endif default: rte_pci_device_name(&device->addr, devname, RTE_DEV_NAME_MAX_LEN); RTE_LOG(ERR, EAL, "Unknown driver type for %s\n", devname); return -1; } } #if defined(RTE_ARCH_X86) static int pci_ioport_map(struct rte_pci_device *dev, int bar __rte_unused, struct rte_pci_ioport *p) { uint16_t start, end; FILE *fp; char *line = NULL; char pci_id[16]; int found = 0; size_t linesz; if (rte_eal_iopl_init() != 0) { RTE_LOG(ERR, EAL, "%s(): insufficient ioport permissions for PCI device %s\n", __func__, dev->name); return -1; } snprintf(pci_id, sizeof(pci_id), PCI_PRI_FMT, dev->addr.domain, dev->addr.bus, dev->addr.devid, dev->addr.function); fp = fopen("/proc/ioports", "r"); if (fp == NULL) { RTE_LOG(ERR, EAL, "%s(): can't open ioports\n", __func__); return -1; } while (getdelim(&line, &linesz, '\n', fp) > 0) { char *ptr = line; char *left; int n; n = strcspn(ptr, ":"); ptr[n] = 0; left = &ptr[n + 1]; while (*left && isspace(*left)) left++; if (!strncmp(left, pci_id, strlen(pci_id))) { found = 1; while (*ptr && isspace(*ptr)) ptr++; sscanf(ptr, "%04hx-%04hx", &start, &end); break; } } free(line); fclose(fp); if (!found) return -1; p->base = start; RTE_LOG(DEBUG, EAL, "PCI Port IO found start=0x%x\n", start); return 0; } #endif int rte_pci_ioport_map(struct rte_pci_device *dev, int bar, struct rte_pci_ioport *p) { int ret = -1; switch (dev->kdrv) { #ifdef VFIO_PRESENT case RTE_KDRV_VFIO: if (pci_vfio_is_enabled()) ret = pci_vfio_ioport_map(dev, bar, p); break; #endif case RTE_KDRV_IGB_UIO: ret = pci_uio_ioport_map(dev, bar, p); break; case RTE_KDRV_UIO_GENERIC: #if defined(RTE_ARCH_X86) ret = pci_ioport_map(dev, bar, p); #else ret = pci_uio_ioport_map(dev, bar, p); #endif break; case RTE_KDRV_NONE: #if defined(RTE_ARCH_X86) ret = pci_ioport_map(dev, bar, p); #endif break; default: break; } if (!ret) p->dev = dev; return ret; } void rte_pci_ioport_read(struct rte_pci_ioport *p, void *data, size_t len, off_t offset) { switch (p->dev->kdrv) { #ifdef VFIO_PRESENT case RTE_KDRV_VFIO: pci_vfio_ioport_read(p, data, len, offset); break; #endif case RTE_KDRV_IGB_UIO: pci_uio_ioport_read(p, data, len, offset); break; case RTE_KDRV_UIO_GENERIC: pci_uio_ioport_read(p, data, len, offset); break; case RTE_KDRV_NONE: #if defined(RTE_ARCH_X86) pci_uio_ioport_read(p, data, len, offset); #endif break; default: break; } } void rte_pci_ioport_write(struct rte_pci_ioport *p, const void *data, size_t len, off_t offset) { switch (p->dev->kdrv) { #ifdef VFIO_PRESENT case RTE_KDRV_VFIO: pci_vfio_ioport_write(p, data, len, offset); break; #endif case RTE_KDRV_IGB_UIO: pci_uio_ioport_write(p, data, len, offset); break; case RTE_KDRV_UIO_GENERIC: pci_uio_ioport_write(p, data, len, offset); break; case RTE_KDRV_NONE: #if defined(RTE_ARCH_X86) pci_uio_ioport_write(p, data, len, offset); #endif break; default: break; } } int rte_pci_ioport_unmap(struct rte_pci_ioport *p) { int ret = -1; switch (p->dev->kdrv) { #ifdef VFIO_PRESENT case RTE_KDRV_VFIO: if (pci_vfio_is_enabled()) ret = pci_vfio_ioport_unmap(p); break; #endif case RTE_KDRV_IGB_UIO: ret = pci_uio_ioport_unmap(p); break; case RTE_KDRV_UIO_GENERIC: #if defined(RTE_ARCH_X86) ret = 0; #else ret = pci_uio_ioport_unmap(p); #endif break; case RTE_KDRV_NONE: #if defined(RTE_ARCH_X86) ret = 0; #endif break; default: break; } return ret; }