/* SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 2016-2018 Solarflare Communications Inc. * All rights reserved. * * This software was jointly developed between OKTET Labs (under contract * for Solarflare) and Solarflare Communications, Inc. */ #include #include #include #include #include #include #include #include #include "efx.h" #include "sfc.h" #include "sfc_debug.h" #include "sfc_log.h" #include "sfc_kvargs.h" #include "sfc_ev.h" #include "sfc_rx.h" #include "sfc_tx.h" #include "sfc_flow.h" #include "sfc_dp.h" #include "sfc_dp_rx.h" uint32_t sfc_logtype_driver; static struct sfc_dp_list sfc_dp_head = TAILQ_HEAD_INITIALIZER(sfc_dp_head); static void sfc_eth_dev_clear_ops(struct rte_eth_dev *dev); static int sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size) { struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); efx_nic_fw_info_t enfi; int ret; int rc; /* * Return value of the callback is likely supposed to be * equal to or greater than 0, nevertheless, if an error * occurs, it will be desirable to pass it to the caller */ if ((fw_version == NULL) || (fw_size == 0)) return -EINVAL; rc = efx_nic_get_fw_version(sa->nic, &enfi); if (rc != 0) return -rc; ret = snprintf(fw_version, fw_size, "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16, enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1], enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]); if (ret < 0) return ret; if (enfi.enfi_dpcpu_fw_ids_valid) { size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret); int ret_extra; ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset, fw_size - dpcpu_fw_ids_offset, " rx%" PRIx16 " tx%" PRIx16, enfi.enfi_rx_dpcpu_fw_id, enfi.enfi_tx_dpcpu_fw_id); if (ret_extra < 0) return ret_extra; ret += ret_extra; } if (fw_size < (size_t)(++ret)) return ret; else return 0; } static int sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) { const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); struct sfc_rss *rss = &sas->rss; uint64_t txq_offloads_def = 0; sfc_log_init(sa, "entry"); dev_info->min_mtu = RTE_ETHER_MIN_MTU; dev_info->max_mtu = EFX_MAC_SDU_MAX; dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX; /* Autonegotiation may be disabled */ dev_info->speed_capa = ETH_LINK_SPEED_FIXED; if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_1000FDX)) dev_info->speed_capa |= ETH_LINK_SPEED_1G; if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_10000FDX)) dev_info->speed_capa |= ETH_LINK_SPEED_10G; if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_25000FDX)) dev_info->speed_capa |= ETH_LINK_SPEED_25G; if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_40000FDX)) dev_info->speed_capa |= ETH_LINK_SPEED_40G; if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_50000FDX)) dev_info->speed_capa |= ETH_LINK_SPEED_50G; if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_100000FDX)) dev_info->speed_capa |= ETH_LINK_SPEED_100G; dev_info->max_rx_queues = sa->rxq_max; dev_info->max_tx_queues = sa->txq_max; /* By default packets are dropped if no descriptors are available */ dev_info->default_rxconf.rx_drop_en = 1; dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa); /* * rx_offload_capa includes both device and queue offloads since * the latter may be requested on a per device basis which makes * sense when some offloads are needed to be set on all queues. */ dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) | dev_info->rx_queue_offload_capa; dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa); /* * tx_offload_capa includes both device and queue offloads since * the latter may be requested on a per device basis which makes * sense when some offloads are needed to be set on all queues. */ dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) | dev_info->tx_queue_offload_capa; if (dev_info->tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE) txq_offloads_def |= DEV_TX_OFFLOAD_MBUF_FAST_FREE; dev_info->default_txconf.offloads |= txq_offloads_def; if (rss->context_type != EFX_RX_SCALE_UNAVAILABLE) { uint64_t rte_hf = 0; unsigned int i; for (i = 0; i < rss->hf_map_nb_entries; ++i) rte_hf |= rss->hf_map[i].rte; dev_info->reta_size = EFX_RSS_TBL_SIZE; dev_info->hash_key_size = EFX_RSS_KEY_SIZE; dev_info->flow_type_rss_offloads = rte_hf; } /* Initialize to hardware limits */ dev_info->rx_desc_lim.nb_max = sa->rxq_max_entries; dev_info->rx_desc_lim.nb_min = sa->rxq_min_entries; /* The RXQ hardware requires that the descriptor count is a power * of 2, but rx_desc_lim cannot properly describe that constraint. */ dev_info->rx_desc_lim.nb_align = sa->rxq_min_entries; /* Initialize to hardware limits */ dev_info->tx_desc_lim.nb_max = sa->txq_max_entries; dev_info->tx_desc_lim.nb_min = sa->txq_min_entries; /* * The TXQ hardware requires that the descriptor count is a power * of 2, but tx_desc_lim cannot properly describe that constraint */ dev_info->tx_desc_lim.nb_align = sa->txq_min_entries; if (sap->dp_rx->get_dev_info != NULL) sap->dp_rx->get_dev_info(dev_info); if (sap->dp_tx->get_dev_info != NULL) sap->dp_tx->get_dev_info(dev_info); dev_info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP | RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP; return 0; } static const uint32_t * sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev) { const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); return sap->dp_rx->supported_ptypes_get(sap->shared->tunnel_encaps); } static int sfc_dev_configure(struct rte_eth_dev *dev) { struct rte_eth_dev_data *dev_data = dev->data; struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); int rc; sfc_log_init(sa, "entry n_rxq=%u n_txq=%u", dev_data->nb_rx_queues, dev_data->nb_tx_queues); sfc_adapter_lock(sa); switch (sa->state) { case SFC_ADAPTER_CONFIGURED: /* FALLTHROUGH */ case SFC_ADAPTER_INITIALIZED: rc = sfc_configure(sa); break; default: sfc_err(sa, "unexpected adapter state %u to configure", sa->state); rc = EINVAL; break; } sfc_adapter_unlock(sa); sfc_log_init(sa, "done %d", rc); SFC_ASSERT(rc >= 0); return -rc; } static int sfc_dev_start(struct rte_eth_dev *dev) { struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); int rc; sfc_log_init(sa, "entry"); sfc_adapter_lock(sa); rc = sfc_start(sa); sfc_adapter_unlock(sa); sfc_log_init(sa, "done %d", rc); SFC_ASSERT(rc >= 0); return -rc; } static int sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete) { struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); struct rte_eth_link current_link; int ret; sfc_log_init(sa, "entry"); if (sa->state != SFC_ADAPTER_STARTED) { sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, ¤t_link); } else if (wait_to_complete) { efx_link_mode_t link_mode; if (efx_port_poll(sa->nic, &link_mode) != 0) link_mode = EFX_LINK_UNKNOWN; sfc_port_link_mode_to_info(link_mode, ¤t_link); } else { sfc_ev_mgmt_qpoll(sa); rte_eth_linkstatus_get(dev, ¤t_link); } ret = rte_eth_linkstatus_set(dev, ¤t_link); if (ret == 0) sfc_notice(sa, "Link status is %s", current_link.link_status ? "UP" : "DOWN"); return ret; } static void sfc_dev_stop(struct rte_eth_dev *dev) { struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); sfc_log_init(sa, "entry"); sfc_adapter_lock(sa); sfc_stop(sa); sfc_adapter_unlock(sa); sfc_log_init(sa, "done"); } static int sfc_dev_set_link_up(struct rte_eth_dev *dev) { struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); int rc; sfc_log_init(sa, "entry"); sfc_adapter_lock(sa); rc = sfc_start(sa); sfc_adapter_unlock(sa); SFC_ASSERT(rc >= 0); return -rc; } static int sfc_dev_set_link_down(struct rte_eth_dev *dev) { struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); sfc_log_init(sa, "entry"); sfc_adapter_lock(sa); sfc_stop(sa); sfc_adapter_unlock(sa); return 0; } static void sfc_dev_close(struct rte_eth_dev *dev) { struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); sfc_log_init(sa, "entry"); sfc_adapter_lock(sa); switch (sa->state) { case SFC_ADAPTER_STARTED: sfc_stop(sa); SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED); /* FALLTHROUGH */ case SFC_ADAPTER_CONFIGURED: sfc_close(sa); SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED); /* FALLTHROUGH */ case SFC_ADAPTER_INITIALIZED: break; default: sfc_err(sa, "unexpected adapter state %u on close", sa->state); break; } /* * Cleanup all resources in accordance with RTE_ETH_DEV_CLOSE_REMOVE. * Rollback primary process sfc_eth_dev_init() below. */ sfc_eth_dev_clear_ops(dev); sfc_detach(sa); sfc_unprobe(sa); sfc_kvargs_cleanup(sa); sfc_adapter_unlock(sa); sfc_adapter_lock_fini(sa); sfc_log_init(sa, "done"); /* Required for logging, so cleanup last */ sa->eth_dev = NULL; dev->process_private = NULL; free(sa); } static int sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode, boolean_t enabled) { struct sfc_port *port; boolean_t *toggle; struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI); const char *desc = (allmulti) ? "all-multi" : "promiscuous"; int rc = 0; sfc_adapter_lock(sa); port = &sa->port; toggle = (allmulti) ? (&port->allmulti) : (&port->promisc); if (*toggle != enabled) { *toggle = enabled; if (sfc_sa2shared(sa)->isolated) { sfc_warn(sa, "isolated mode is active on the port"); sfc_warn(sa, "the change is to be applied on the next " "start provided that isolated mode is " "disabled prior the next start"); } else if ((sa->state == SFC_ADAPTER_STARTED) && ((rc = sfc_set_rx_mode(sa)) != 0)) { *toggle = !(enabled); sfc_warn(sa, "Failed to %s %s mode", ((enabled) ? "enable" : "disable"), desc); } } sfc_adapter_unlock(sa); return rc; } static int sfc_dev_promisc_enable(struct rte_eth_dev *dev) { return sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE); } static int sfc_dev_promisc_disable(struct rte_eth_dev *dev) { return sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE); } static int sfc_dev_allmulti_enable(struct rte_eth_dev *dev) { return sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE); } static int sfc_dev_allmulti_disable(struct rte_eth_dev *dev) { return sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE); } static int sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id, uint16_t nb_rx_desc, unsigned int socket_id, const struct rte_eth_rxconf *rx_conf, struct rte_mempool *mb_pool) { struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); int rc; sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u", rx_queue_id, nb_rx_desc, socket_id); sfc_adapter_lock(sa); rc = sfc_rx_qinit(sa, rx_queue_id, nb_rx_desc, socket_id, rx_conf, mb_pool); if (rc != 0) goto fail_rx_qinit; dev->data->rx_queues[rx_queue_id] = sas->rxq_info[rx_queue_id].dp; sfc_adapter_unlock(sa); return 0; fail_rx_qinit: sfc_adapter_unlock(sa); SFC_ASSERT(rc > 0); return -rc; } static void sfc_rx_queue_release(void *queue) { struct sfc_dp_rxq *dp_rxq = queue; struct sfc_rxq *rxq; struct sfc_adapter *sa; unsigned int sw_index; if (dp_rxq == NULL) return; rxq = sfc_rxq_by_dp_rxq(dp_rxq); sa = rxq->evq->sa; sfc_adapter_lock(sa); sw_index = dp_rxq->dpq.queue_id; sfc_log_init(sa, "RxQ=%u", sw_index); sfc_rx_qfini(sa, sw_index); sfc_adapter_unlock(sa); } static int sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id, uint16_t nb_tx_desc, unsigned int socket_id, const struct rte_eth_txconf *tx_conf) { struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); int rc; sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u", tx_queue_id, nb_tx_desc, socket_id); sfc_adapter_lock(sa); rc = sfc_tx_qinit(sa, tx_queue_id, nb_tx_desc, socket_id, tx_conf); if (rc != 0) goto fail_tx_qinit; dev->data->tx_queues[tx_queue_id] = sas->txq_info[tx_queue_id].dp; sfc_adapter_unlock(sa); return 0; fail_tx_qinit: sfc_adapter_unlock(sa); SFC_ASSERT(rc > 0); return -rc; } static void sfc_tx_queue_release(void *queue) { struct sfc_dp_txq *dp_txq = queue; struct sfc_txq *txq; unsigned int sw_index; struct sfc_adapter *sa; if (dp_txq == NULL) return; txq = sfc_txq_by_dp_txq(dp_txq); sw_index = dp_txq->dpq.queue_id; SFC_ASSERT(txq->evq != NULL); sa = txq->evq->sa; sfc_log_init(sa, "TxQ = %u", sw_index); sfc_adapter_lock(sa); sfc_tx_qfini(sa, sw_index); sfc_adapter_unlock(sa); } /* * Some statistics are computed as A - B where A and B each increase * monotonically with some hardware counter(s) and the counters are read * asynchronously. * * If packet X is counted in A, but not counted in B yet, computed value is * greater than real. * * If packet X is not counted in A at the moment of reading the counter, * but counted in B at the moment of reading the counter, computed value * is less than real. * * However, counter which grows backward is worse evil than slightly wrong * value. So, let's try to guarantee that it never happens except may be * the case when the MAC stats are zeroed as a result of a NIC reset. */ static void sfc_update_diff_stat(uint64_t *stat, uint64_t newval) { if ((int64_t)(newval - *stat) > 0 || newval == 0) *stat = newval; } static int sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats) { struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); struct sfc_port *port = &sa->port; uint64_t *mac_stats; int ret; rte_spinlock_lock(&port->mac_stats_lock); ret = sfc_port_update_mac_stats(sa); if (ret != 0) goto unlock; mac_stats = port->mac_stats_buf; if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) { stats->ipackets = mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] + mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] + mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS]; stats->opackets = mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] + mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] + mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS]; stats->ibytes = mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] + mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] + mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES]; stats->obytes = mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] + mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] + mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES]; stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS]; stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS]; } else { stats->opackets = mac_stats[EFX_MAC_TX_PKTS]; stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS]; stats->obytes = mac_stats[EFX_MAC_TX_OCTETS]; /* * Take into account stats which are whenever supported * on EF10. If some stat is not supported by current * firmware variant or HW revision, it is guaranteed * to be zero in mac_stats. */ stats->imissed = mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] + mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] + mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] + mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] + mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] + mac_stats[EFX_MAC_PM_TRUNC_QBB] + mac_stats[EFX_MAC_PM_DISCARD_QBB] + mac_stats[EFX_MAC_PM_DISCARD_MAPPING] + mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] + mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS]; stats->ierrors = mac_stats[EFX_MAC_RX_FCS_ERRORS] + mac_stats[EFX_MAC_RX_ALIGN_ERRORS] + mac_stats[EFX_MAC_RX_JABBER_PKTS]; /* no oerrors counters supported on EF10 */ /* Exclude missed, errors and pauses from Rx packets */ sfc_update_diff_stat(&port->ipackets, mac_stats[EFX_MAC_RX_PKTS] - mac_stats[EFX_MAC_RX_PAUSE_PKTS] - stats->imissed - stats->ierrors); stats->ipackets = port->ipackets; } unlock: rte_spinlock_unlock(&port->mac_stats_lock); SFC_ASSERT(ret >= 0); return -ret; } static int sfc_stats_reset(struct rte_eth_dev *dev) { struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); struct sfc_port *port = &sa->port; int rc; if (sa->state != SFC_ADAPTER_STARTED) { /* * The operation cannot be done if port is not started; it * will be scheduled to be done during the next port start */ port->mac_stats_reset_pending = B_TRUE; return 0; } rc = sfc_port_reset_mac_stats(sa); if (rc != 0) sfc_err(sa, "failed to reset statistics (rc = %d)", rc); SFC_ASSERT(rc >= 0); return -rc; } static int sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats, unsigned int xstats_count) { struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); struct sfc_port *port = &sa->port; uint64_t *mac_stats; int rc; unsigned int i; int nstats = 0; rte_spinlock_lock(&port->mac_stats_lock); rc = sfc_port_update_mac_stats(sa); if (rc != 0) { SFC_ASSERT(rc > 0); nstats = -rc; goto unlock; } mac_stats = port->mac_stats_buf; for (i = 0; i < EFX_MAC_NSTATS; ++i) { if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { if (xstats != NULL && nstats < (int)xstats_count) { xstats[nstats].id = nstats; xstats[nstats].value = mac_stats[i]; } nstats++; } } unlock: rte_spinlock_unlock(&port->mac_stats_lock); return nstats; } static int sfc_xstats_get_names(struct rte_eth_dev *dev, struct rte_eth_xstat_name *xstats_names, unsigned int xstats_count) { struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); struct sfc_port *port = &sa->port; unsigned int i; unsigned int nstats = 0; for (i = 0; i < EFX_MAC_NSTATS; ++i) { if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { if (xstats_names != NULL && nstats < xstats_count) strlcpy(xstats_names[nstats].name, efx_mac_stat_name(sa->nic, i), sizeof(xstats_names[0].name)); nstats++; } } return nstats; } static int sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids, uint64_t *values, unsigned int n) { struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); struct sfc_port *port = &sa->port; uint64_t *mac_stats; unsigned int nb_supported = 0; unsigned int nb_written = 0; unsigned int i; int ret; int rc; if (unlikely(values == NULL) || unlikely((ids == NULL) && (n < port->mac_stats_nb_supported))) return port->mac_stats_nb_supported; rte_spinlock_lock(&port->mac_stats_lock); rc = sfc_port_update_mac_stats(sa); if (rc != 0) { SFC_ASSERT(rc > 0); ret = -rc; goto unlock; } mac_stats = port->mac_stats_buf; for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < n); ++i) { if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) continue; if ((ids == NULL) || (ids[nb_written] == nb_supported)) values[nb_written++] = mac_stats[i]; ++nb_supported; } ret = nb_written; unlock: rte_spinlock_unlock(&port->mac_stats_lock); return ret; } static int sfc_xstats_get_names_by_id(struct rte_eth_dev *dev, struct rte_eth_xstat_name *xstats_names, const uint64_t *ids, unsigned int size) { struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); struct sfc_port *port = &sa->port; unsigned int nb_supported = 0; unsigned int nb_written = 0; unsigned int i; if (unlikely(xstats_names == NULL) || unlikely((ids == NULL) && (size < port->mac_stats_nb_supported))) return port->mac_stats_nb_supported; for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < size); ++i) { if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) continue; if ((ids == NULL) || (ids[nb_written] == nb_supported)) { char *name = xstats_names[nb_written++].name; strlcpy(name, efx_mac_stat_name(sa->nic, i), sizeof(xstats_names[0].name)); } ++nb_supported; } return nb_written; } static int sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) { struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); unsigned int wanted_fc, link_fc; memset(fc_conf, 0, sizeof(*fc_conf)); sfc_adapter_lock(sa); if (sa->state == SFC_ADAPTER_STARTED) efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc); else link_fc = sa->port.flow_ctrl; switch (link_fc) { case 0: fc_conf->mode = RTE_FC_NONE; break; case EFX_FCNTL_RESPOND: fc_conf->mode = RTE_FC_RX_PAUSE; break; case EFX_FCNTL_GENERATE: fc_conf->mode = RTE_FC_TX_PAUSE; break; case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE): fc_conf->mode = RTE_FC_FULL; break; default: sfc_err(sa, "%s: unexpected flow control value %#x", __func__, link_fc); } fc_conf->autoneg = sa->port.flow_ctrl_autoneg; sfc_adapter_unlock(sa); return 0; } static int sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) { struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); struct sfc_port *port = &sa->port; unsigned int fcntl; int rc; if (fc_conf->high_water != 0 || fc_conf->low_water != 0 || fc_conf->pause_time != 0 || fc_conf->send_xon != 0 || fc_conf->mac_ctrl_frame_fwd != 0) { sfc_err(sa, "unsupported flow control settings specified"); rc = EINVAL; goto fail_inval; } switch (fc_conf->mode) { case RTE_FC_NONE: fcntl = 0; break; case RTE_FC_RX_PAUSE: fcntl = EFX_FCNTL_RESPOND; break; case RTE_FC_TX_PAUSE: fcntl = EFX_FCNTL_GENERATE; break; case RTE_FC_FULL: fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE; break; default: rc = EINVAL; goto fail_inval; } sfc_adapter_lock(sa); if (sa->state == SFC_ADAPTER_STARTED) { rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg); if (rc != 0) goto fail_mac_fcntl_set; } port->flow_ctrl = fcntl; port->flow_ctrl_autoneg = fc_conf->autoneg; sfc_adapter_unlock(sa); return 0; fail_mac_fcntl_set: sfc_adapter_unlock(sa); fail_inval: SFC_ASSERT(rc > 0); return -rc; } static int sfc_check_scatter_on_all_rx_queues(struct sfc_adapter *sa, size_t pdu) { struct sfc_adapter_shared * const sas = sfc_sa2shared(sa); const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); boolean_t scatter_enabled; const char *error; unsigned int i; for (i = 0; i < sas->rxq_count; i++) { if ((sas->rxq_info[i].state & SFC_RXQ_INITIALIZED) == 0) continue; scatter_enabled = (sas->rxq_info[i].type_flags & EFX_RXQ_FLAG_SCATTER); if (!sfc_rx_check_scatter(pdu, sa->rxq_ctrl[i].buf_size, encp->enc_rx_prefix_size, scatter_enabled, &error)) { sfc_err(sa, "MTU check for RxQ %u failed: %s", i, error); return EINVAL; } } return 0; } static int sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu) { struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); size_t pdu = EFX_MAC_PDU(mtu); size_t old_pdu; int rc; sfc_log_init(sa, "mtu=%u", mtu); rc = EINVAL; if (pdu < EFX_MAC_PDU_MIN) { sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)", (unsigned int)mtu, (unsigned int)pdu, EFX_MAC_PDU_MIN); goto fail_inval; } if (pdu > EFX_MAC_PDU_MAX) { sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)", (unsigned int)mtu, (unsigned int)pdu, (unsigned int)EFX_MAC_PDU_MAX); goto fail_inval; } sfc_adapter_lock(sa); rc = sfc_check_scatter_on_all_rx_queues(sa, pdu); if (rc != 0) goto fail_check_scatter; if (pdu != sa->port.pdu) { if (sa->state == SFC_ADAPTER_STARTED) { sfc_stop(sa); old_pdu = sa->port.pdu; sa->port.pdu = pdu; rc = sfc_start(sa); if (rc != 0) goto fail_start; } else { sa->port.pdu = pdu; } } /* * The driver does not use it, but other PMDs update jumbo frame * flag and max_rx_pkt_len when MTU is set. */ if (mtu > RTE_ETHER_MAX_LEN) { struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode; rxmode->offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME; } dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu; sfc_adapter_unlock(sa); sfc_log_init(sa, "done"); return 0; fail_start: sa->port.pdu = old_pdu; if (sfc_start(sa) != 0) sfc_err(sa, "cannot start with neither new (%u) nor old (%u) " "PDU max size - port is stopped", (unsigned int)pdu, (unsigned int)old_pdu); fail_check_scatter: sfc_adapter_unlock(sa); fail_inval: sfc_log_init(sa, "failed %d", rc); SFC_ASSERT(rc > 0); return -rc; } static int sfc_mac_addr_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr) { struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); struct sfc_port *port = &sa->port; struct rte_ether_addr *old_addr = &dev->data->mac_addrs[0]; int rc = 0; sfc_adapter_lock(sa); /* * Copy the address to the device private data so that * it could be recalled in the case of adapter restart. */ rte_ether_addr_copy(mac_addr, &port->default_mac_addr); /* * Neither of the two following checks can return * an error. The new MAC address is preserved in * the device private data and can be activated * on the next port start if the user prevents * isolated mode from being enabled. */ if (sfc_sa2shared(sa)->isolated) { sfc_warn(sa, "isolated mode is active on the port"); sfc_warn(sa, "will not set MAC address"); goto unlock; } if (sa->state != SFC_ADAPTER_STARTED) { sfc_notice(sa, "the port is not started"); sfc_notice(sa, "the new MAC address will be set on port start"); goto unlock; } if (encp->enc_allow_set_mac_with_installed_filters) { rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes); if (rc != 0) { sfc_err(sa, "cannot set MAC address (rc = %u)", rc); goto unlock; } /* * Changing the MAC address by means of MCDI request * has no effect on received traffic, therefore * we also need to update unicast filters */ rc = sfc_set_rx_mode(sa); if (rc != 0) { sfc_err(sa, "cannot set filter (rc = %u)", rc); /* Rollback the old address */ (void)efx_mac_addr_set(sa->nic, old_addr->addr_bytes); (void)sfc_set_rx_mode(sa); } } else { sfc_warn(sa, "cannot set MAC address with filters installed"); sfc_warn(sa, "adapter will be restarted to pick the new MAC"); sfc_warn(sa, "(some traffic may be dropped)"); /* * Since setting MAC address with filters installed is not * allowed on the adapter, the new MAC address will be set * by means of adapter restart. sfc_start() shall retrieve * the new address from the device private data and set it. */ sfc_stop(sa); rc = sfc_start(sa); if (rc != 0) sfc_err(sa, "cannot restart adapter (rc = %u)", rc); } unlock: if (rc != 0) rte_ether_addr_copy(old_addr, &port->default_mac_addr); sfc_adapter_unlock(sa); SFC_ASSERT(rc >= 0); return -rc; } static int sfc_set_mc_addr_list(struct rte_eth_dev *dev, struct rte_ether_addr *mc_addr_set, uint32_t nb_mc_addr) { struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); struct sfc_port *port = &sa->port; uint8_t *mc_addrs = port->mcast_addrs; int rc; unsigned int i; if (sfc_sa2shared(sa)->isolated) { sfc_err(sa, "isolated mode is active on the port"); sfc_err(sa, "will not set multicast address list"); return -ENOTSUP; } if (mc_addrs == NULL) return -ENOBUFS; if (nb_mc_addr > port->max_mcast_addrs) { sfc_err(sa, "too many multicast addresses: %u > %u", nb_mc_addr, port->max_mcast_addrs); return -EINVAL; } for (i = 0; i < nb_mc_addr; ++i) { rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes, EFX_MAC_ADDR_LEN); mc_addrs += EFX_MAC_ADDR_LEN; } port->nb_mcast_addrs = nb_mc_addr; if (sa->state != SFC_ADAPTER_STARTED) return 0; rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs, port->nb_mcast_addrs); if (rc != 0) sfc_err(sa, "cannot set multicast address list (rc = %u)", rc); SFC_ASSERT(rc >= 0); return -rc; } /* * The function is used by the secondary process as well. It must not * use any process-local pointers from the adapter data. */ static void sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id, struct rte_eth_rxq_info *qinfo) { struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); struct sfc_rxq_info *rxq_info; SFC_ASSERT(rx_queue_id < sas->rxq_count); rxq_info = &sas->rxq_info[rx_queue_id]; qinfo->mp = rxq_info->refill_mb_pool; qinfo->conf.rx_free_thresh = rxq_info->refill_threshold; qinfo->conf.rx_drop_en = 1; qinfo->conf.rx_deferred_start = rxq_info->deferred_start; qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads; if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) { qinfo->conf.offloads |= DEV_RX_OFFLOAD_SCATTER; qinfo->scattered_rx = 1; } qinfo->nb_desc = rxq_info->entries; } /* * The function is used by the secondary process as well. It must not * use any process-local pointers from the adapter data. */ static void sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id, struct rte_eth_txq_info *qinfo) { struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); struct sfc_txq_info *txq_info; SFC_ASSERT(tx_queue_id < sas->txq_count); txq_info = &sas->txq_info[tx_queue_id]; memset(qinfo, 0, sizeof(*qinfo)); qinfo->conf.offloads = txq_info->offloads; qinfo->conf.tx_free_thresh = txq_info->free_thresh; qinfo->conf.tx_deferred_start = txq_info->deferred_start; qinfo->nb_desc = txq_info->entries; } /* * The function is used by the secondary process as well. It must not * use any process-local pointers from the adapter data. */ static uint32_t sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id) { const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); struct sfc_rxq_info *rxq_info; SFC_ASSERT(rx_queue_id < sas->rxq_count); rxq_info = &sas->rxq_info[rx_queue_id]; if ((rxq_info->state & SFC_RXQ_STARTED) == 0) return 0; return sap->dp_rx->qdesc_npending(rxq_info->dp); } /* * The function is used by the secondary process as well. It must not * use any process-local pointers from the adapter data. */ static int sfc_rx_descriptor_done(void *queue, uint16_t offset) { struct sfc_dp_rxq *dp_rxq = queue; const struct sfc_dp_rx *dp_rx; dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq); return offset < dp_rx->qdesc_npending(dp_rxq); } /* * The function is used by the secondary process as well. It must not * use any process-local pointers from the adapter data. */ static int sfc_rx_descriptor_status(void *queue, uint16_t offset) { struct sfc_dp_rxq *dp_rxq = queue; const struct sfc_dp_rx *dp_rx; dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq); return dp_rx->qdesc_status(dp_rxq, offset); } /* * The function is used by the secondary process as well. It must not * use any process-local pointers from the adapter data. */ static int sfc_tx_descriptor_status(void *queue, uint16_t offset) { struct sfc_dp_txq *dp_txq = queue; const struct sfc_dp_tx *dp_tx; dp_tx = sfc_dp_tx_by_dp_txq(dp_txq); return dp_tx->qdesc_status(dp_txq, offset); } static int sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id) { struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); int rc; sfc_log_init(sa, "RxQ=%u", rx_queue_id); sfc_adapter_lock(sa); rc = EINVAL; if (sa->state != SFC_ADAPTER_STARTED) goto fail_not_started; if (sas->rxq_info[rx_queue_id].state != SFC_RXQ_INITIALIZED) goto fail_not_setup; rc = sfc_rx_qstart(sa, rx_queue_id); if (rc != 0) goto fail_rx_qstart; sas->rxq_info[rx_queue_id].deferred_started = B_TRUE; sfc_adapter_unlock(sa); return 0; fail_rx_qstart: fail_not_setup: fail_not_started: sfc_adapter_unlock(sa); SFC_ASSERT(rc > 0); return -rc; } static int sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id) { struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); sfc_log_init(sa, "RxQ=%u", rx_queue_id); sfc_adapter_lock(sa); sfc_rx_qstop(sa, rx_queue_id); sas->rxq_info[rx_queue_id].deferred_started = B_FALSE; sfc_adapter_unlock(sa); return 0; } static int sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id) { struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); int rc; sfc_log_init(sa, "TxQ = %u", tx_queue_id); sfc_adapter_lock(sa); rc = EINVAL; if (sa->state != SFC_ADAPTER_STARTED) goto fail_not_started; if (sas->txq_info[tx_queue_id].state != SFC_TXQ_INITIALIZED) goto fail_not_setup; rc = sfc_tx_qstart(sa, tx_queue_id); if (rc != 0) goto fail_tx_qstart; sas->txq_info[tx_queue_id].deferred_started = B_TRUE; sfc_adapter_unlock(sa); return 0; fail_tx_qstart: fail_not_setup: fail_not_started: sfc_adapter_unlock(sa); SFC_ASSERT(rc > 0); return -rc; } static int sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id) { struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); sfc_log_init(sa, "TxQ = %u", tx_queue_id); sfc_adapter_lock(sa); sfc_tx_qstop(sa, tx_queue_id); sas->txq_info[tx_queue_id].deferred_started = B_FALSE; sfc_adapter_unlock(sa); return 0; } static efx_tunnel_protocol_t sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type) { switch (rte_type) { case RTE_TUNNEL_TYPE_VXLAN: return EFX_TUNNEL_PROTOCOL_VXLAN; case RTE_TUNNEL_TYPE_GENEVE: return EFX_TUNNEL_PROTOCOL_GENEVE; default: return EFX_TUNNEL_NPROTOS; } } enum sfc_udp_tunnel_op_e { SFC_UDP_TUNNEL_ADD_PORT, SFC_UDP_TUNNEL_DEL_PORT, }; static int sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev, struct rte_eth_udp_tunnel *tunnel_udp, enum sfc_udp_tunnel_op_e op) { struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); efx_tunnel_protocol_t tunnel_proto; int rc; sfc_log_init(sa, "%s udp_port=%u prot_type=%u", (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" : (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown", tunnel_udp->udp_port, tunnel_udp->prot_type); tunnel_proto = sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type); if (tunnel_proto >= EFX_TUNNEL_NPROTOS) { rc = ENOTSUP; goto fail_bad_proto; } sfc_adapter_lock(sa); switch (op) { case SFC_UDP_TUNNEL_ADD_PORT: rc = efx_tunnel_config_udp_add(sa->nic, tunnel_udp->udp_port, tunnel_proto); break; case SFC_UDP_TUNNEL_DEL_PORT: rc = efx_tunnel_config_udp_remove(sa->nic, tunnel_udp->udp_port, tunnel_proto); break; default: rc = EINVAL; goto fail_bad_op; } if (rc != 0) goto fail_op; if (sa->state == SFC_ADAPTER_STARTED) { rc = efx_tunnel_reconfigure(sa->nic); if (rc == EAGAIN) { /* * Configuration is accepted by FW and MC reboot * is initiated to apply the changes. MC reboot * will be handled in a usual way (MC reboot * event on management event queue and adapter * restart). */ rc = 0; } else if (rc != 0) { goto fail_reconfigure; } } sfc_adapter_unlock(sa); return 0; fail_reconfigure: /* Remove/restore entry since the change makes the trouble */ switch (op) { case SFC_UDP_TUNNEL_ADD_PORT: (void)efx_tunnel_config_udp_remove(sa->nic, tunnel_udp->udp_port, tunnel_proto); break; case SFC_UDP_TUNNEL_DEL_PORT: (void)efx_tunnel_config_udp_add(sa->nic, tunnel_udp->udp_port, tunnel_proto); break; } fail_op: fail_bad_op: sfc_adapter_unlock(sa); fail_bad_proto: SFC_ASSERT(rc > 0); return -rc; } static int sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev, struct rte_eth_udp_tunnel *tunnel_udp) { return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT); } static int sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev, struct rte_eth_udp_tunnel *tunnel_udp) { return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT); } /* * The function is used by the secondary process as well. It must not * use any process-local pointers from the adapter data. */ static int sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev, struct rte_eth_rss_conf *rss_conf) { struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); struct sfc_rss *rss = &sas->rss; if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) return -ENOTSUP; /* * Mapping of hash configuration between RTE and EFX is not one-to-one, * hence, conversion is done here to derive a correct set of ETH_RSS * flags which corresponds to the active EFX configuration stored * locally in 'sfc_adapter' and kept up-to-date */ rss_conf->rss_hf = sfc_rx_hf_efx_to_rte(rss, rss->hash_types); rss_conf->rss_key_len = EFX_RSS_KEY_SIZE; if (rss_conf->rss_key != NULL) rte_memcpy(rss_conf->rss_key, rss->key, EFX_RSS_KEY_SIZE); return 0; } static int sfc_dev_rss_hash_update(struct rte_eth_dev *dev, struct rte_eth_rss_conf *rss_conf) { struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); struct sfc_rss *rss = &sfc_sa2shared(sa)->rss; unsigned int efx_hash_types; int rc = 0; if (sfc_sa2shared(sa)->isolated) return -ENOTSUP; if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) { sfc_err(sa, "RSS is not available"); return -ENOTSUP; } if (rss->channels == 0) { sfc_err(sa, "RSS is not configured"); return -EINVAL; } if ((rss_conf->rss_key != NULL) && (rss_conf->rss_key_len != sizeof(rss->key))) { sfc_err(sa, "RSS key size is wrong (should be %zu)", sizeof(rss->key)); return -EINVAL; } sfc_adapter_lock(sa); rc = sfc_rx_hf_rte_to_efx(sa, rss_conf->rss_hf, &efx_hash_types); if (rc != 0) goto fail_rx_hf_rte_to_efx; rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, rss->hash_alg, efx_hash_types, B_TRUE); if (rc != 0) goto fail_scale_mode_set; if (rss_conf->rss_key != NULL) { if (sa->state == SFC_ADAPTER_STARTED) { rc = efx_rx_scale_key_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, rss_conf->rss_key, sizeof(rss->key)); if (rc != 0) goto fail_scale_key_set; } rte_memcpy(rss->key, rss_conf->rss_key, sizeof(rss->key)); } rss->hash_types = efx_hash_types; sfc_adapter_unlock(sa); return 0; fail_scale_key_set: if (efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, EFX_RX_HASHALG_TOEPLITZ, rss->hash_types, B_TRUE) != 0) sfc_err(sa, "failed to restore RSS mode"); fail_scale_mode_set: fail_rx_hf_rte_to_efx: sfc_adapter_unlock(sa); return -rc; } /* * The function is used by the secondary process as well. It must not * use any process-local pointers from the adapter data. */ static int sfc_dev_rss_reta_query(struct rte_eth_dev *dev, struct rte_eth_rss_reta_entry64 *reta_conf, uint16_t reta_size) { struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); struct sfc_rss *rss = &sas->rss; int entry; if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || sas->isolated) return -ENOTSUP; if (rss->channels == 0) return -EINVAL; if (reta_size != EFX_RSS_TBL_SIZE) return -EINVAL; for (entry = 0; entry < reta_size; entry++) { int grp = entry / RTE_RETA_GROUP_SIZE; int grp_idx = entry % RTE_RETA_GROUP_SIZE; if ((reta_conf[grp].mask >> grp_idx) & 1) reta_conf[grp].reta[grp_idx] = rss->tbl[entry]; } return 0; } static int sfc_dev_rss_reta_update(struct rte_eth_dev *dev, struct rte_eth_rss_reta_entry64 *reta_conf, uint16_t reta_size) { struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); struct sfc_rss *rss = &sfc_sa2shared(sa)->rss; unsigned int *rss_tbl_new; uint16_t entry; int rc = 0; if (sfc_sa2shared(sa)->isolated) return -ENOTSUP; if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) { sfc_err(sa, "RSS is not available"); return -ENOTSUP; } if (rss->channels == 0) { sfc_err(sa, "RSS is not configured"); return -EINVAL; } if (reta_size != EFX_RSS_TBL_SIZE) { sfc_err(sa, "RETA size is wrong (should be %u)", EFX_RSS_TBL_SIZE); return -EINVAL; } rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(rss->tbl), 0); if (rss_tbl_new == NULL) return -ENOMEM; sfc_adapter_lock(sa); rte_memcpy(rss_tbl_new, rss->tbl, sizeof(rss->tbl)); for (entry = 0; entry < reta_size; entry++) { int grp_idx = entry % RTE_RETA_GROUP_SIZE; struct rte_eth_rss_reta_entry64 *grp; grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE]; if (grp->mask & (1ull << grp_idx)) { if (grp->reta[grp_idx] >= rss->channels) { rc = EINVAL; goto bad_reta_entry; } rss_tbl_new[entry] = grp->reta[grp_idx]; } } if (sa->state == SFC_ADAPTER_STARTED) { rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, rss_tbl_new, EFX_RSS_TBL_SIZE); if (rc != 0) goto fail_scale_tbl_set; } rte_memcpy(rss->tbl, rss_tbl_new, sizeof(rss->tbl)); fail_scale_tbl_set: bad_reta_entry: sfc_adapter_unlock(sa); rte_free(rss_tbl_new); SFC_ASSERT(rc >= 0); return -rc; } static int sfc_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type, enum rte_filter_op filter_op, void *arg) { struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); int rc = ENOTSUP; sfc_log_init(sa, "entry"); switch (filter_type) { case RTE_ETH_FILTER_NONE: sfc_err(sa, "Global filters configuration not supported"); break; case RTE_ETH_FILTER_MACVLAN: sfc_err(sa, "MACVLAN filters not supported"); break; case RTE_ETH_FILTER_ETHERTYPE: sfc_err(sa, "EtherType filters not supported"); break; case RTE_ETH_FILTER_FLEXIBLE: sfc_err(sa, "Flexible filters not supported"); break; case RTE_ETH_FILTER_SYN: sfc_err(sa, "SYN filters not supported"); break; case RTE_ETH_FILTER_NTUPLE: sfc_err(sa, "NTUPLE filters not supported"); break; case RTE_ETH_FILTER_TUNNEL: sfc_err(sa, "Tunnel filters not supported"); break; case RTE_ETH_FILTER_FDIR: sfc_err(sa, "Flow Director filters not supported"); break; case RTE_ETH_FILTER_HASH: sfc_err(sa, "Hash filters not supported"); break; case RTE_ETH_FILTER_GENERIC: if (filter_op != RTE_ETH_FILTER_GET) { rc = EINVAL; } else { *(const void **)arg = &sfc_flow_ops; rc = 0; } break; default: sfc_err(sa, "Unknown filter type %u", filter_type); break; } sfc_log_init(sa, "exit: %d", -rc); SFC_ASSERT(rc >= 0); return -rc; } static int sfc_pool_ops_supported(struct rte_eth_dev *dev, const char *pool) { const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); /* * If Rx datapath does not provide callback to check mempool, * all pools are supported. */ if (sap->dp_rx->pool_ops_supported == NULL) return 1; return sap->dp_rx->pool_ops_supported(pool); } static int sfc_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id) { const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); struct sfc_rxq_info *rxq_info; SFC_ASSERT(queue_id < sas->rxq_count); rxq_info = &sas->rxq_info[queue_id]; return sap->dp_rx->intr_enable(rxq_info->dp); } static int sfc_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id) { const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); struct sfc_rxq_info *rxq_info; SFC_ASSERT(queue_id < sas->rxq_count); rxq_info = &sas->rxq_info[queue_id]; return sap->dp_rx->intr_disable(rxq_info->dp); } static const struct eth_dev_ops sfc_eth_dev_ops = { .dev_configure = sfc_dev_configure, .dev_start = sfc_dev_start, .dev_stop = sfc_dev_stop, .dev_set_link_up = sfc_dev_set_link_up, .dev_set_link_down = sfc_dev_set_link_down, .dev_close = sfc_dev_close, .promiscuous_enable = sfc_dev_promisc_enable, .promiscuous_disable = sfc_dev_promisc_disable, .allmulticast_enable = sfc_dev_allmulti_enable, .allmulticast_disable = sfc_dev_allmulti_disable, .link_update = sfc_dev_link_update, .stats_get = sfc_stats_get, .stats_reset = sfc_stats_reset, .xstats_get = sfc_xstats_get, .xstats_reset = sfc_stats_reset, .xstats_get_names = sfc_xstats_get_names, .dev_infos_get = sfc_dev_infos_get, .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get, .mtu_set = sfc_dev_set_mtu, .rx_queue_start = sfc_rx_queue_start, .rx_queue_stop = sfc_rx_queue_stop, .tx_queue_start = sfc_tx_queue_start, .tx_queue_stop = sfc_tx_queue_stop, .rx_queue_setup = sfc_rx_queue_setup, .rx_queue_release = sfc_rx_queue_release, .rx_queue_count = sfc_rx_queue_count, .rx_descriptor_done = sfc_rx_descriptor_done, .rx_descriptor_status = sfc_rx_descriptor_status, .tx_descriptor_status = sfc_tx_descriptor_status, .rx_queue_intr_enable = sfc_rx_queue_intr_enable, .rx_queue_intr_disable = sfc_rx_queue_intr_disable, .tx_queue_setup = sfc_tx_queue_setup, .tx_queue_release = sfc_tx_queue_release, .flow_ctrl_get = sfc_flow_ctrl_get, .flow_ctrl_set = sfc_flow_ctrl_set, .mac_addr_set = sfc_mac_addr_set, .udp_tunnel_port_add = sfc_dev_udp_tunnel_port_add, .udp_tunnel_port_del = sfc_dev_udp_tunnel_port_del, .reta_update = sfc_dev_rss_reta_update, .reta_query = sfc_dev_rss_reta_query, .rss_hash_update = sfc_dev_rss_hash_update, .rss_hash_conf_get = sfc_dev_rss_hash_conf_get, .filter_ctrl = sfc_dev_filter_ctrl, .set_mc_addr_list = sfc_set_mc_addr_list, .rxq_info_get = sfc_rx_queue_info_get, .txq_info_get = sfc_tx_queue_info_get, .fw_version_get = sfc_fw_version_get, .xstats_get_by_id = sfc_xstats_get_by_id, .xstats_get_names_by_id = sfc_xstats_get_names_by_id, .pool_ops_supported = sfc_pool_ops_supported, }; /** * Duplicate a string in potentially shared memory required for * multi-process support. * * strdup() allocates from process-local heap/memory. */ static char * sfc_strdup(const char *str) { size_t size; char *copy; if (str == NULL) return NULL; size = strlen(str) + 1; copy = rte_malloc(__func__, size, 0); if (copy != NULL) rte_memcpy(copy, str, size); return copy; } static int sfc_eth_dev_set_ops(struct rte_eth_dev *dev) { struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); const struct sfc_dp_rx *dp_rx; const struct sfc_dp_tx *dp_tx; const efx_nic_cfg_t *encp; unsigned int avail_caps = 0; const char *rx_name = NULL; const char *tx_name = NULL; int rc; switch (sa->family) { case EFX_FAMILY_HUNTINGTON: case EFX_FAMILY_MEDFORD: case EFX_FAMILY_MEDFORD2: avail_caps |= SFC_DP_HW_FW_CAP_EF10; break; default: break; } encp = efx_nic_cfg_get(sa->nic); if (encp->enc_rx_es_super_buffer_supported) avail_caps |= SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER; rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH, sfc_kvarg_string_handler, &rx_name); if (rc != 0) goto fail_kvarg_rx_datapath; if (rx_name != NULL) { dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name); if (dp_rx == NULL) { sfc_err(sa, "Rx datapath %s not found", rx_name); rc = ENOENT; goto fail_dp_rx; } if (!sfc_dp_match_hw_fw_caps(&dp_rx->dp, avail_caps)) { sfc_err(sa, "Insufficient Hw/FW capabilities to use Rx datapath %s", rx_name); rc = EINVAL; goto fail_dp_rx_caps; } } else { dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps); if (dp_rx == NULL) { sfc_err(sa, "Rx datapath by caps %#x not found", avail_caps); rc = ENOENT; goto fail_dp_rx; } } sas->dp_rx_name = sfc_strdup(dp_rx->dp.name); if (sas->dp_rx_name == NULL) { rc = ENOMEM; goto fail_dp_rx_name; } sfc_notice(sa, "use %s Rx datapath", sas->dp_rx_name); rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH, sfc_kvarg_string_handler, &tx_name); if (rc != 0) goto fail_kvarg_tx_datapath; if (tx_name != NULL) { dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name); if (dp_tx == NULL) { sfc_err(sa, "Tx datapath %s not found", tx_name); rc = ENOENT; goto fail_dp_tx; } if (!sfc_dp_match_hw_fw_caps(&dp_tx->dp, avail_caps)) { sfc_err(sa, "Insufficient Hw/FW capabilities to use Tx datapath %s", tx_name); rc = EINVAL; goto fail_dp_tx_caps; } } else { dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps); if (dp_tx == NULL) { sfc_err(sa, "Tx datapath by caps %#x not found", avail_caps); rc = ENOENT; goto fail_dp_tx; } } sas->dp_tx_name = sfc_strdup(dp_tx->dp.name); if (sas->dp_tx_name == NULL) { rc = ENOMEM; goto fail_dp_tx_name; } sfc_notice(sa, "use %s Tx datapath", sas->dp_tx_name); sa->priv.dp_rx = dp_rx; sa->priv.dp_tx = dp_tx; dev->rx_pkt_burst = dp_rx->pkt_burst; dev->tx_pkt_prepare = dp_tx->pkt_prepare; dev->tx_pkt_burst = dp_tx->pkt_burst; dev->dev_ops = &sfc_eth_dev_ops; return 0; fail_dp_tx_name: fail_dp_tx_caps: fail_dp_tx: fail_kvarg_tx_datapath: rte_free(sas->dp_rx_name); sas->dp_rx_name = NULL; fail_dp_rx_name: fail_dp_rx_caps: fail_dp_rx: fail_kvarg_rx_datapath: return rc; } static void sfc_eth_dev_clear_ops(struct rte_eth_dev *dev) { struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); dev->dev_ops = NULL; dev->tx_pkt_prepare = NULL; dev->rx_pkt_burst = NULL; dev->tx_pkt_burst = NULL; rte_free(sas->dp_tx_name); sas->dp_tx_name = NULL; sa->priv.dp_tx = NULL; rte_free(sas->dp_rx_name); sas->dp_rx_name = NULL; sa->priv.dp_rx = NULL; } static const struct eth_dev_ops sfc_eth_dev_secondary_ops = { .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get, .rx_queue_count = sfc_rx_queue_count, .rx_descriptor_done = sfc_rx_descriptor_done, .rx_descriptor_status = sfc_rx_descriptor_status, .tx_descriptor_status = sfc_tx_descriptor_status, .reta_query = sfc_dev_rss_reta_query, .rss_hash_conf_get = sfc_dev_rss_hash_conf_get, .rxq_info_get = sfc_rx_queue_info_get, .txq_info_get = sfc_tx_queue_info_get, }; static int sfc_eth_dev_secondary_init(struct rte_eth_dev *dev, uint32_t logtype_main) { struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); struct sfc_adapter_priv *sap; const struct sfc_dp_rx *dp_rx; const struct sfc_dp_tx *dp_tx; int rc; /* * Allocate process private data from heap, since it should not * be located in shared memory allocated using rte_malloc() API. */ sap = calloc(1, sizeof(*sap)); if (sap == NULL) { rc = ENOMEM; goto fail_alloc_priv; } sap->logtype_main = logtype_main; dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sas->dp_rx_name); if (dp_rx == NULL) { SFC_LOG(sas, RTE_LOG_ERR, logtype_main, "cannot find %s Rx datapath", sas->dp_rx_name); rc = ENOENT; goto fail_dp_rx; } if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) { SFC_LOG(sas, RTE_LOG_ERR, logtype_main, "%s Rx datapath does not support multi-process", sas->dp_rx_name); rc = EINVAL; goto fail_dp_rx_multi_process; } dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sas->dp_tx_name); if (dp_tx == NULL) { SFC_LOG(sas, RTE_LOG_ERR, logtype_main, "cannot find %s Tx datapath", sas->dp_tx_name); rc = ENOENT; goto fail_dp_tx; } if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) { SFC_LOG(sas, RTE_LOG_ERR, logtype_main, "%s Tx datapath does not support multi-process", sas->dp_tx_name); rc = EINVAL; goto fail_dp_tx_multi_process; } sap->dp_rx = dp_rx; sap->dp_tx = dp_tx; dev->process_private = sap; dev->rx_pkt_burst = dp_rx->pkt_burst; dev->tx_pkt_prepare = dp_tx->pkt_prepare; dev->tx_pkt_burst = dp_tx->pkt_burst; dev->dev_ops = &sfc_eth_dev_secondary_ops; return 0; fail_dp_tx_multi_process: fail_dp_tx: fail_dp_rx_multi_process: fail_dp_rx: free(sap); fail_alloc_priv: return rc; } static void sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev) { free(dev->process_private); dev->process_private = NULL; dev->dev_ops = NULL; dev->tx_pkt_prepare = NULL; dev->tx_pkt_burst = NULL; dev->rx_pkt_burst = NULL; } static void sfc_register_dp(void) { /* Register once */ if (TAILQ_EMPTY(&sfc_dp_head)) { /* Prefer EF10 datapath */ sfc_dp_register(&sfc_dp_head, &sfc_ef10_essb_rx.dp); sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp); sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp); sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp); sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp); sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp); } } static int sfc_eth_dev_init(struct rte_eth_dev *dev) { struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); uint32_t logtype_main; struct sfc_adapter *sa; int rc; const efx_nic_cfg_t *encp; const struct rte_ether_addr *from; sfc_register_dp(); logtype_main = sfc_register_logtype(&pci_dev->addr, SFC_LOGTYPE_MAIN_STR, RTE_LOG_NOTICE); if (rte_eal_process_type() != RTE_PROC_PRIMARY) return -sfc_eth_dev_secondary_init(dev, logtype_main); /* Required for logging */ sas->pci_addr = pci_dev->addr; sas->port_id = dev->data->port_id; /* * Allocate process private data from heap, since it should not * be located in shared memory allocated using rte_malloc() API. */ sa = calloc(1, sizeof(*sa)); if (sa == NULL) { rc = ENOMEM; goto fail_alloc_sa; } dev->process_private = sa; /* Required for logging */ sa->priv.shared = sas; sa->priv.logtype_main = logtype_main; sa->eth_dev = dev; /* Copy PCI device info to the dev->data */ rte_eth_copy_pci_info(dev, pci_dev); rc = sfc_kvargs_parse(sa); if (rc != 0) goto fail_kvargs_parse; sfc_log_init(sa, "entry"); dev->data->dev_flags |= RTE_ETH_DEV_CLOSE_REMOVE; dev->data->mac_addrs = rte_zmalloc("sfc", RTE_ETHER_ADDR_LEN, 0); if (dev->data->mac_addrs == NULL) { rc = ENOMEM; goto fail_mac_addrs; } sfc_adapter_lock_init(sa); sfc_adapter_lock(sa); sfc_log_init(sa, "probing"); rc = sfc_probe(sa); if (rc != 0) goto fail_probe; sfc_log_init(sa, "set device ops"); rc = sfc_eth_dev_set_ops(dev); if (rc != 0) goto fail_set_ops; sfc_log_init(sa, "attaching"); rc = sfc_attach(sa); if (rc != 0) goto fail_attach; encp = efx_nic_cfg_get(sa->nic); /* * The arguments are really reverse order in comparison to * Linux kernel. Copy from NIC config to Ethernet device data. */ from = (const struct rte_ether_addr *)(encp->enc_mac_addr); rte_ether_addr_copy(from, &dev->data->mac_addrs[0]); sfc_adapter_unlock(sa); sfc_log_init(sa, "done"); return 0; fail_attach: sfc_eth_dev_clear_ops(dev); fail_set_ops: sfc_unprobe(sa); fail_probe: sfc_adapter_unlock(sa); sfc_adapter_lock_fini(sa); rte_free(dev->data->mac_addrs); dev->data->mac_addrs = NULL; fail_mac_addrs: sfc_kvargs_cleanup(sa); fail_kvargs_parse: sfc_log_init(sa, "failed %d", rc); dev->process_private = NULL; free(sa); fail_alloc_sa: SFC_ASSERT(rc > 0); return -rc; } static int sfc_eth_dev_uninit(struct rte_eth_dev *dev) { if (rte_eal_process_type() != RTE_PROC_PRIMARY) { sfc_eth_dev_secondary_clear_ops(dev); return 0; } sfc_dev_close(dev); return 0; } static const struct rte_pci_id pci_id_sfc_efx_map[] = { { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) }, { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) }, { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) }, { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) }, { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) }, { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) }, { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2) }, { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2_VF) }, { .vendor_id = 0 /* sentinel */ } }; static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, struct rte_pci_device *pci_dev) { return rte_eth_dev_pci_generic_probe(pci_dev, sizeof(struct sfc_adapter_shared), sfc_eth_dev_init); } static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev) { return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit); } static struct rte_pci_driver sfc_efx_pmd = { .id_table = pci_id_sfc_efx_map, .drv_flags = RTE_PCI_DRV_INTR_LSC | RTE_PCI_DRV_NEED_MAPPING, .probe = sfc_eth_dev_pci_probe, .remove = sfc_eth_dev_pci_remove, }; RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd); RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map); RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci"); RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx, SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " " SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " " SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " " SFC_KVARG_FW_VARIANT "=" SFC_KVARG_VALUES_FW_VARIANT " " SFC_KVARG_RXD_WAIT_TIMEOUT_NS "= " SFC_KVARG_STATS_UPDATE_PERIOD_MS "="); RTE_INIT(sfc_driver_register_logtype) { int ret; ret = rte_log_register_type_and_pick_level(SFC_LOGTYPE_PREFIX "driver", RTE_LOG_NOTICE); sfc_logtype_driver = (ret < 0) ? RTE_LOGTYPE_PMD : ret; }