/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2015 Intel Corporation */ #include #include #include #include "ixgbe_ethdev.h" #include "ixgbe_rxtx.h" #include "ixgbe_rxtx_vec_common.h" #include #ifndef __INTEL_COMPILER #pragma GCC diagnostic ignored "-Wcast-qual" #endif static inline void ixgbe_rxq_rearm(struct ixgbe_rx_queue *rxq) { int i; uint16_t rx_id; volatile union ixgbe_adv_rx_desc *rxdp; struct ixgbe_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start]; struct rte_mbuf *mb0, *mb1; __m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM, RTE_PKTMBUF_HEADROOM); __m128i dma_addr0, dma_addr1; const __m128i hba_msk = _mm_set_epi64x(0, UINT64_MAX); rxdp = rxq->rx_ring + rxq->rxrearm_start; /* Pull 'n' more MBUFs into the software ring */ if (rte_mempool_get_bulk(rxq->mb_pool, (void *)rxep, RTE_IXGBE_RXQ_REARM_THRESH) < 0) { if (rxq->rxrearm_nb + RTE_IXGBE_RXQ_REARM_THRESH >= rxq->nb_rx_desc) { dma_addr0 = _mm_setzero_si128(); for (i = 0; i < RTE_IXGBE_DESCS_PER_LOOP; i++) { rxep[i].mbuf = &rxq->fake_mbuf; _mm_store_si128((__m128i *)&rxdp[i].read, dma_addr0); } } rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed += RTE_IXGBE_RXQ_REARM_THRESH; return; } /* Initialize the mbufs in vector, process 2 mbufs in one loop */ for (i = 0; i < RTE_IXGBE_RXQ_REARM_THRESH; i += 2, rxep += 2) { __m128i vaddr0, vaddr1; mb0 = rxep[0].mbuf; mb1 = rxep[1].mbuf; /* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) != offsetof(struct rte_mbuf, buf_addr) + 8); vaddr0 = _mm_loadu_si128((__m128i *)&(mb0->buf_addr)); vaddr1 = _mm_loadu_si128((__m128i *)&(mb1->buf_addr)); /* convert pa to dma_addr hdr/data */ dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0); dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1); /* add headroom to pa values */ dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room); dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room); /* set Header Buffer Address to zero */ dma_addr0 = _mm_and_si128(dma_addr0, hba_msk); dma_addr1 = _mm_and_si128(dma_addr1, hba_msk); /* flush desc with pa dma_addr */ _mm_store_si128((__m128i *)&rxdp++->read, dma_addr0); _mm_store_si128((__m128i *)&rxdp++->read, dma_addr1); } rxq->rxrearm_start += RTE_IXGBE_RXQ_REARM_THRESH; if (rxq->rxrearm_start >= rxq->nb_rx_desc) rxq->rxrearm_start = 0; rxq->rxrearm_nb -= RTE_IXGBE_RXQ_REARM_THRESH; rx_id = (uint16_t) ((rxq->rxrearm_start == 0) ? (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1)); /* Update the tail pointer on the NIC */ IXGBE_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id); } #ifdef RTE_LIBRTE_SECURITY static inline void desc_to_olflags_v_ipsec(__m128i descs[4], struct rte_mbuf **rx_pkts) { __m128i sterr, rearm, tmp_e, tmp_p; uint32_t *rearm0 = (uint32_t *)rx_pkts[0]->rearm_data + 2; uint32_t *rearm1 = (uint32_t *)rx_pkts[1]->rearm_data + 2; uint32_t *rearm2 = (uint32_t *)rx_pkts[2]->rearm_data + 2; uint32_t *rearm3 = (uint32_t *)rx_pkts[3]->rearm_data + 2; const __m128i ipsec_sterr_msk = _mm_set1_epi32(IXGBE_RXDADV_IPSEC_STATUS_SECP | IXGBE_RXDADV_IPSEC_ERROR_AUTH_FAILED); const __m128i ipsec_proc_msk = _mm_set1_epi32(IXGBE_RXDADV_IPSEC_STATUS_SECP); const __m128i ipsec_err_flag = _mm_set1_epi32(PKT_RX_SEC_OFFLOAD_FAILED | PKT_RX_SEC_OFFLOAD); const __m128i ipsec_proc_flag = _mm_set1_epi32(PKT_RX_SEC_OFFLOAD); rearm = _mm_set_epi32(*rearm3, *rearm2, *rearm1, *rearm0); sterr = _mm_set_epi32(_mm_extract_epi32(descs[3], 2), _mm_extract_epi32(descs[2], 2), _mm_extract_epi32(descs[1], 2), _mm_extract_epi32(descs[0], 2)); sterr = _mm_and_si128(sterr, ipsec_sterr_msk); tmp_e = _mm_cmpeq_epi32(sterr, ipsec_sterr_msk); tmp_p = _mm_cmpeq_epi32(sterr, ipsec_proc_msk); sterr = _mm_or_si128(_mm_and_si128(tmp_e, ipsec_err_flag), _mm_and_si128(tmp_p, ipsec_proc_flag)); rearm = _mm_or_si128(rearm, sterr); *rearm0 = _mm_extract_epi32(rearm, 0); *rearm1 = _mm_extract_epi32(rearm, 1); *rearm2 = _mm_extract_epi32(rearm, 2); *rearm3 = _mm_extract_epi32(rearm, 3); } #endif static inline void desc_to_olflags_v(__m128i descs[4], __m128i mbuf_init, uint8_t vlan_flags, struct rte_mbuf **rx_pkts) { __m128i ptype0, ptype1, vtag0, vtag1, csum; __m128i rearm0, rearm1, rearm2, rearm3; /* mask everything except rss type */ const __m128i rsstype_msk = _mm_set_epi16( 0x0000, 0x0000, 0x0000, 0x0000, 0x000F, 0x000F, 0x000F, 0x000F); /* mask the lower byte of ol_flags */ const __m128i ol_flags_msk = _mm_set_epi16( 0x0000, 0x0000, 0x0000, 0x0000, 0x00FF, 0x00FF, 0x00FF, 0x00FF); /* map rss type to rss hash flag */ const __m128i rss_flags = _mm_set_epi8(PKT_RX_FDIR, 0, 0, 0, 0, 0, 0, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, 0, PKT_RX_RSS_HASH, 0, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, 0); /* mask everything except vlan present and l4/ip csum error */ const __m128i vlan_csum_msk = _mm_set_epi16( (IXGBE_RXDADV_ERR_TCPE | IXGBE_RXDADV_ERR_IPE) >> 16, (IXGBE_RXDADV_ERR_TCPE | IXGBE_RXDADV_ERR_IPE) >> 16, (IXGBE_RXDADV_ERR_TCPE | IXGBE_RXDADV_ERR_IPE) >> 16, (IXGBE_RXDADV_ERR_TCPE | IXGBE_RXDADV_ERR_IPE) >> 16, IXGBE_RXD_STAT_VP, IXGBE_RXD_STAT_VP, IXGBE_RXD_STAT_VP, IXGBE_RXD_STAT_VP); /* map vlan present (0x8), IPE (0x2), L4E (0x1) to ol_flags */ const __m128i vlan_csum_map_lo = _mm_set_epi8( 0, 0, 0, 0, vlan_flags | PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD, vlan_flags | PKT_RX_IP_CKSUM_BAD, vlan_flags | PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD, vlan_flags | PKT_RX_IP_CKSUM_GOOD, 0, 0, 0, 0, PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD, PKT_RX_IP_CKSUM_BAD, PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD, PKT_RX_IP_CKSUM_GOOD); const __m128i vlan_csum_map_hi = _mm_set_epi8( 0, 0, 0, 0, 0, PKT_RX_L4_CKSUM_GOOD >> sizeof(uint8_t), 0, PKT_RX_L4_CKSUM_GOOD >> sizeof(uint8_t), 0, 0, 0, 0, 0, PKT_RX_L4_CKSUM_GOOD >> sizeof(uint8_t), 0, PKT_RX_L4_CKSUM_GOOD >> sizeof(uint8_t)); ptype0 = _mm_unpacklo_epi16(descs[0], descs[1]); ptype1 = _mm_unpacklo_epi16(descs[2], descs[3]); vtag0 = _mm_unpackhi_epi16(descs[0], descs[1]); vtag1 = _mm_unpackhi_epi16(descs[2], descs[3]); ptype0 = _mm_unpacklo_epi32(ptype0, ptype1); ptype0 = _mm_and_si128(ptype0, rsstype_msk); ptype0 = _mm_shuffle_epi8(rss_flags, ptype0); vtag1 = _mm_unpacklo_epi32(vtag0, vtag1); vtag1 = _mm_and_si128(vtag1, vlan_csum_msk); /* csum bits are in the most significant, to use shuffle we need to * shift them. Change mask to 0xc000 to 0x0003. */ csum = _mm_srli_epi16(vtag1, 14); /* now or the most significant 64 bits containing the checksum * flags with the vlan present flags. */ csum = _mm_srli_si128(csum, 8); vtag1 = _mm_or_si128(csum, vtag1); /* convert VP, IPE, L4E to ol_flags */ vtag0 = _mm_shuffle_epi8(vlan_csum_map_hi, vtag1); vtag0 = _mm_slli_epi16(vtag0, sizeof(uint8_t)); vtag1 = _mm_shuffle_epi8(vlan_csum_map_lo, vtag1); vtag1 = _mm_and_si128(vtag1, ol_flags_msk); vtag1 = _mm_or_si128(vtag0, vtag1); vtag1 = _mm_or_si128(ptype0, vtag1); /* * At this point, we have the 4 sets of flags in the low 64-bits * of vtag1 (4x16). * We want to extract these, and merge them with the mbuf init data * so we can do a single 16-byte write to the mbuf to set the flags * and all the other initialization fields. Extracting the * appropriate flags means that we have to do a shift and blend for * each mbuf before we do the write. */ rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vtag1, 8), 0x10); rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vtag1, 6), 0x10); rearm2 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vtag1, 4), 0x10); rearm3 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vtag1, 2), 0x10); /* write the rearm data and the olflags in one write */ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) != offsetof(struct rte_mbuf, rearm_data) + 8); RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) != RTE_ALIGN(offsetof(struct rte_mbuf, rearm_data), 16)); _mm_store_si128((__m128i *)&rx_pkts[0]->rearm_data, rearm0); _mm_store_si128((__m128i *)&rx_pkts[1]->rearm_data, rearm1); _mm_store_si128((__m128i *)&rx_pkts[2]->rearm_data, rearm2); _mm_store_si128((__m128i *)&rx_pkts[3]->rearm_data, rearm3); } static inline uint32_t get_packet_type(int index, uint32_t pkt_info, uint32_t etqf_check, uint32_t tunnel_check) { if (etqf_check & (0x02 << (index * RTE_IXGBE_DESCS_PER_LOOP))) return RTE_PTYPE_UNKNOWN; if (tunnel_check & (0x02 << (index * RTE_IXGBE_DESCS_PER_LOOP))) { pkt_info &= IXGBE_PACKET_TYPE_MASK_TUNNEL; return ptype_table_tn[pkt_info]; } pkt_info &= IXGBE_PACKET_TYPE_MASK_82599; return ptype_table[pkt_info]; } static inline void desc_to_ptype_v(__m128i descs[4], uint16_t pkt_type_mask, struct rte_mbuf **rx_pkts) { __m128i etqf_mask = _mm_set_epi64x(0x800000008000LL, 0x800000008000LL); __m128i ptype_mask = _mm_set_epi32( pkt_type_mask, pkt_type_mask, pkt_type_mask, pkt_type_mask); __m128i tunnel_mask = _mm_set_epi64x(0x100000001000LL, 0x100000001000LL); uint32_t etqf_check, tunnel_check, pkt_info; __m128i ptype0 = _mm_unpacklo_epi32(descs[0], descs[2]); __m128i ptype1 = _mm_unpacklo_epi32(descs[1], descs[3]); /* interleave low 32 bits, * now we have 4 ptypes in a XMM register */ ptype0 = _mm_unpacklo_epi32(ptype0, ptype1); /* create a etqf bitmask based on the etqf bit. */ etqf_check = _mm_movemask_epi8(_mm_and_si128(ptype0, etqf_mask)); /* shift left by IXGBE_PACKET_TYPE_SHIFT, and apply ptype mask */ ptype0 = _mm_and_si128(_mm_srli_epi32(ptype0, IXGBE_PACKET_TYPE_SHIFT), ptype_mask); /* create a tunnel bitmask based on the tunnel bit */ tunnel_check = _mm_movemask_epi8( _mm_slli_epi32(_mm_and_si128(ptype0, tunnel_mask), 0x3)); pkt_info = _mm_extract_epi32(ptype0, 0); rx_pkts[0]->packet_type = get_packet_type(0, pkt_info, etqf_check, tunnel_check); pkt_info = _mm_extract_epi32(ptype0, 1); rx_pkts[1]->packet_type = get_packet_type(1, pkt_info, etqf_check, tunnel_check); pkt_info = _mm_extract_epi32(ptype0, 2); rx_pkts[2]->packet_type = get_packet_type(2, pkt_info, etqf_check, tunnel_check); pkt_info = _mm_extract_epi32(ptype0, 3); rx_pkts[3]->packet_type = get_packet_type(3, pkt_info, etqf_check, tunnel_check); } /* * vPMD raw receive routine, only accept(nb_pkts >= RTE_IXGBE_DESCS_PER_LOOP) * * Notice: * - nb_pkts < RTE_IXGBE_DESCS_PER_LOOP, just return no packet * - nb_pkts > RTE_IXGBE_MAX_RX_BURST, only scan RTE_IXGBE_MAX_RX_BURST * numbers of DD bit * - floor align nb_pkts to a RTE_IXGBE_DESC_PER_LOOP power-of-two */ static inline uint16_t _recv_raw_pkts_vec(struct ixgbe_rx_queue *rxq, struct rte_mbuf **rx_pkts, uint16_t nb_pkts, uint8_t *split_packet) { volatile union ixgbe_adv_rx_desc *rxdp; struct ixgbe_rx_entry *sw_ring; uint16_t nb_pkts_recd; #ifdef RTE_LIBRTE_SECURITY uint8_t use_ipsec = rxq->using_ipsec; #endif int pos; uint64_t var; __m128i shuf_msk; __m128i crc_adjust = _mm_set_epi16( 0, 0, 0, /* ignore non-length fields */ -rxq->crc_len, /* sub crc on data_len */ 0, /* ignore high-16bits of pkt_len */ -rxq->crc_len, /* sub crc on pkt_len */ 0, 0 /* ignore pkt_type field */ ); /* * compile-time check the above crc_adjust layout is correct. * NOTE: the first field (lowest address) is given last in set_epi16 * call above. */ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) != offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4); RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) != offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8); __m128i dd_check, eop_check; __m128i mbuf_init; uint8_t vlan_flags; /* nb_pkts shall be less equal than RTE_IXGBE_MAX_RX_BURST */ nb_pkts = RTE_MIN(nb_pkts, RTE_IXGBE_MAX_RX_BURST); /* nb_pkts has to be floor-aligned to RTE_IXGBE_DESCS_PER_LOOP */ nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_IXGBE_DESCS_PER_LOOP); /* Just the act of getting into the function from the application is * going to cost about 7 cycles */ rxdp = rxq->rx_ring + rxq->rx_tail; rte_prefetch0(rxdp); /* See if we need to rearm the RX queue - gives the prefetch a bit * of time to act */ if (rxq->rxrearm_nb > RTE_IXGBE_RXQ_REARM_THRESH) ixgbe_rxq_rearm(rxq); /* Before we start moving massive data around, check to see if * there is actually a packet available */ if (!(rxdp->wb.upper.status_error & rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD))) return 0; /* 4 packets DD mask */ dd_check = _mm_set_epi64x(0x0000000100000001LL, 0x0000000100000001LL); /* 4 packets EOP mask */ eop_check = _mm_set_epi64x(0x0000000200000002LL, 0x0000000200000002LL); /* mask to shuffle from desc. to mbuf */ shuf_msk = _mm_set_epi8( 7, 6, 5, 4, /* octet 4~7, 32bits rss */ 15, 14, /* octet 14~15, low 16 bits vlan_macip */ 13, 12, /* octet 12~13, 16 bits data_len */ 0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */ 13, 12, /* octet 12~13, low 16 bits pkt_len */ 0xFF, 0xFF, /* skip 32 bit pkt_type */ 0xFF, 0xFF ); /* * Compile-time verify the shuffle mask * NOTE: some field positions already verified above, but duplicated * here for completeness in case of future modifications. */ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) != offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4); RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) != offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8); RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) != offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10); RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) != offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12); mbuf_init = _mm_set_epi64x(0, rxq->mbuf_initializer); /* Cache is empty -> need to scan the buffer rings, but first move * the next 'n' mbufs into the cache */ sw_ring = &rxq->sw_ring[rxq->rx_tail]; /* ensure these 2 flags are in the lower 8 bits */ RTE_BUILD_BUG_ON((PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED) > UINT8_MAX); vlan_flags = rxq->vlan_flags & UINT8_MAX; /* A. load 4 packet in one loop * [A*. mask out 4 unused dirty field in desc] * B. copy 4 mbuf point from swring to rx_pkts * C. calc the number of DD bits among the 4 packets * [C*. extract the end-of-packet bit, if requested] * D. fill info. from desc to mbuf */ for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts; pos += RTE_IXGBE_DESCS_PER_LOOP, rxdp += RTE_IXGBE_DESCS_PER_LOOP) { __m128i descs[RTE_IXGBE_DESCS_PER_LOOP]; __m128i pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4; __m128i zero, staterr, sterr_tmp1, sterr_tmp2; /* 2 64 bit or 4 32 bit mbuf pointers in one XMM reg. */ __m128i mbp1; #if defined(RTE_ARCH_X86_64) __m128i mbp2; #endif /* B.1 load 2 (64 bit) or 4 (32 bit) mbuf points */ mbp1 = _mm_loadu_si128((__m128i *)&sw_ring[pos]); /* Read desc statuses backwards to avoid race condition */ /* A.1 load 4 pkts desc */ descs[3] = _mm_loadu_si128((__m128i *)(rxdp + 3)); rte_compiler_barrier(); /* B.2 copy 2 64 bit or 4 32 bit mbuf point into rx_pkts */ _mm_storeu_si128((__m128i *)&rx_pkts[pos], mbp1); #if defined(RTE_ARCH_X86_64) /* B.1 load 2 64 bit mbuf points */ mbp2 = _mm_loadu_si128((__m128i *)&sw_ring[pos+2]); #endif descs[2] = _mm_loadu_si128((__m128i *)(rxdp + 2)); rte_compiler_barrier(); /* B.1 load 2 mbuf point */ descs[1] = _mm_loadu_si128((__m128i *)(rxdp + 1)); rte_compiler_barrier(); descs[0] = _mm_loadu_si128((__m128i *)(rxdp)); #if defined(RTE_ARCH_X86_64) /* B.2 copy 2 mbuf point into rx_pkts */ _mm_storeu_si128((__m128i *)&rx_pkts[pos+2], mbp2); #endif if (split_packet) { rte_mbuf_prefetch_part2(rx_pkts[pos]); rte_mbuf_prefetch_part2(rx_pkts[pos + 1]); rte_mbuf_prefetch_part2(rx_pkts[pos + 2]); rte_mbuf_prefetch_part2(rx_pkts[pos + 3]); } /* avoid compiler reorder optimization */ rte_compiler_barrier(); /* D.1 pkt 3,4 convert format from desc to pktmbuf */ pkt_mb4 = _mm_shuffle_epi8(descs[3], shuf_msk); pkt_mb3 = _mm_shuffle_epi8(descs[2], shuf_msk); /* D.1 pkt 1,2 convert format from desc to pktmbuf */ pkt_mb2 = _mm_shuffle_epi8(descs[1], shuf_msk); pkt_mb1 = _mm_shuffle_epi8(descs[0], shuf_msk); /* C.1 4=>2 filter staterr info only */ sterr_tmp2 = _mm_unpackhi_epi32(descs[3], descs[2]); /* C.1 4=>2 filter staterr info only */ sterr_tmp1 = _mm_unpackhi_epi32(descs[1], descs[0]); /* set ol_flags with vlan packet type */ desc_to_olflags_v(descs, mbuf_init, vlan_flags, &rx_pkts[pos]); #ifdef RTE_LIBRTE_SECURITY if (unlikely(use_ipsec)) desc_to_olflags_v_ipsec(descs, &rx_pkts[pos]); #endif /* D.2 pkt 3,4 set in_port/nb_seg and remove crc */ pkt_mb4 = _mm_add_epi16(pkt_mb4, crc_adjust); pkt_mb3 = _mm_add_epi16(pkt_mb3, crc_adjust); /* C.2 get 4 pkts staterr value */ zero = _mm_xor_si128(dd_check, dd_check); staterr = _mm_unpacklo_epi32(sterr_tmp1, sterr_tmp2); /* D.3 copy final 3,4 data to rx_pkts */ _mm_storeu_si128((void *)&rx_pkts[pos+3]->rx_descriptor_fields1, pkt_mb4); _mm_storeu_si128((void *)&rx_pkts[pos+2]->rx_descriptor_fields1, pkt_mb3); /* D.2 pkt 1,2 set in_port/nb_seg and remove crc */ pkt_mb2 = _mm_add_epi16(pkt_mb2, crc_adjust); pkt_mb1 = _mm_add_epi16(pkt_mb1, crc_adjust); /* C* extract and record EOP bit */ if (split_packet) { __m128i eop_shuf_mask = _mm_set_epi8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x04, 0x0C, 0x00, 0x08 ); /* and with mask to extract bits, flipping 1-0 */ __m128i eop_bits = _mm_andnot_si128(staterr, eop_check); /* the staterr values are not in order, as the count * count of dd bits doesn't care. However, for end of * packet tracking, we do care, so shuffle. This also * compresses the 32-bit values to 8-bit */ eop_bits = _mm_shuffle_epi8(eop_bits, eop_shuf_mask); /* store the resulting 32-bit value */ *(int *)split_packet = _mm_cvtsi128_si32(eop_bits); split_packet += RTE_IXGBE_DESCS_PER_LOOP; } /* C.3 calc available number of desc */ staterr = _mm_and_si128(staterr, dd_check); staterr = _mm_packs_epi32(staterr, zero); /* D.3 copy final 1,2 data to rx_pkts */ _mm_storeu_si128((void *)&rx_pkts[pos+1]->rx_descriptor_fields1, pkt_mb2); _mm_storeu_si128((void *)&rx_pkts[pos]->rx_descriptor_fields1, pkt_mb1); desc_to_ptype_v(descs, rxq->pkt_type_mask, &rx_pkts[pos]); /* C.4 calc avaialbe number of desc */ var = __builtin_popcountll(_mm_cvtsi128_si64(staterr)); nb_pkts_recd += var; if (likely(var != RTE_IXGBE_DESCS_PER_LOOP)) break; } /* Update our internal tail pointer */ rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd); rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1)); rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd); return nb_pkts_recd; } /* * vPMD receive routine, only accept(nb_pkts >= RTE_IXGBE_DESCS_PER_LOOP) * * Notice: * - nb_pkts < RTE_IXGBE_DESCS_PER_LOOP, just return no packet * - nb_pkts > RTE_IXGBE_MAX_RX_BURST, only scan RTE_IXGBE_MAX_RX_BURST * numbers of DD bit * - floor align nb_pkts to a RTE_IXGBE_DESC_PER_LOOP power-of-two */ uint16_t ixgbe_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { return _recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL); } /* * vPMD receive routine that reassembles scattered packets * * Notice: * - nb_pkts < RTE_IXGBE_DESCS_PER_LOOP, just return no packet * - nb_pkts > RTE_IXGBE_MAX_RX_BURST, only scan RTE_IXGBE_MAX_RX_BURST * numbers of DD bit * - floor align nb_pkts to a RTE_IXGBE_DESC_PER_LOOP power-of-two */ uint16_t ixgbe_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { struct ixgbe_rx_queue *rxq = rx_queue; uint8_t split_flags[RTE_IXGBE_MAX_RX_BURST] = {0}; /* get some new buffers */ uint16_t nb_bufs = _recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts, split_flags); if (nb_bufs == 0) return 0; /* happy day case, full burst + no packets to be joined */ const uint64_t *split_fl64 = (uint64_t *)split_flags; if (rxq->pkt_first_seg == NULL && split_fl64[0] == 0 && split_fl64[1] == 0 && split_fl64[2] == 0 && split_fl64[3] == 0) return nb_bufs; /* reassemble any packets that need reassembly*/ unsigned i = 0; if (rxq->pkt_first_seg == NULL) { /* find the first split flag, and only reassemble then*/ while (i < nb_bufs && !split_flags[i]) i++; if (i == nb_bufs) return nb_bufs; rxq->pkt_first_seg = rx_pkts[i]; } return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i, &split_flags[i]); } static inline void vtx1(volatile union ixgbe_adv_tx_desc *txdp, struct rte_mbuf *pkt, uint64_t flags) { __m128i descriptor = _mm_set_epi64x((uint64_t)pkt->pkt_len << 46 | flags | pkt->data_len, pkt->buf_iova + pkt->data_off); _mm_store_si128((__m128i *)&txdp->read, descriptor); } static inline void vtx(volatile union ixgbe_adv_tx_desc *txdp, struct rte_mbuf **pkt, uint16_t nb_pkts, uint64_t flags) { int i; for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt) vtx1(txdp, *pkt, flags); } uint16_t ixgbe_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) { struct ixgbe_tx_queue *txq = (struct ixgbe_tx_queue *)tx_queue; volatile union ixgbe_adv_tx_desc *txdp; struct ixgbe_tx_entry_v *txep; uint16_t n, nb_commit, tx_id; uint64_t flags = DCMD_DTYP_FLAGS; uint64_t rs = IXGBE_ADVTXD_DCMD_RS|DCMD_DTYP_FLAGS; int i; /* cross rx_thresh boundary is not allowed */ nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh); if (txq->nb_tx_free < txq->tx_free_thresh) ixgbe_tx_free_bufs(txq); nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts); if (unlikely(nb_pkts == 0)) return 0; tx_id = txq->tx_tail; txdp = &txq->tx_ring[tx_id]; txep = &txq->sw_ring_v[tx_id]; txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts); n = (uint16_t)(txq->nb_tx_desc - tx_id); if (nb_commit >= n) { tx_backlog_entry(txep, tx_pkts, n); for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp) vtx1(txdp, *tx_pkts, flags); vtx1(txdp, *tx_pkts++, rs); nb_commit = (uint16_t)(nb_commit - n); tx_id = 0; txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1); /* avoid reach the end of ring */ txdp = &(txq->tx_ring[tx_id]); txep = &txq->sw_ring_v[tx_id]; } tx_backlog_entry(txep, tx_pkts, nb_commit); vtx(txdp, tx_pkts, nb_commit, flags); tx_id = (uint16_t)(tx_id + nb_commit); if (tx_id > txq->tx_next_rs) { txq->tx_ring[txq->tx_next_rs].read.cmd_type_len |= rte_cpu_to_le_32(IXGBE_ADVTXD_DCMD_RS); txq->tx_next_rs = (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh); } txq->tx_tail = tx_id; IXGBE_PCI_REG_WRITE(txq->tdt_reg_addr, txq->tx_tail); return nb_pkts; } static void __attribute__((cold)) ixgbe_tx_queue_release_mbufs_vec(struct ixgbe_tx_queue *txq) { _ixgbe_tx_queue_release_mbufs_vec(txq); } void __attribute__((cold)) ixgbe_rx_queue_release_mbufs_vec(struct ixgbe_rx_queue *rxq) { _ixgbe_rx_queue_release_mbufs_vec(rxq); } static void __attribute__((cold)) ixgbe_tx_free_swring(struct ixgbe_tx_queue *txq) { _ixgbe_tx_free_swring_vec(txq); } static void __attribute__((cold)) ixgbe_reset_tx_queue(struct ixgbe_tx_queue *txq) { _ixgbe_reset_tx_queue_vec(txq); } static const struct ixgbe_txq_ops vec_txq_ops = { .release_mbufs = ixgbe_tx_queue_release_mbufs_vec, .free_swring = ixgbe_tx_free_swring, .reset = ixgbe_reset_tx_queue, }; int __attribute__((cold)) ixgbe_rxq_vec_setup(struct ixgbe_rx_queue *rxq) { return ixgbe_rxq_vec_setup_default(rxq); } int __attribute__((cold)) ixgbe_txq_vec_setup(struct ixgbe_tx_queue *txq) { return ixgbe_txq_vec_setup_default(txq, &vec_txq_ops); } int __attribute__((cold)) ixgbe_rx_vec_dev_conf_condition_check(struct rte_eth_dev *dev) { return ixgbe_rx_vec_dev_conf_condition_check_default(dev); }