/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2001 - 2015 Intel Corporation */ #include "e1000_api.h" STATIC s32 e1000_init_phy_params_vf(struct e1000_hw *hw); STATIC s32 e1000_init_nvm_params_vf(struct e1000_hw *hw); STATIC void e1000_release_vf(struct e1000_hw *hw); STATIC s32 e1000_acquire_vf(struct e1000_hw *hw); STATIC s32 e1000_setup_link_vf(struct e1000_hw *hw); STATIC s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw); STATIC s32 e1000_init_mac_params_vf(struct e1000_hw *hw); STATIC s32 e1000_check_for_link_vf(struct e1000_hw *hw); STATIC s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed, u16 *duplex); STATIC s32 e1000_init_hw_vf(struct e1000_hw *hw); STATIC s32 e1000_reset_hw_vf(struct e1000_hw *hw); STATIC void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *, u32); STATIC int e1000_rar_set_vf(struct e1000_hw *, u8 *, u32); STATIC s32 e1000_read_mac_addr_vf(struct e1000_hw *); /** * e1000_init_phy_params_vf - Inits PHY params * @hw: pointer to the HW structure * * Doesn't do much - there's no PHY available to the VF. **/ STATIC s32 e1000_init_phy_params_vf(struct e1000_hw *hw) { DEBUGFUNC("e1000_init_phy_params_vf"); hw->phy.type = e1000_phy_vf; hw->phy.ops.acquire = e1000_acquire_vf; hw->phy.ops.release = e1000_release_vf; return E1000_SUCCESS; } /** * e1000_init_nvm_params_vf - Inits NVM params * @hw: pointer to the HW structure * * Doesn't do much - there's no NVM available to the VF. **/ STATIC s32 e1000_init_nvm_params_vf(struct e1000_hw *hw) { DEBUGFUNC("e1000_init_nvm_params_vf"); hw->nvm.type = e1000_nvm_none; hw->nvm.ops.acquire = e1000_acquire_vf; hw->nvm.ops.release = e1000_release_vf; return E1000_SUCCESS; } /** * e1000_init_mac_params_vf - Inits MAC params * @hw: pointer to the HW structure **/ STATIC s32 e1000_init_mac_params_vf(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; DEBUGFUNC("e1000_init_mac_params_vf"); /* Set media type */ /* * Virtual functions don't care what they're media type is as they * have no direct access to the PHY, or the media. That is handled * by the physical function driver. */ hw->phy.media_type = e1000_media_type_unknown; /* No ASF features for the VF driver */ mac->asf_firmware_present = false; /* ARC subsystem not supported */ mac->arc_subsystem_valid = false; /* Disable adaptive IFS mode so the generic funcs don't do anything */ mac->adaptive_ifs = false; /* VF's have no MTA Registers - PF feature only */ mac->mta_reg_count = 128; /* VF's have no access to RAR entries */ mac->rar_entry_count = 1; /* Function pointers */ /* link setup */ mac->ops.setup_link = e1000_setup_link_vf; /* bus type/speed/width */ mac->ops.get_bus_info = e1000_get_bus_info_pcie_vf; /* reset */ mac->ops.reset_hw = e1000_reset_hw_vf; /* hw initialization */ mac->ops.init_hw = e1000_init_hw_vf; /* check for link */ mac->ops.check_for_link = e1000_check_for_link_vf; /* link info */ mac->ops.get_link_up_info = e1000_get_link_up_info_vf; /* multicast address update */ mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_vf; /* set mac address */ mac->ops.rar_set = e1000_rar_set_vf; /* read mac address */ mac->ops.read_mac_addr = e1000_read_mac_addr_vf; return E1000_SUCCESS; } /** * e1000_init_function_pointers_vf - Inits function pointers * @hw: pointer to the HW structure **/ void e1000_init_function_pointers_vf(struct e1000_hw *hw) { DEBUGFUNC("e1000_init_function_pointers_vf"); hw->mac.ops.init_params = e1000_init_mac_params_vf; hw->nvm.ops.init_params = e1000_init_nvm_params_vf; hw->phy.ops.init_params = e1000_init_phy_params_vf; hw->mbx.ops.init_params = e1000_init_mbx_params_vf; } /** * e1000_acquire_vf - Acquire rights to access PHY or NVM. * @hw: pointer to the HW structure * * There is no PHY or NVM so we want all attempts to acquire these to fail. * In addition, the MAC registers to access PHY/NVM don't exist so we don't * even want any SW to attempt to use them. **/ STATIC s32 e1000_acquire_vf(struct e1000_hw E1000_UNUSEDARG *hw) { UNREFERENCED_1PARAMETER(hw); return -E1000_ERR_PHY; } /** * e1000_release_vf - Release PHY or NVM * @hw: pointer to the HW structure * * There is no PHY or NVM so we want all attempts to acquire these to fail. * In addition, the MAC registers to access PHY/NVM don't exist so we don't * even want any SW to attempt to use them. **/ STATIC void e1000_release_vf(struct e1000_hw E1000_UNUSEDARG *hw) { UNREFERENCED_1PARAMETER(hw); return; } /** * e1000_setup_link_vf - Sets up link. * @hw: pointer to the HW structure * * Virtual functions cannot change link. **/ STATIC s32 e1000_setup_link_vf(struct e1000_hw E1000_UNUSEDARG *hw) { DEBUGFUNC("e1000_setup_link_vf"); UNREFERENCED_1PARAMETER(hw); return E1000_SUCCESS; } /** * e1000_get_bus_info_pcie_vf - Gets the bus info. * @hw: pointer to the HW structure * * Virtual functions are not really on their own bus. **/ STATIC s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw) { struct e1000_bus_info *bus = &hw->bus; DEBUGFUNC("e1000_get_bus_info_pcie_vf"); /* Do not set type PCI-E because we don't want disable master to run */ bus->type = e1000_bus_type_reserved; bus->speed = e1000_bus_speed_2500; return 0; } /** * e1000_get_link_up_info_vf - Gets link info. * @hw: pointer to the HW structure * @speed: pointer to 16 bit value to store link speed. * @duplex: pointer to 16 bit value to store duplex. * * Since we cannot read the PHY and get accurate link info, we must rely upon * the status register's data which is often stale and inaccurate. **/ STATIC s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed, u16 *duplex) { s32 status; DEBUGFUNC("e1000_get_link_up_info_vf"); status = E1000_READ_REG(hw, E1000_STATUS); if (status & E1000_STATUS_SPEED_1000) { *speed = SPEED_1000; DEBUGOUT("1000 Mbs, "); } else if (status & E1000_STATUS_SPEED_100) { *speed = SPEED_100; DEBUGOUT("100 Mbs, "); } else { *speed = SPEED_10; DEBUGOUT("10 Mbs, "); } if (status & E1000_STATUS_FD) { *duplex = FULL_DUPLEX; DEBUGOUT("Full Duplex\n"); } else { *duplex = HALF_DUPLEX; DEBUGOUT("Half Duplex\n"); } return E1000_SUCCESS; } /** * e1000_reset_hw_vf - Resets the HW * @hw: pointer to the HW structure * * VF's provide a function level reset. This is done using bit 26 of ctrl_reg. * This is all the reset we can perform on a VF. **/ STATIC s32 e1000_reset_hw_vf(struct e1000_hw *hw) { struct e1000_mbx_info *mbx = &hw->mbx; u32 timeout = E1000_VF_INIT_TIMEOUT; s32 ret_val = -E1000_ERR_MAC_INIT; u32 ctrl, msgbuf[3]; u8 *addr = (u8 *)(&msgbuf[1]); DEBUGFUNC("e1000_reset_hw_vf"); DEBUGOUT("Issuing a function level reset to MAC\n"); ctrl = E1000_READ_REG(hw, E1000_CTRL); E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST); /* we cannot reset while the RSTI / RSTD bits are asserted */ while (!mbx->ops.check_for_rst(hw, 0) && timeout) { timeout--; usec_delay(5); } if (timeout) { /* mailbox timeout can now become active */ mbx->timeout = E1000_VF_MBX_INIT_TIMEOUT; msgbuf[0] = E1000_VF_RESET; mbx->ops.write_posted(hw, msgbuf, 1, 0); msec_delay(10); /* set our "perm_addr" based on info provided by PF */ ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0); if (!ret_val) { if (msgbuf[0] == (E1000_VF_RESET | E1000_VT_MSGTYPE_ACK)) memcpy(hw->mac.perm_addr, addr, 6); else ret_val = -E1000_ERR_MAC_INIT; } } return ret_val; } /** * e1000_init_hw_vf - Inits the HW * @hw: pointer to the HW structure * * Not much to do here except clear the PF Reset indication if there is one. **/ STATIC s32 e1000_init_hw_vf(struct e1000_hw *hw) { DEBUGFUNC("e1000_init_hw_vf"); /* attempt to set and restore our mac address */ e1000_rar_set_vf(hw, hw->mac.addr, 0); return E1000_SUCCESS; } /** * e1000_rar_set_vf - set device MAC address * @hw: pointer to the HW structure * @addr: pointer to the receive address * @index receive address array register **/ STATIC int e1000_rar_set_vf(struct e1000_hw *hw, u8 *addr, u32 E1000_UNUSEDARG index) { struct e1000_mbx_info *mbx = &hw->mbx; u32 msgbuf[3]; u8 *msg_addr = (u8 *)(&msgbuf[1]); s32 ret_val; UNREFERENCED_1PARAMETER(index); memset(msgbuf, 0, 12); msgbuf[0] = E1000_VF_SET_MAC_ADDR; memcpy(msg_addr, addr, 6); ret_val = mbx->ops.write_posted(hw, msgbuf, 3, 0); if (!ret_val) ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0); msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS; /* if nacked the address was rejected, use "perm_addr" */ if (!ret_val && (msgbuf[0] == (E1000_VF_SET_MAC_ADDR | E1000_VT_MSGTYPE_NACK))) e1000_read_mac_addr_vf(hw); return E1000_SUCCESS; } /** * e1000_hash_mc_addr_vf - Generate a multicast hash value * @hw: pointer to the HW structure * @mc_addr: pointer to a multicast address * * Generates a multicast address hash value which is used to determine * the multicast filter table array address and new table value. **/ STATIC u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr) { u32 hash_value, hash_mask; u8 bit_shift = 0; DEBUGFUNC("e1000_hash_mc_addr_generic"); /* Register count multiplied by bits per register */ hash_mask = (hw->mac.mta_reg_count * 32) - 1; /* * The bit_shift is the number of left-shifts * where 0xFF would still fall within the hash mask. */ while (hash_mask >> bit_shift != 0xFF) bit_shift++; hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | (((u16) mc_addr[5]) << bit_shift))); return hash_value; } STATIC void e1000_write_msg_read_ack(struct e1000_hw *hw, u32 *msg, u16 size) { struct e1000_mbx_info *mbx = &hw->mbx; u32 retmsg[E1000_VFMAILBOX_SIZE]; s32 retval = mbx->ops.write_posted(hw, msg, size, 0); if (!retval) mbx->ops.read_posted(hw, retmsg, E1000_VFMAILBOX_SIZE, 0); } /** * e1000_update_mc_addr_list_vf - Update Multicast addresses * @hw: pointer to the HW structure * @mc_addr_list: array of multicast addresses to program * @mc_addr_count: number of multicast addresses to program * * Updates the Multicast Table Array. * The caller must have a packed mc_addr_list of multicast addresses. **/ void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *mc_addr_list, u32 mc_addr_count) { u32 msgbuf[E1000_VFMAILBOX_SIZE]; u16 *hash_list = (u16 *)&msgbuf[1]; u32 hash_value; u32 i; DEBUGFUNC("e1000_update_mc_addr_list_vf"); /* Each entry in the list uses 1 16 bit word. We have 30 * 16 bit words available in our HW msg buffer (minus 1 for the * msg type). That's 30 hash values if we pack 'em right. If * there are more than 30 MC addresses to add then punt the * extras for now and then add code to handle more than 30 later. * It would be unusual for a server to request that many multi-cast * addresses except for in large enterprise network environments. */ DEBUGOUT1("MC Addr Count = %d\n", mc_addr_count); msgbuf[0] = E1000_VF_SET_MULTICAST; if (mc_addr_count > 30) { msgbuf[0] |= E1000_VF_SET_MULTICAST_OVERFLOW; mc_addr_count = 30; } msgbuf[0] |= mc_addr_count << E1000_VT_MSGINFO_SHIFT; for (i = 0; i < mc_addr_count; i++) { hash_value = e1000_hash_mc_addr_vf(hw, mc_addr_list); DEBUGOUT1("Hash value = 0x%03X\n", hash_value); hash_list[i] = hash_value & 0x0FFF; mc_addr_list += ETH_ADDR_LEN; } e1000_write_msg_read_ack(hw, msgbuf, E1000_VFMAILBOX_SIZE); } /** * e1000_vfta_set_vf - Set/Unset vlan filter table address * @hw: pointer to the HW structure * @vid: determines the vfta register and bit to set/unset * @set: if true then set bit, else clear bit **/ void e1000_vfta_set_vf(struct e1000_hw *hw, u16 vid, bool set) { u32 msgbuf[2]; msgbuf[0] = E1000_VF_SET_VLAN; msgbuf[1] = vid; /* Setting the 8 bit field MSG INFO to TRUE indicates "add" */ if (set) msgbuf[0] |= E1000_VF_SET_VLAN_ADD; e1000_write_msg_read_ack(hw, msgbuf, 2); } /** e1000_rlpml_set_vf - Set the maximum receive packet length * @hw: pointer to the HW structure * @max_size: value to assign to max frame size **/ void e1000_rlpml_set_vf(struct e1000_hw *hw, u16 max_size) { u32 msgbuf[2]; msgbuf[0] = E1000_VF_SET_LPE; msgbuf[1] = max_size; e1000_write_msg_read_ack(hw, msgbuf, 2); } /** * e1000_promisc_set_vf - Set flags for Unicast or Multicast promisc * @hw: pointer to the HW structure * @uni: boolean indicating unicast promisc status * @multi: boolean indicating multicast promisc status **/ s32 e1000_promisc_set_vf(struct e1000_hw *hw, enum e1000_promisc_type type) { struct e1000_mbx_info *mbx = &hw->mbx; u32 msgbuf = E1000_VF_SET_PROMISC; s32 ret_val; switch (type) { case e1000_promisc_multicast: msgbuf |= E1000_VF_SET_PROMISC_MULTICAST; break; case e1000_promisc_enabled: msgbuf |= E1000_VF_SET_PROMISC_MULTICAST; case e1000_promisc_unicast: msgbuf |= E1000_VF_SET_PROMISC_UNICAST; case e1000_promisc_disabled: break; default: return -E1000_ERR_MAC_INIT; } ret_val = mbx->ops.write_posted(hw, &msgbuf, 1, 0); if (!ret_val) ret_val = mbx->ops.read_posted(hw, &msgbuf, 1, 0); if (!ret_val && !(msgbuf & E1000_VT_MSGTYPE_ACK)) ret_val = -E1000_ERR_MAC_INIT; return ret_val; } /** * e1000_read_mac_addr_vf - Read device MAC address * @hw: pointer to the HW structure **/ STATIC s32 e1000_read_mac_addr_vf(struct e1000_hw *hw) { int i; for (i = 0; i < ETH_ADDR_LEN; i++) hw->mac.addr[i] = hw->mac.perm_addr[i]; return E1000_SUCCESS; } /** * e1000_check_for_link_vf - Check for link for a virtual interface * @hw: pointer to the HW structure * * Checks to see if the underlying PF is still talking to the VF and * if it is then it reports the link state to the hardware, otherwise * it reports link down and returns an error. **/ STATIC s32 e1000_check_for_link_vf(struct e1000_hw *hw) { struct e1000_mbx_info *mbx = &hw->mbx; struct e1000_mac_info *mac = &hw->mac; s32 ret_val = E1000_SUCCESS; u32 in_msg = 0; DEBUGFUNC("e1000_check_for_link_vf"); /* * We only want to run this if there has been a rst asserted. * in this case that could mean a link change, device reset, * or a virtual function reset */ /* If we were hit with a reset or timeout drop the link */ if (!mbx->ops.check_for_rst(hw, 0) || !mbx->timeout) mac->get_link_status = true; if (!mac->get_link_status) goto out; /* if link status is down no point in checking to see if pf is up */ if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) goto out; /* if the read failed it could just be a mailbox collision, best wait * until we are called again and don't report an error */ if (mbx->ops.read(hw, &in_msg, 1, 0)) goto out; /* if incoming message isn't clear to send we are waiting on response */ if (!(in_msg & E1000_VT_MSGTYPE_CTS)) { /* message is not CTS and is NACK we have lost CTS status */ if (in_msg & E1000_VT_MSGTYPE_NACK) ret_val = -E1000_ERR_MAC_INIT; goto out; } /* at this point we know the PF is talking to us, check and see if * we are still accepting timeout or if we had a timeout failure. * if we failed then we will need to reinit */ if (!mbx->timeout) { ret_val = -E1000_ERR_MAC_INIT; goto out; } /* if we passed all the tests above then the link is up and we no * longer need to check for link */ mac->get_link_status = false; out: return ret_val; }