/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2001 - 2015 Intel Corporation */ #include "e1000_api.h" STATIC s32 e1000_wait_autoneg(struct e1000_hw *hw); STATIC s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data, bool read, bool page_set); STATIC u32 e1000_get_phy_addr_for_hv_page(u32 page); STATIC s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset, u16 *data, bool read); /* Cable length tables */ STATIC const u16 e1000_m88_cable_length_table[] = { 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED }; #define M88E1000_CABLE_LENGTH_TABLE_SIZE \ (sizeof(e1000_m88_cable_length_table) / \ sizeof(e1000_m88_cable_length_table[0])) STATIC const u16 e1000_igp_2_cable_length_table[] = { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121, 124}; #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \ (sizeof(e1000_igp_2_cable_length_table) / \ sizeof(e1000_igp_2_cable_length_table[0])) /** * e1000_init_phy_ops_generic - Initialize PHY function pointers * @hw: pointer to the HW structure * * Setups up the function pointers to no-op functions **/ void e1000_init_phy_ops_generic(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; DEBUGFUNC("e1000_init_phy_ops_generic"); /* Initialize function pointers */ phy->ops.init_params = e1000_null_ops_generic; phy->ops.acquire = e1000_null_ops_generic; phy->ops.check_polarity = e1000_null_ops_generic; phy->ops.check_reset_block = e1000_null_ops_generic; phy->ops.commit = e1000_null_ops_generic; phy->ops.force_speed_duplex = e1000_null_ops_generic; phy->ops.get_cfg_done = e1000_null_ops_generic; phy->ops.get_cable_length = e1000_null_ops_generic; phy->ops.get_info = e1000_null_ops_generic; phy->ops.set_page = e1000_null_set_page; phy->ops.read_reg = e1000_null_read_reg; phy->ops.read_reg_locked = e1000_null_read_reg; phy->ops.read_reg_page = e1000_null_read_reg; phy->ops.release = e1000_null_phy_generic; phy->ops.reset = e1000_null_ops_generic; phy->ops.set_d0_lplu_state = e1000_null_lplu_state; phy->ops.set_d3_lplu_state = e1000_null_lplu_state; phy->ops.write_reg = e1000_null_write_reg; phy->ops.write_reg_locked = e1000_null_write_reg; phy->ops.write_reg_page = e1000_null_write_reg; phy->ops.power_up = e1000_null_phy_generic; phy->ops.power_down = e1000_null_phy_generic; phy->ops.read_i2c_byte = e1000_read_i2c_byte_null; phy->ops.write_i2c_byte = e1000_write_i2c_byte_null; phy->ops.cfg_on_link_up = e1000_null_ops_generic; } /** * e1000_null_set_page - No-op function, return 0 * @hw: pointer to the HW structure **/ s32 e1000_null_set_page(struct e1000_hw E1000_UNUSEDARG *hw, u16 E1000_UNUSEDARG data) { DEBUGFUNC("e1000_null_set_page"); UNREFERENCED_2PARAMETER(hw, data); return E1000_SUCCESS; } /** * e1000_null_read_reg - No-op function, return 0 * @hw: pointer to the HW structure **/ s32 e1000_null_read_reg(struct e1000_hw E1000_UNUSEDARG *hw, u32 E1000_UNUSEDARG offset, u16 E1000_UNUSEDARG *data) { DEBUGFUNC("e1000_null_read_reg"); UNREFERENCED_3PARAMETER(hw, offset, data); return E1000_SUCCESS; } /** * e1000_null_phy_generic - No-op function, return void * @hw: pointer to the HW structure **/ void e1000_null_phy_generic(struct e1000_hw E1000_UNUSEDARG *hw) { DEBUGFUNC("e1000_null_phy_generic"); UNREFERENCED_1PARAMETER(hw); return; } /** * e1000_null_lplu_state - No-op function, return 0 * @hw: pointer to the HW structure **/ s32 e1000_null_lplu_state(struct e1000_hw E1000_UNUSEDARG *hw, bool E1000_UNUSEDARG active) { DEBUGFUNC("e1000_null_lplu_state"); UNREFERENCED_2PARAMETER(hw, active); return E1000_SUCCESS; } /** * e1000_null_write_reg - No-op function, return 0 * @hw: pointer to the HW structure **/ s32 e1000_null_write_reg(struct e1000_hw E1000_UNUSEDARG *hw, u32 E1000_UNUSEDARG offset, u16 E1000_UNUSEDARG data) { DEBUGFUNC("e1000_null_write_reg"); UNREFERENCED_3PARAMETER(hw, offset, data); return E1000_SUCCESS; } /** * e1000_read_i2c_byte_null - No-op function, return 0 * @hw: pointer to hardware structure * @byte_offset: byte offset to write * @dev_addr: device address * @data: data value read * **/ s32 e1000_read_i2c_byte_null(struct e1000_hw E1000_UNUSEDARG *hw, u8 E1000_UNUSEDARG byte_offset, u8 E1000_UNUSEDARG dev_addr, u8 E1000_UNUSEDARG *data) { DEBUGFUNC("e1000_read_i2c_byte_null"); UNREFERENCED_4PARAMETER(hw, byte_offset, dev_addr, data); return E1000_SUCCESS; } /** * e1000_write_i2c_byte_null - No-op function, return 0 * @hw: pointer to hardware structure * @byte_offset: byte offset to write * @dev_addr: device address * @data: data value to write * **/ s32 e1000_write_i2c_byte_null(struct e1000_hw E1000_UNUSEDARG *hw, u8 E1000_UNUSEDARG byte_offset, u8 E1000_UNUSEDARG dev_addr, u8 E1000_UNUSEDARG data) { DEBUGFUNC("e1000_write_i2c_byte_null"); UNREFERENCED_4PARAMETER(hw, byte_offset, dev_addr, data); return E1000_SUCCESS; } /** * e1000_check_reset_block_generic - Check if PHY reset is blocked * @hw: pointer to the HW structure * * Read the PHY management control register and check whether a PHY reset * is blocked. If a reset is not blocked return E1000_SUCCESS, otherwise * return E1000_BLK_PHY_RESET (12). **/ s32 e1000_check_reset_block_generic(struct e1000_hw *hw) { u32 manc; DEBUGFUNC("e1000_check_reset_block"); manc = E1000_READ_REG(hw, E1000_MANC); return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : E1000_SUCCESS; } /** * e1000_get_phy_id - Retrieve the PHY ID and revision * @hw: pointer to the HW structure * * Reads the PHY registers and stores the PHY ID and possibly the PHY * revision in the hardware structure. **/ s32 e1000_get_phy_id(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val = E1000_SUCCESS; u16 phy_id; u16 retry_count = 0; DEBUGFUNC("e1000_get_phy_id"); if (!phy->ops.read_reg) return E1000_SUCCESS; while (retry_count < 2) { ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id); if (ret_val) return ret_val; phy->id = (u32)(phy_id << 16); usec_delay(20); ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id); if (ret_val) return ret_val; phy->id |= (u32)(phy_id & PHY_REVISION_MASK); phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); if (phy->id != 0 && phy->id != PHY_REVISION_MASK) return E1000_SUCCESS; retry_count++; } return E1000_SUCCESS; } /** * e1000_phy_reset_dsp_generic - Reset PHY DSP * @hw: pointer to the HW structure * * Reset the digital signal processor. **/ s32 e1000_phy_reset_dsp_generic(struct e1000_hw *hw) { s32 ret_val; DEBUGFUNC("e1000_phy_reset_dsp_generic"); if (!hw->phy.ops.write_reg) return E1000_SUCCESS; ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1); if (ret_val) return ret_val; return hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0); } /** * e1000_read_phy_reg_mdic - Read MDI control register * @hw: pointer to the HW structure * @offset: register offset to be read * @data: pointer to the read data * * Reads the MDI control register in the PHY at offset and stores the * information read to data. **/ s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data) { struct e1000_phy_info *phy = &hw->phy; u32 i, mdic = 0; DEBUGFUNC("e1000_read_phy_reg_mdic"); if (offset > MAX_PHY_REG_ADDRESS) { DEBUGOUT1("PHY Address %d is out of range\n", offset); return -E1000_ERR_PARAM; } /* Set up Op-code, Phy Address, and register offset in the MDI * Control register. The MAC will take care of interfacing with the * PHY to retrieve the desired data. */ mdic = ((offset << E1000_MDIC_REG_SHIFT) | (phy->addr << E1000_MDIC_PHY_SHIFT) | (E1000_MDIC_OP_READ)); E1000_WRITE_REG(hw, E1000_MDIC, mdic); /* Poll the ready bit to see if the MDI read completed * Increasing the time out as testing showed failures with * the lower time out */ for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { usec_delay_irq(50); mdic = E1000_READ_REG(hw, E1000_MDIC); if (mdic & E1000_MDIC_READY) break; } if (!(mdic & E1000_MDIC_READY)) { DEBUGOUT("MDI Read did not complete\n"); return -E1000_ERR_PHY; } if (mdic & E1000_MDIC_ERROR) { DEBUGOUT("MDI Error\n"); return -E1000_ERR_PHY; } if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) { DEBUGOUT2("MDI Read offset error - requested %d, returned %d\n", offset, (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT); return -E1000_ERR_PHY; } *data = (u16) mdic; /* Allow some time after each MDIC transaction to avoid * reading duplicate data in the next MDIC transaction. */ if (hw->mac.type == e1000_pch2lan) usec_delay_irq(100); return E1000_SUCCESS; } /** * e1000_write_phy_reg_mdic - Write MDI control register * @hw: pointer to the HW structure * @offset: register offset to write to * @data: data to write to register at offset * * Writes data to MDI control register in the PHY at offset. **/ s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data) { struct e1000_phy_info *phy = &hw->phy; u32 i, mdic = 0; DEBUGFUNC("e1000_write_phy_reg_mdic"); if (offset > MAX_PHY_REG_ADDRESS) { DEBUGOUT1("PHY Address %d is out of range\n", offset); return -E1000_ERR_PARAM; } /* Set up Op-code, Phy Address, and register offset in the MDI * Control register. The MAC will take care of interfacing with the * PHY to retrieve the desired data. */ mdic = (((u32)data) | (offset << E1000_MDIC_REG_SHIFT) | (phy->addr << E1000_MDIC_PHY_SHIFT) | (E1000_MDIC_OP_WRITE)); E1000_WRITE_REG(hw, E1000_MDIC, mdic); /* Poll the ready bit to see if the MDI read completed * Increasing the time out as testing showed failures with * the lower time out */ for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { usec_delay_irq(50); mdic = E1000_READ_REG(hw, E1000_MDIC); if (mdic & E1000_MDIC_READY) break; } if (!(mdic & E1000_MDIC_READY)) { DEBUGOUT("MDI Write did not complete\n"); return -E1000_ERR_PHY; } if (mdic & E1000_MDIC_ERROR) { DEBUGOUT("MDI Error\n"); return -E1000_ERR_PHY; } if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) { DEBUGOUT2("MDI Write offset error - requested %d, returned %d\n", offset, (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT); return -E1000_ERR_PHY; } /* Allow some time after each MDIC transaction to avoid * reading duplicate data in the next MDIC transaction. */ if (hw->mac.type == e1000_pch2lan) usec_delay_irq(100); return E1000_SUCCESS; } /** * e1000_read_phy_reg_i2c - Read PHY register using i2c * @hw: pointer to the HW structure * @offset: register offset to be read * @data: pointer to the read data * * Reads the PHY register at offset using the i2c interface and stores the * retrieved information in data. **/ s32 e1000_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data) { struct e1000_phy_info *phy = &hw->phy; u32 i, i2ccmd = 0; DEBUGFUNC("e1000_read_phy_reg_i2c"); /* Set up Op-code, Phy Address, and register address in the I2CCMD * register. The MAC will take care of interfacing with the * PHY to retrieve the desired data. */ i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) | (E1000_I2CCMD_OPCODE_READ)); E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd); /* Poll the ready bit to see if the I2C read completed */ for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { usec_delay(50); i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD); if (i2ccmd & E1000_I2CCMD_READY) break; } if (!(i2ccmd & E1000_I2CCMD_READY)) { DEBUGOUT("I2CCMD Read did not complete\n"); return -E1000_ERR_PHY; } if (i2ccmd & E1000_I2CCMD_ERROR) { DEBUGOUT("I2CCMD Error bit set\n"); return -E1000_ERR_PHY; } /* Need to byte-swap the 16-bit value. */ *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00); return E1000_SUCCESS; } /** * e1000_write_phy_reg_i2c - Write PHY register using i2c * @hw: pointer to the HW structure * @offset: register offset to write to * @data: data to write at register offset * * Writes the data to PHY register at the offset using the i2c interface. **/ s32 e1000_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data) { struct e1000_phy_info *phy = &hw->phy; u32 i, i2ccmd = 0; u16 phy_data_swapped; DEBUGFUNC("e1000_write_phy_reg_i2c"); /* Prevent overwritting SFP I2C EEPROM which is at A0 address.*/ if ((hw->phy.addr == 0) || (hw->phy.addr > 7)) { DEBUGOUT1("PHY I2C Address %d is out of range.\n", hw->phy.addr); return -E1000_ERR_CONFIG; } /* Swap the data bytes for the I2C interface */ phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00); /* Set up Op-code, Phy Address, and register address in the I2CCMD * register. The MAC will take care of interfacing with the * PHY to retrieve the desired data. */ i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) | E1000_I2CCMD_OPCODE_WRITE | phy_data_swapped); E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd); /* Poll the ready bit to see if the I2C read completed */ for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { usec_delay(50); i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD); if (i2ccmd & E1000_I2CCMD_READY) break; } if (!(i2ccmd & E1000_I2CCMD_READY)) { DEBUGOUT("I2CCMD Write did not complete\n"); return -E1000_ERR_PHY; } if (i2ccmd & E1000_I2CCMD_ERROR) { DEBUGOUT("I2CCMD Error bit set\n"); return -E1000_ERR_PHY; } return E1000_SUCCESS; } /** * e1000_read_sfp_data_byte - Reads SFP module data. * @hw: pointer to the HW structure * @offset: byte location offset to be read * @data: read data buffer pointer * * Reads one byte from SFP module data stored * in SFP resided EEPROM memory or SFP diagnostic area. * Function should be called with * E1000_I2CCMD_SFP_DATA_ADDR() for SFP module database access * E1000_I2CCMD_SFP_DIAG_ADDR() for SFP diagnostics parameters * access **/ s32 e1000_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data) { u32 i = 0; u32 i2ccmd = 0; u32 data_local = 0; DEBUGFUNC("e1000_read_sfp_data_byte"); if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) { DEBUGOUT("I2CCMD command address exceeds upper limit\n"); return -E1000_ERR_PHY; } /* Set up Op-code, EEPROM Address,in the I2CCMD * register. The MAC will take care of interfacing with the * EEPROM to retrieve the desired data. */ i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | E1000_I2CCMD_OPCODE_READ); E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd); /* Poll the ready bit to see if the I2C read completed */ for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { usec_delay(50); data_local = E1000_READ_REG(hw, E1000_I2CCMD); if (data_local & E1000_I2CCMD_READY) break; } if (!(data_local & E1000_I2CCMD_READY)) { DEBUGOUT("I2CCMD Read did not complete\n"); return -E1000_ERR_PHY; } if (data_local & E1000_I2CCMD_ERROR) { DEBUGOUT("I2CCMD Error bit set\n"); return -E1000_ERR_PHY; } *data = (u8) data_local & 0xFF; return E1000_SUCCESS; } /** * e1000_write_sfp_data_byte - Writes SFP module data. * @hw: pointer to the HW structure * @offset: byte location offset to write to * @data: data to write * * Writes one byte to SFP module data stored * in SFP resided EEPROM memory or SFP diagnostic area. * Function should be called with * E1000_I2CCMD_SFP_DATA_ADDR() for SFP module database access * E1000_I2CCMD_SFP_DIAG_ADDR() for SFP diagnostics parameters * access **/ s32 e1000_write_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 data) { u32 i = 0; u32 i2ccmd = 0; u32 data_local = 0; DEBUGFUNC("e1000_write_sfp_data_byte"); if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) { DEBUGOUT("I2CCMD command address exceeds upper limit\n"); return -E1000_ERR_PHY; } /* The programming interface is 16 bits wide * so we need to read the whole word first * then update appropriate byte lane and write * the updated word back. */ /* Set up Op-code, EEPROM Address,in the I2CCMD * register. The MAC will take care of interfacing * with an EEPROM to write the data given. */ i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | E1000_I2CCMD_OPCODE_READ); /* Set a command to read single word */ E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd); for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { usec_delay(50); /* Poll the ready bit to see if lastly * launched I2C operation completed */ i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD); if (i2ccmd & E1000_I2CCMD_READY) { /* Check if this is READ or WRITE phase */ if ((i2ccmd & E1000_I2CCMD_OPCODE_READ) == E1000_I2CCMD_OPCODE_READ) { /* Write the selected byte * lane and update whole word */ data_local = i2ccmd & 0xFF00; data_local |= data; i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | E1000_I2CCMD_OPCODE_WRITE | data_local); E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd); } else { break; } } } if (!(i2ccmd & E1000_I2CCMD_READY)) { DEBUGOUT("I2CCMD Write did not complete\n"); return -E1000_ERR_PHY; } if (i2ccmd & E1000_I2CCMD_ERROR) { DEBUGOUT("I2CCMD Error bit set\n"); return -E1000_ERR_PHY; } return E1000_SUCCESS; } /** * e1000_read_phy_reg_m88 - Read m88 PHY register * @hw: pointer to the HW structure * @offset: register offset to be read * @data: pointer to the read data * * Acquires semaphore, if necessary, then reads the PHY register at offset * and storing the retrieved information in data. Release any acquired * semaphores before exiting. **/ s32 e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data) { s32 ret_val; DEBUGFUNC("e1000_read_phy_reg_m88"); if (!hw->phy.ops.acquire) return E1000_SUCCESS; ret_val = hw->phy.ops.acquire(hw); if (ret_val) return ret_val; ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, data); hw->phy.ops.release(hw); return ret_val; } /** * e1000_write_phy_reg_m88 - Write m88 PHY register * @hw: pointer to the HW structure * @offset: register offset to write to * @data: data to write at register offset * * Acquires semaphore, if necessary, then writes the data to PHY register * at the offset. Release any acquired semaphores before exiting. **/ s32 e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data) { s32 ret_val; DEBUGFUNC("e1000_write_phy_reg_m88"); if (!hw->phy.ops.acquire) return E1000_SUCCESS; ret_val = hw->phy.ops.acquire(hw); if (ret_val) return ret_val; ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, data); hw->phy.ops.release(hw); return ret_val; } /** * e1000_set_page_igp - Set page as on IGP-like PHY(s) * @hw: pointer to the HW structure * @page: page to set (shifted left when necessary) * * Sets PHY page required for PHY register access. Assumes semaphore is * already acquired. Note, this function sets phy.addr to 1 so the caller * must set it appropriately (if necessary) after this function returns. **/ s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page) { DEBUGFUNC("e1000_set_page_igp"); DEBUGOUT1("Setting page 0x%x\n", page); hw->phy.addr = 1; return e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page); } /** * __e1000_read_phy_reg_igp - Read igp PHY register * @hw: pointer to the HW structure * @offset: register offset to be read * @data: pointer to the read data * @locked: semaphore has already been acquired or not * * Acquires semaphore, if necessary, then reads the PHY register at offset * and stores the retrieved information in data. Release any acquired * semaphores before exiting. **/ STATIC s32 __e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data, bool locked) { s32 ret_val = E1000_SUCCESS; DEBUGFUNC("__e1000_read_phy_reg_igp"); if (!locked) { if (!hw->phy.ops.acquire) return E1000_SUCCESS; ret_val = hw->phy.ops.acquire(hw); if (ret_val) return ret_val; } if (offset > MAX_PHY_MULTI_PAGE_REG) ret_val = e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, (u16)offset); if (!ret_val) ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, data); if (!locked) hw->phy.ops.release(hw); return ret_val; } /** * e1000_read_phy_reg_igp - Read igp PHY register * @hw: pointer to the HW structure * @offset: register offset to be read * @data: pointer to the read data * * Acquires semaphore then reads the PHY register at offset and stores the * retrieved information in data. * Release the acquired semaphore before exiting. **/ s32 e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data) { return __e1000_read_phy_reg_igp(hw, offset, data, false); } /** * e1000_read_phy_reg_igp_locked - Read igp PHY register * @hw: pointer to the HW structure * @offset: register offset to be read * @data: pointer to the read data * * Reads the PHY register at offset and stores the retrieved information * in data. Assumes semaphore already acquired. **/ s32 e1000_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data) { return __e1000_read_phy_reg_igp(hw, offset, data, true); } /** * e1000_write_phy_reg_igp - Write igp PHY register * @hw: pointer to the HW structure * @offset: register offset to write to * @data: data to write at register offset * @locked: semaphore has already been acquired or not * * Acquires semaphore, if necessary, then writes the data to PHY register * at the offset. Release any acquired semaphores before exiting. **/ STATIC s32 __e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data, bool locked) { s32 ret_val = E1000_SUCCESS; DEBUGFUNC("e1000_write_phy_reg_igp"); if (!locked) { if (!hw->phy.ops.acquire) return E1000_SUCCESS; ret_val = hw->phy.ops.acquire(hw); if (ret_val) return ret_val; } if (offset > MAX_PHY_MULTI_PAGE_REG) ret_val = e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, (u16)offset); if (!ret_val) ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, data); if (!locked) hw->phy.ops.release(hw); return ret_val; } /** * e1000_write_phy_reg_igp - Write igp PHY register * @hw: pointer to the HW structure * @offset: register offset to write to * @data: data to write at register offset * * Acquires semaphore then writes the data to PHY register * at the offset. Release any acquired semaphores before exiting. **/ s32 e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data) { return __e1000_write_phy_reg_igp(hw, offset, data, false); } /** * e1000_write_phy_reg_igp_locked - Write igp PHY register * @hw: pointer to the HW structure * @offset: register offset to write to * @data: data to write at register offset * * Writes the data to PHY register at the offset. * Assumes semaphore already acquired. **/ s32 e1000_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data) { return __e1000_write_phy_reg_igp(hw, offset, data, true); } /** * __e1000_read_kmrn_reg - Read kumeran register * @hw: pointer to the HW structure * @offset: register offset to be read * @data: pointer to the read data * @locked: semaphore has already been acquired or not * * Acquires semaphore, if necessary. Then reads the PHY register at offset * using the kumeran interface. The information retrieved is stored in data. * Release any acquired semaphores before exiting. **/ STATIC s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data, bool locked) { u32 kmrnctrlsta; DEBUGFUNC("__e1000_read_kmrn_reg"); if (!locked) { s32 ret_val = E1000_SUCCESS; if (!hw->phy.ops.acquire) return E1000_SUCCESS; ret_val = hw->phy.ops.acquire(hw); if (ret_val) return ret_val; } kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN; E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta); E1000_WRITE_FLUSH(hw); usec_delay(2); kmrnctrlsta = E1000_READ_REG(hw, E1000_KMRNCTRLSTA); *data = (u16)kmrnctrlsta; if (!locked) hw->phy.ops.release(hw); return E1000_SUCCESS; } /** * e1000_read_kmrn_reg_generic - Read kumeran register * @hw: pointer to the HW structure * @offset: register offset to be read * @data: pointer to the read data * * Acquires semaphore then reads the PHY register at offset using the * kumeran interface. The information retrieved is stored in data. * Release the acquired semaphore before exiting. **/ s32 e1000_read_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 *data) { return __e1000_read_kmrn_reg(hw, offset, data, false); } /** * e1000_read_kmrn_reg_locked - Read kumeran register * @hw: pointer to the HW structure * @offset: register offset to be read * @data: pointer to the read data * * Reads the PHY register at offset using the kumeran interface. The * information retrieved is stored in data. * Assumes semaphore already acquired. **/ s32 e1000_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data) { return __e1000_read_kmrn_reg(hw, offset, data, true); } /** * __e1000_write_kmrn_reg - Write kumeran register * @hw: pointer to the HW structure * @offset: register offset to write to * @data: data to write at register offset * @locked: semaphore has already been acquired or not * * Acquires semaphore, if necessary. Then write the data to PHY register * at the offset using the kumeran interface. Release any acquired semaphores * before exiting. **/ STATIC s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data, bool locked) { u32 kmrnctrlsta; DEBUGFUNC("e1000_write_kmrn_reg_generic"); if (!locked) { s32 ret_val = E1000_SUCCESS; if (!hw->phy.ops.acquire) return E1000_SUCCESS; ret_val = hw->phy.ops.acquire(hw); if (ret_val) return ret_val; } kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & E1000_KMRNCTRLSTA_OFFSET) | data; E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta); E1000_WRITE_FLUSH(hw); usec_delay(2); if (!locked) hw->phy.ops.release(hw); return E1000_SUCCESS; } /** * e1000_write_kmrn_reg_generic - Write kumeran register * @hw: pointer to the HW structure * @offset: register offset to write to * @data: data to write at register offset * * Acquires semaphore then writes the data to the PHY register at the offset * using the kumeran interface. Release the acquired semaphore before exiting. **/ s32 e1000_write_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 data) { return __e1000_write_kmrn_reg(hw, offset, data, false); } /** * e1000_write_kmrn_reg_locked - Write kumeran register * @hw: pointer to the HW structure * @offset: register offset to write to * @data: data to write at register offset * * Write the data to PHY register at the offset using the kumeran interface. * Assumes semaphore already acquired. **/ s32 e1000_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data) { return __e1000_write_kmrn_reg(hw, offset, data, true); } /** * e1000_set_master_slave_mode - Setup PHY for Master/slave mode * @hw: pointer to the HW structure * * Sets up Master/slave mode **/ STATIC s32 e1000_set_master_slave_mode(struct e1000_hw *hw) { s32 ret_val; u16 phy_data; /* Resolve Master/Slave mode */ ret_val = hw->phy.ops.read_reg(hw, PHY_1000T_CTRL, &phy_data); if (ret_val) return ret_val; /* load defaults for future use */ hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ? ((phy_data & CR_1000T_MS_VALUE) ? e1000_ms_force_master : e1000_ms_force_slave) : e1000_ms_auto; switch (hw->phy.ms_type) { case e1000_ms_force_master: phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); break; case e1000_ms_force_slave: phy_data |= CR_1000T_MS_ENABLE; phy_data &= ~(CR_1000T_MS_VALUE); break; case e1000_ms_auto: phy_data &= ~CR_1000T_MS_ENABLE; /* fall-through */ default: break; } return hw->phy.ops.write_reg(hw, PHY_1000T_CTRL, phy_data); } /** * e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link * @hw: pointer to the HW structure * * Sets up Carrier-sense on Transmit and downshift values. **/ s32 e1000_copper_link_setup_82577(struct e1000_hw *hw) { s32 ret_val; u16 phy_data; DEBUGFUNC("e1000_copper_link_setup_82577"); if (hw->phy.type == e1000_phy_82580) { ret_val = hw->phy.ops.reset(hw); if (ret_val) { DEBUGOUT("Error resetting the PHY.\n"); return ret_val; } } /* Enable CRS on Tx. This must be set for half-duplex operation. */ ret_val = hw->phy.ops.read_reg(hw, I82577_CFG_REG, &phy_data); if (ret_val) return ret_val; phy_data |= I82577_CFG_ASSERT_CRS_ON_TX; /* Enable downshift */ phy_data |= I82577_CFG_ENABLE_DOWNSHIFT; ret_val = hw->phy.ops.write_reg(hw, I82577_CFG_REG, phy_data); if (ret_val) return ret_val; /* Set MDI/MDIX mode */ ret_val = hw->phy.ops.read_reg(hw, I82577_PHY_CTRL_2, &phy_data); if (ret_val) return ret_val; phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK; /* Options: * 0 - Auto (default) * 1 - MDI mode * 2 - MDI-X mode */ switch (hw->phy.mdix) { case 1: break; case 2: phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX; break; case 0: default: phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX; break; } ret_val = hw->phy.ops.write_reg(hw, I82577_PHY_CTRL_2, phy_data); if (ret_val) return ret_val; return e1000_set_master_slave_mode(hw); } /** * e1000_copper_link_setup_m88 - Setup m88 PHY's for copper link * @hw: pointer to the HW structure * * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock * and downshift values are set also. **/ s32 e1000_copper_link_setup_m88(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 phy_data; DEBUGFUNC("e1000_copper_link_setup_m88"); /* Enable CRS on Tx. This must be set for half-duplex operation. */ ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); if (ret_val) return ret_val; /* For BM PHY this bit is downshift enable */ if (phy->type != e1000_phy_bm) phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; /* Options: * MDI/MDI-X = 0 (default) * 0 - Auto for all speeds * 1 - MDI mode * 2 - MDI-X mode * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) */ phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; switch (phy->mdix) { case 1: phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; break; case 2: phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; break; case 3: phy_data |= M88E1000_PSCR_AUTO_X_1000T; break; case 0: default: phy_data |= M88E1000_PSCR_AUTO_X_MODE; break; } /* Options: * disable_polarity_correction = 0 (default) * Automatic Correction for Reversed Cable Polarity * 0 - Disabled * 1 - Enabled */ phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; if (phy->disable_polarity_correction) phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; /* Enable downshift on BM (disabled by default) */ if (phy->type == e1000_phy_bm) { /* For 82574/82583, first disable then enable downshift */ if (phy->id == BME1000_E_PHY_ID_R2) { phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT; ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); if (ret_val) return ret_val; /* Commit the changes. */ ret_val = phy->ops.commit(hw); if (ret_val) { DEBUGOUT("Error committing the PHY changes\n"); return ret_val; } } phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT; } ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); if (ret_val) return ret_val; if ((phy->type == e1000_phy_m88) && (phy->revision < E1000_REVISION_4) && (phy->id != BME1000_E_PHY_ID_R2)) { /* Force TX_CLK in the Extended PHY Specific Control Register * to 25MHz clock. */ ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); if (ret_val) return ret_val; phy_data |= M88E1000_EPSCR_TX_CLK_25; if ((phy->revision == E1000_REVISION_2) && (phy->id == M88E1111_I_PHY_ID)) { /* 82573L PHY - set the downshift counter to 5x. */ phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK; phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; } else { /* Configure Master and Slave downshift values */ phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); } ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); if (ret_val) return ret_val; } if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) { /* Set PHY page 0, register 29 to 0x0003 */ ret_val = phy->ops.write_reg(hw, 29, 0x0003); if (ret_val) return ret_val; /* Set PHY page 0, register 30 to 0x0000 */ ret_val = phy->ops.write_reg(hw, 30, 0x0000); if (ret_val) return ret_val; } /* Commit the changes. */ ret_val = phy->ops.commit(hw); if (ret_val) { DEBUGOUT("Error committing the PHY changes\n"); return ret_val; } if (phy->type == e1000_phy_82578) { ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); if (ret_val) return ret_val; /* 82578 PHY - set the downshift count to 1x. */ phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE; phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK; ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); if (ret_val) return ret_val; } return E1000_SUCCESS; } /** * e1000_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link * @hw: pointer to the HW structure * * Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's. * Also enables and sets the downshift parameters. **/ s32 e1000_copper_link_setup_m88_gen2(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 phy_data; DEBUGFUNC("e1000_copper_link_setup_m88_gen2"); /* Enable CRS on Tx. This must be set for half-duplex operation. */ ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); if (ret_val) return ret_val; /* Options: * MDI/MDI-X = 0 (default) * 0 - Auto for all speeds * 1 - MDI mode * 2 - MDI-X mode * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) */ phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; switch (phy->mdix) { case 1: phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; break; case 2: phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; break; case 3: /* M88E1112 does not support this mode) */ if (phy->id != M88E1112_E_PHY_ID) { phy_data |= M88E1000_PSCR_AUTO_X_1000T; break; } case 0: default: phy_data |= M88E1000_PSCR_AUTO_X_MODE; break; } /* Options: * disable_polarity_correction = 0 (default) * Automatic Correction for Reversed Cable Polarity * 0 - Disabled * 1 - Enabled */ phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; if (phy->disable_polarity_correction) phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; /* Enable downshift and setting it to X6 */ if (phy->id == M88E1543_E_PHY_ID) { phy_data &= ~I347AT4_PSCR_DOWNSHIFT_ENABLE; ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); if (ret_val) return ret_val; ret_val = phy->ops.commit(hw); if (ret_val) { DEBUGOUT("Error committing the PHY changes\n"); return ret_val; } } phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK; phy_data |= I347AT4_PSCR_DOWNSHIFT_6X; phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE; ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); if (ret_val) return ret_val; /* Commit the changes. */ ret_val = phy->ops.commit(hw); if (ret_val) { DEBUGOUT("Error committing the PHY changes\n"); return ret_val; } ret_val = e1000_set_master_slave_mode(hw); if (ret_val) return ret_val; return E1000_SUCCESS; } /** * e1000_copper_link_setup_igp - Setup igp PHY's for copper link * @hw: pointer to the HW structure * * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for * igp PHY's. **/ s32 e1000_copper_link_setup_igp(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 data; DEBUGFUNC("e1000_copper_link_setup_igp"); ret_val = hw->phy.ops.reset(hw); if (ret_val) { DEBUGOUT("Error resetting the PHY.\n"); return ret_val; } /* Wait 100ms for MAC to configure PHY from NVM settings, to avoid * timeout issues when LFS is enabled. */ msec_delay(100); /* The NVM settings will configure LPLU in D3 for * non-IGP1 PHYs. */ if (phy->type == e1000_phy_igp) { /* disable lplu d3 during driver init */ ret_val = hw->phy.ops.set_d3_lplu_state(hw, false); if (ret_val) { DEBUGOUT("Error Disabling LPLU D3\n"); return ret_val; } } /* disable lplu d0 during driver init */ if (hw->phy.ops.set_d0_lplu_state) { ret_val = hw->phy.ops.set_d0_lplu_state(hw, false); if (ret_val) { DEBUGOUT("Error Disabling LPLU D0\n"); return ret_val; } } /* Configure mdi-mdix settings */ ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data); if (ret_val) return ret_val; data &= ~IGP01E1000_PSCR_AUTO_MDIX; switch (phy->mdix) { case 1: data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; break; case 2: data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; break; case 0: default: data |= IGP01E1000_PSCR_AUTO_MDIX; break; } ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data); if (ret_val) return ret_val; /* set auto-master slave resolution settings */ if (hw->mac.autoneg) { /* when autonegotiation advertisement is only 1000Mbps then we * should disable SmartSpeed and enable Auto MasterSlave * resolution as hardware default. */ if (phy->autoneg_advertised == ADVERTISE_1000_FULL) { /* Disable SmartSpeed */ ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &data); if (ret_val) return ret_val; data &= ~IGP01E1000_PSCFR_SMART_SPEED; ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, data); if (ret_val) return ret_val; /* Set auto Master/Slave resolution process */ ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data); if (ret_val) return ret_val; data &= ~CR_1000T_MS_ENABLE; ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data); if (ret_val) return ret_val; } ret_val = e1000_set_master_slave_mode(hw); } return ret_val; } /** * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation * @hw: pointer to the HW structure * * Reads the MII auto-neg advertisement register and/or the 1000T control * register and if the PHY is already setup for auto-negotiation, then * return successful. Otherwise, setup advertisement and flow control to * the appropriate values for the wanted auto-negotiation. **/ s32 e1000_phy_setup_autoneg(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 mii_autoneg_adv_reg; u16 mii_1000t_ctrl_reg = 0; DEBUGFUNC("e1000_phy_setup_autoneg"); phy->autoneg_advertised &= phy->autoneg_mask; /* Read the MII Auto-Neg Advertisement Register (Address 4). */ ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); if (ret_val) return ret_val; if (phy->autoneg_mask & ADVERTISE_1000_FULL) { /* Read the MII 1000Base-T Control Register (Address 9). */ ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); if (ret_val) return ret_val; } /* Need to parse both autoneg_advertised and fc and set up * the appropriate PHY registers. First we will parse for * autoneg_advertised software override. Since we can advertise * a plethora of combinations, we need to check each bit * individually. */ /* First we clear all the 10/100 mb speed bits in the Auto-Neg * Advertisement Register (Address 4) and the 1000 mb speed bits in * the 1000Base-T Control Register (Address 9). */ mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS | NWAY_AR_100TX_HD_CAPS | NWAY_AR_10T_FD_CAPS | NWAY_AR_10T_HD_CAPS); mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS); DEBUGOUT1("autoneg_advertised %x\n", phy->autoneg_advertised); /* Do we want to advertise 10 Mb Half Duplex? */ if (phy->autoneg_advertised & ADVERTISE_10_HALF) { DEBUGOUT("Advertise 10mb Half duplex\n"); mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; } /* Do we want to advertise 10 Mb Full Duplex? */ if (phy->autoneg_advertised & ADVERTISE_10_FULL) { DEBUGOUT("Advertise 10mb Full duplex\n"); mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; } /* Do we want to advertise 100 Mb Half Duplex? */ if (phy->autoneg_advertised & ADVERTISE_100_HALF) { DEBUGOUT("Advertise 100mb Half duplex\n"); mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; } /* Do we want to advertise 100 Mb Full Duplex? */ if (phy->autoneg_advertised & ADVERTISE_100_FULL) { DEBUGOUT("Advertise 100mb Full duplex\n"); mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; } /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ if (phy->autoneg_advertised & ADVERTISE_1000_HALF) DEBUGOUT("Advertise 1000mb Half duplex request denied!\n"); /* Do we want to advertise 1000 Mb Full Duplex? */ if (phy->autoneg_advertised & ADVERTISE_1000_FULL) { DEBUGOUT("Advertise 1000mb Full duplex\n"); mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; } /* Check for a software override of the flow control settings, and * setup the PHY advertisement registers accordingly. If * auto-negotiation is enabled, then software will have to set the * "PAUSE" bits to the correct value in the Auto-Negotiation * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto- * negotiation. * * The possible values of the "fc" parameter are: * 0: Flow control is completely disabled * 1: Rx flow control is enabled (we can receive pause frames * but not send pause frames). * 2: Tx flow control is enabled (we can send pause frames * but we do not support receiving pause frames). * 3: Both Rx and Tx flow control (symmetric) are enabled. * other: No software override. The flow control configuration * in the EEPROM is used. */ switch (hw->fc.current_mode) { case e1000_fc_none: /* Flow control (Rx & Tx) is completely disabled by a * software over-ride. */ mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); break; case e1000_fc_rx_pause: /* Rx Flow control is enabled, and Tx Flow control is * disabled, by a software over-ride. * * Since there really isn't a way to advertise that we are * capable of Rx Pause ONLY, we will advertise that we * support both symmetric and asymmetric Rx PAUSE. Later * (in e1000_config_fc_after_link_up) we will disable the * hw's ability to send PAUSE frames. */ mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); break; case e1000_fc_tx_pause: /* Tx Flow control is enabled, and Rx Flow control is * disabled, by a software over-ride. */ mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; break; case e1000_fc_full: /* Flow control (both Rx and Tx) is enabled by a software * over-ride. */ mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); break; default: DEBUGOUT("Flow control param set incorrectly\n"); return -E1000_ERR_CONFIG; } ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); if (ret_val) return ret_val; DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); if (phy->autoneg_mask & ADVERTISE_1000_FULL) ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg); return ret_val; } /** * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link * @hw: pointer to the HW structure * * Performs initial bounds checking on autoneg advertisement parameter, then * configure to advertise the full capability. Setup the PHY to autoneg * and restart the negotiation process between the link partner. If * autoneg_wait_to_complete, then wait for autoneg to complete before exiting. **/ s32 e1000_copper_link_autoneg(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 phy_ctrl; DEBUGFUNC("e1000_copper_link_autoneg"); /* Perform some bounds checking on the autoneg advertisement * parameter. */ phy->autoneg_advertised &= phy->autoneg_mask; /* If autoneg_advertised is zero, we assume it was not defaulted * by the calling code so we set to advertise full capability. */ if (!phy->autoneg_advertised) phy->autoneg_advertised = phy->autoneg_mask; DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); ret_val = e1000_phy_setup_autoneg(hw); if (ret_val) { DEBUGOUT("Error Setting up Auto-Negotiation\n"); return ret_val; } DEBUGOUT("Restarting Auto-Neg\n"); /* Restart auto-negotiation by setting the Auto Neg Enable bit and * the Auto Neg Restart bit in the PHY control register. */ ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl); if (ret_val) return ret_val; phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl); if (ret_val) return ret_val; /* Does the user want to wait for Auto-Neg to complete here, or * check at a later time (for example, callback routine). */ if (phy->autoneg_wait_to_complete) { ret_val = e1000_wait_autoneg(hw); if (ret_val) { DEBUGOUT("Error while waiting for autoneg to complete\n"); return ret_val; } } hw->mac.get_link_status = true; return ret_val; } /** * e1000_setup_copper_link_generic - Configure copper link settings * @hw: pointer to the HW structure * * Calls the appropriate function to configure the link for auto-neg or forced * speed and duplex. Then we check for link, once link is established calls * to configure collision distance and flow control are called. If link is * not established, we return -E1000_ERR_PHY (-2). **/ s32 e1000_setup_copper_link_generic(struct e1000_hw *hw) { s32 ret_val; bool link = true; DEBUGFUNC("e1000_setup_copper_link_generic"); if (hw->mac.autoneg) { /* Setup autoneg and flow control advertisement and perform * autonegotiation. */ ret_val = e1000_copper_link_autoneg(hw); if (ret_val) return ret_val; } else { /* PHY will be set to 10H, 10F, 100H or 100F * depending on user settings. */ DEBUGOUT("Forcing Speed and Duplex\n"); ret_val = hw->phy.ops.force_speed_duplex(hw); if (ret_val) { DEBUGOUT("Error Forcing Speed and Duplex\n"); return ret_val; } } /* Check link status. Wait up to 100 microseconds for link to become * valid. */ ret_val = e1000_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10, &link); if (ret_val) return ret_val; if (link) { DEBUGOUT("Valid link established!!!\n"); hw->mac.ops.config_collision_dist(hw); ret_val = e1000_config_fc_after_link_up_generic(hw); } else { DEBUGOUT("Unable to establish link!!!\n"); } return ret_val; } /** * e1000_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY * @hw: pointer to the HW structure * * Calls the PHY setup function to force speed and duplex. Clears the * auto-crossover to force MDI manually. Waits for link and returns * successful if link up is successful, else -E1000_ERR_PHY (-2). **/ s32 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 phy_data; bool link; DEBUGFUNC("e1000_phy_force_speed_duplex_igp"); ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data); if (ret_val) return ret_val; e1000_phy_force_speed_duplex_setup(hw, &phy_data); ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data); if (ret_val) return ret_val; /* Clear Auto-Crossover to force MDI manually. IGP requires MDI * forced whenever speed and duplex are forced. */ ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); if (ret_val) return ret_val; phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); if (ret_val) return ret_val; DEBUGOUT1("IGP PSCR: %X\n", phy_data); usec_delay(1); if (phy->autoneg_wait_to_complete) { DEBUGOUT("Waiting for forced speed/duplex link on IGP phy.\n"); ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 100000, &link); if (ret_val) return ret_val; if (!link) DEBUGOUT("Link taking longer than expected.\n"); /* Try once more */ ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 100000, &link); } return ret_val; } /** * e1000_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY * @hw: pointer to the HW structure * * Calls the PHY setup function to force speed and duplex. Clears the * auto-crossover to force MDI manually. Resets the PHY to commit the * changes. If time expires while waiting for link up, we reset the DSP. * After reset, TX_CLK and CRS on Tx must be set. Return successful upon * successful completion, else return corresponding error code. **/ s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 phy_data; bool link; DEBUGFUNC("e1000_phy_force_speed_duplex_m88"); /* I210 and I211 devices support Auto-Crossover in forced operation. */ if (phy->type != e1000_phy_i210) { /* Clear Auto-Crossover to force MDI manually. M88E1000 * requires MDI forced whenever speed and duplex are forced. */ ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); if (ret_val) return ret_val; phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); if (ret_val) return ret_val; DEBUGOUT1("M88E1000 PSCR: %X\n", phy_data); } ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data); if (ret_val) return ret_val; e1000_phy_force_speed_duplex_setup(hw, &phy_data); ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data); if (ret_val) return ret_val; /* Reset the phy to commit changes. */ ret_val = hw->phy.ops.commit(hw); if (ret_val) return ret_val; if (phy->autoneg_wait_to_complete) { DEBUGOUT("Waiting for forced speed/duplex link on M88 phy.\n"); ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 100000, &link); if (ret_val) return ret_val; if (!link) { bool reset_dsp = true; switch (hw->phy.id) { case I347AT4_E_PHY_ID: case M88E1340M_E_PHY_ID: case M88E1112_E_PHY_ID: case M88E1543_E_PHY_ID: case M88E1512_E_PHY_ID: case I210_I_PHY_ID: reset_dsp = false; break; default: if (hw->phy.type != e1000_phy_m88) reset_dsp = false; break; } if (!reset_dsp) { DEBUGOUT("Link taking longer than expected.\n"); } else { /* We didn't get link. * Reset the DSP and cross our fingers. */ ret_val = phy->ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x001d); if (ret_val) return ret_val; ret_val = e1000_phy_reset_dsp_generic(hw); if (ret_val) return ret_val; } } /* Try once more */ ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 100000, &link); if (ret_val) return ret_val; } if (hw->phy.type != e1000_phy_m88) return E1000_SUCCESS; if (hw->phy.id == I347AT4_E_PHY_ID || hw->phy.id == M88E1340M_E_PHY_ID || hw->phy.id == M88E1112_E_PHY_ID) return E1000_SUCCESS; if (hw->phy.id == I210_I_PHY_ID) return E1000_SUCCESS; if ((hw->phy.id == M88E1543_E_PHY_ID) || (hw->phy.id == M88E1512_E_PHY_ID)) return E1000_SUCCESS; ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); if (ret_val) return ret_val; /* Resetting the phy means we need to re-force TX_CLK in the * Extended PHY Specific Control Register to 25MHz clock from * the reset value of 2.5MHz. */ phy_data |= M88E1000_EPSCR_TX_CLK_25; ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); if (ret_val) return ret_val; /* In addition, we must re-enable CRS on Tx for both half and full * duplex. */ ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); if (ret_val) return ret_val; phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); return ret_val; } /** * e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex * @hw: pointer to the HW structure * * Forces the speed and duplex settings of the PHY. * This is a function pointer entry point only called by * PHY setup routines. **/ s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 data; bool link; DEBUGFUNC("e1000_phy_force_speed_duplex_ife"); ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &data); if (ret_val) return ret_val; e1000_phy_force_speed_duplex_setup(hw, &data); ret_val = phy->ops.write_reg(hw, PHY_CONTROL, data); if (ret_val) return ret_val; /* Disable MDI-X support for 10/100 */ ret_val = phy->ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, &data); if (ret_val) return ret_val; data &= ~IFE_PMC_AUTO_MDIX; data &= ~IFE_PMC_FORCE_MDIX; ret_val = phy->ops.write_reg(hw, IFE_PHY_MDIX_CONTROL, data); if (ret_val) return ret_val; DEBUGOUT1("IFE PMC: %X\n", data); usec_delay(1); if (phy->autoneg_wait_to_complete) { DEBUGOUT("Waiting for forced speed/duplex link on IFE phy.\n"); ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 100000, &link); if (ret_val) return ret_val; if (!link) DEBUGOUT("Link taking longer than expected.\n"); /* Try once more */ ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 100000, &link); if (ret_val) return ret_val; } return E1000_SUCCESS; } /** * e1000_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex * @hw: pointer to the HW structure * @phy_ctrl: pointer to current value of PHY_CONTROL * * Forces speed and duplex on the PHY by doing the following: disable flow * control, force speed/duplex on the MAC, disable auto speed detection, * disable auto-negotiation, configure duplex, configure speed, configure * the collision distance, write configuration to CTRL register. The * caller must write to the PHY_CONTROL register for these settings to * take affect. **/ void e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl) { struct e1000_mac_info *mac = &hw->mac; u32 ctrl; DEBUGFUNC("e1000_phy_force_speed_duplex_setup"); /* Turn off flow control when forcing speed/duplex */ hw->fc.current_mode = e1000_fc_none; /* Force speed/duplex on the mac */ ctrl = E1000_READ_REG(hw, E1000_CTRL); ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); ctrl &= ~E1000_CTRL_SPD_SEL; /* Disable Auto Speed Detection */ ctrl &= ~E1000_CTRL_ASDE; /* Disable autoneg on the phy */ *phy_ctrl &= ~MII_CR_AUTO_NEG_EN; /* Forcing Full or Half Duplex? */ if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) { ctrl &= ~E1000_CTRL_FD; *phy_ctrl &= ~MII_CR_FULL_DUPLEX; DEBUGOUT("Half Duplex\n"); } else { ctrl |= E1000_CTRL_FD; *phy_ctrl |= MII_CR_FULL_DUPLEX; DEBUGOUT("Full Duplex\n"); } /* Forcing 10mb or 100mb? */ if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) { ctrl |= E1000_CTRL_SPD_100; *phy_ctrl |= MII_CR_SPEED_100; *phy_ctrl &= ~MII_CR_SPEED_1000; DEBUGOUT("Forcing 100mb\n"); } else { ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); DEBUGOUT("Forcing 10mb\n"); } hw->mac.ops.config_collision_dist(hw); E1000_WRITE_REG(hw, E1000_CTRL, ctrl); } /** * e1000_set_d3_lplu_state_generic - Sets low power link up state for D3 * @hw: pointer to the HW structure * @active: boolean used to enable/disable lplu * * Success returns 0, Failure returns 1 * * The low power link up (lplu) state is set to the power management level D3 * and SmartSpeed is disabled when active is true, else clear lplu for D3 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU * is used during Dx states where the power conservation is most important. * During driver activity, SmartSpeed should be enabled so performance is * maintained. **/ s32 e1000_set_d3_lplu_state_generic(struct e1000_hw *hw, bool active) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 data; DEBUGFUNC("e1000_set_d3_lplu_state_generic"); if (!hw->phy.ops.read_reg) return E1000_SUCCESS; ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data); if (ret_val) return ret_val; if (!active) { data &= ~IGP02E1000_PM_D3_LPLU; ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, data); if (ret_val) return ret_val; /* LPLU and SmartSpeed are mutually exclusive. LPLU is used * during Dx states where the power conservation is most * important. During driver activity we should enable * SmartSpeed, so performance is maintained. */ if (phy->smart_speed == e1000_smart_speed_on) { ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &data); if (ret_val) return ret_val; data |= IGP01E1000_PSCFR_SMART_SPEED; ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, data); if (ret_val) return ret_val; } else if (phy->smart_speed == e1000_smart_speed_off) { ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &data); if (ret_val) return ret_val; data &= ~IGP01E1000_PSCFR_SMART_SPEED; ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, data); if (ret_val) return ret_val; } } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { data |= IGP02E1000_PM_D3_LPLU; ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, data); if (ret_val) return ret_val; /* When LPLU is enabled, we should disable SmartSpeed */ ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &data); if (ret_val) return ret_val; data &= ~IGP01E1000_PSCFR_SMART_SPEED; ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, data); } return ret_val; } /** * e1000_check_downshift_generic - Checks whether a downshift in speed occurred * @hw: pointer to the HW structure * * Success returns 0, Failure returns 1 * * A downshift is detected by querying the PHY link health. **/ s32 e1000_check_downshift_generic(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 phy_data, offset, mask; DEBUGFUNC("e1000_check_downshift_generic"); switch (phy->type) { case e1000_phy_i210: case e1000_phy_m88: case e1000_phy_gg82563: case e1000_phy_bm: case e1000_phy_82578: offset = M88E1000_PHY_SPEC_STATUS; mask = M88E1000_PSSR_DOWNSHIFT; break; case e1000_phy_igp: case e1000_phy_igp_2: case e1000_phy_igp_3: offset = IGP01E1000_PHY_LINK_HEALTH; mask = IGP01E1000_PLHR_SS_DOWNGRADE; break; default: /* speed downshift not supported */ phy->speed_downgraded = false; return E1000_SUCCESS; } ret_val = phy->ops.read_reg(hw, offset, &phy_data); if (!ret_val) phy->speed_downgraded = !!(phy_data & mask); return ret_val; } /** * e1000_check_polarity_m88 - Checks the polarity. * @hw: pointer to the HW structure * * Success returns 0, Failure returns -E1000_ERR_PHY (-2) * * Polarity is determined based on the PHY specific status register. **/ s32 e1000_check_polarity_m88(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 data; DEBUGFUNC("e1000_check_polarity_m88"); ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data); if (!ret_val) phy->cable_polarity = ((data & M88E1000_PSSR_REV_POLARITY) ? e1000_rev_polarity_reversed : e1000_rev_polarity_normal); return ret_val; } /** * e1000_check_polarity_igp - Checks the polarity. * @hw: pointer to the HW structure * * Success returns 0, Failure returns -E1000_ERR_PHY (-2) * * Polarity is determined based on the PHY port status register, and the * current speed (since there is no polarity at 100Mbps). **/ s32 e1000_check_polarity_igp(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 data, offset, mask; DEBUGFUNC("e1000_check_polarity_igp"); /* Polarity is determined based on the speed of * our connection. */ ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data); if (ret_val) return ret_val; if ((data & IGP01E1000_PSSR_SPEED_MASK) == IGP01E1000_PSSR_SPEED_1000MBPS) { offset = IGP01E1000_PHY_PCS_INIT_REG; mask = IGP01E1000_PHY_POLARITY_MASK; } else { /* This really only applies to 10Mbps since * there is no polarity for 100Mbps (always 0). */ offset = IGP01E1000_PHY_PORT_STATUS; mask = IGP01E1000_PSSR_POLARITY_REVERSED; } ret_val = phy->ops.read_reg(hw, offset, &data); if (!ret_val) phy->cable_polarity = ((data & mask) ? e1000_rev_polarity_reversed : e1000_rev_polarity_normal); return ret_val; } /** * e1000_check_polarity_ife - Check cable polarity for IFE PHY * @hw: pointer to the HW structure * * Polarity is determined on the polarity reversal feature being enabled. **/ s32 e1000_check_polarity_ife(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 phy_data, offset, mask; DEBUGFUNC("e1000_check_polarity_ife"); /* Polarity is determined based on the reversal feature being enabled. */ if (phy->polarity_correction) { offset = IFE_PHY_EXTENDED_STATUS_CONTROL; mask = IFE_PESC_POLARITY_REVERSED; } else { offset = IFE_PHY_SPECIAL_CONTROL; mask = IFE_PSC_FORCE_POLARITY; } ret_val = phy->ops.read_reg(hw, offset, &phy_data); if (!ret_val) phy->cable_polarity = ((phy_data & mask) ? e1000_rev_polarity_reversed : e1000_rev_polarity_normal); return ret_val; } /** * e1000_wait_autoneg - Wait for auto-neg completion * @hw: pointer to the HW structure * * Waits for auto-negotiation to complete or for the auto-negotiation time * limit to expire, which ever happens first. **/ STATIC s32 e1000_wait_autoneg(struct e1000_hw *hw) { s32 ret_val = E1000_SUCCESS; u16 i, phy_status; DEBUGFUNC("e1000_wait_autoneg"); if (!hw->phy.ops.read_reg) return E1000_SUCCESS; /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */ for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) { ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); if (ret_val) break; ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); if (ret_val) break; if (phy_status & MII_SR_AUTONEG_COMPLETE) break; msec_delay(100); } /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation * has completed. */ return ret_val; } /** * e1000_phy_has_link_generic - Polls PHY for link * @hw: pointer to the HW structure * @iterations: number of times to poll for link * @usec_interval: delay between polling attempts * @success: pointer to whether polling was successful or not * * Polls the PHY status register for link, 'iterations' number of times. **/ s32 e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations, u32 usec_interval, bool *success) { s32 ret_val = E1000_SUCCESS; u16 i, phy_status; DEBUGFUNC("e1000_phy_has_link_generic"); if (!hw->phy.ops.read_reg) return E1000_SUCCESS; for (i = 0; i < iterations; i++) { /* Some PHYs require the PHY_STATUS register to be read * twice due to the link bit being sticky. No harm doing * it across the board. */ ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); if (ret_val) { /* If the first read fails, another entity may have * ownership of the resources, wait and try again to * see if they have relinquished the resources yet. */ if (usec_interval >= 1000) msec_delay(usec_interval/1000); else usec_delay(usec_interval); } ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); if (ret_val) break; if (phy_status & MII_SR_LINK_STATUS) break; if (usec_interval >= 1000) msec_delay(usec_interval/1000); else usec_delay(usec_interval); } *success = (i < iterations); return ret_val; } /** * e1000_get_cable_length_m88 - Determine cable length for m88 PHY * @hw: pointer to the HW structure * * Reads the PHY specific status register to retrieve the cable length * information. The cable length is determined by averaging the minimum and * maximum values to get the "average" cable length. The m88 PHY has four * possible cable length values, which are: * Register Value Cable Length * 0 < 50 meters * 1 50 - 80 meters * 2 80 - 110 meters * 3 110 - 140 meters * 4 > 140 meters **/ s32 e1000_get_cable_length_m88(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 phy_data, index; DEBUGFUNC("e1000_get_cable_length_m88"); ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); if (ret_val) return ret_val; index = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >> M88E1000_PSSR_CABLE_LENGTH_SHIFT); if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) return -E1000_ERR_PHY; phy->min_cable_length = e1000_m88_cable_length_table[index]; phy->max_cable_length = e1000_m88_cable_length_table[index + 1]; phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; return E1000_SUCCESS; } s32 e1000_get_cable_length_m88_gen2(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 phy_data, phy_data2, is_cm; u16 index, default_page; DEBUGFUNC("e1000_get_cable_length_m88_gen2"); switch (hw->phy.id) { case I210_I_PHY_ID: /* Get cable length from PHY Cable Diagnostics Control Reg */ ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) + (I347AT4_PCDL + phy->addr), &phy_data); if (ret_val) return ret_val; /* Check if the unit of cable length is meters or cm */ ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) + I347AT4_PCDC, &phy_data2); if (ret_val) return ret_val; is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT); /* Populate the phy structure with cable length in meters */ phy->min_cable_length = phy_data / (is_cm ? 100 : 1); phy->max_cable_length = phy_data / (is_cm ? 100 : 1); phy->cable_length = phy_data / (is_cm ? 100 : 1); break; case M88E1543_E_PHY_ID: case M88E1512_E_PHY_ID: case M88E1340M_E_PHY_ID: case I347AT4_E_PHY_ID: /* Remember the original page select and set it to 7 */ ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT, &default_page); if (ret_val) return ret_val; ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07); if (ret_val) return ret_val; /* Get cable length from PHY Cable Diagnostics Control Reg */ ret_val = phy->ops.read_reg(hw, (I347AT4_PCDL + phy->addr), &phy_data); if (ret_val) return ret_val; /* Check if the unit of cable length is meters or cm */ ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2); if (ret_val) return ret_val; is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT); /* Populate the phy structure with cable length in meters */ phy->min_cable_length = phy_data / (is_cm ? 100 : 1); phy->max_cable_length = phy_data / (is_cm ? 100 : 1); phy->cable_length = phy_data / (is_cm ? 100 : 1); /* Reset the page select to its original value */ ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, default_page); if (ret_val) return ret_val; break; case M88E1112_E_PHY_ID: /* Remember the original page select and set it to 5 */ ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT, &default_page); if (ret_val) return ret_val; ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05); if (ret_val) return ret_val; ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE, &phy_data); if (ret_val) return ret_val; index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> M88E1000_PSSR_CABLE_LENGTH_SHIFT; if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) return -E1000_ERR_PHY; phy->min_cable_length = e1000_m88_cable_length_table[index]; phy->max_cable_length = e1000_m88_cable_length_table[index + 1]; phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; /* Reset the page select to its original value */ ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, default_page); if (ret_val) return ret_val; break; default: return -E1000_ERR_PHY; } return ret_val; } /** * e1000_get_cable_length_igp_2 - Determine cable length for igp2 PHY * @hw: pointer to the HW structure * * The automatic gain control (agc) normalizes the amplitude of the * received signal, adjusting for the attenuation produced by the * cable. By reading the AGC registers, which represent the * combination of coarse and fine gain value, the value can be put * into a lookup table to obtain the approximate cable length * for each channel. **/ s32 e1000_get_cable_length_igp_2(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 phy_data, i, agc_value = 0; u16 cur_agc_index, max_agc_index = 0; u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1; static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = { IGP02E1000_PHY_AGC_A, IGP02E1000_PHY_AGC_B, IGP02E1000_PHY_AGC_C, IGP02E1000_PHY_AGC_D }; DEBUGFUNC("e1000_get_cable_length_igp_2"); /* Read the AGC registers for all channels */ for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) { ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data); if (ret_val) return ret_val; /* Getting bits 15:9, which represent the combination of * coarse and fine gain values. The result is a number * that can be put into the lookup table to obtain the * approximate cable length. */ cur_agc_index = ((phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & IGP02E1000_AGC_LENGTH_MASK); /* Array index bound check. */ if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) || (cur_agc_index == 0)) return -E1000_ERR_PHY; /* Remove min & max AGC values from calculation. */ if (e1000_igp_2_cable_length_table[min_agc_index] > e1000_igp_2_cable_length_table[cur_agc_index]) min_agc_index = cur_agc_index; if (e1000_igp_2_cable_length_table[max_agc_index] < e1000_igp_2_cable_length_table[cur_agc_index]) max_agc_index = cur_agc_index; agc_value += e1000_igp_2_cable_length_table[cur_agc_index]; } agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] + e1000_igp_2_cable_length_table[max_agc_index]); agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2); /* Calculate cable length with the error range of +/- 10 meters. */ phy->min_cable_length = (((agc_value - IGP02E1000_AGC_RANGE) > 0) ? (agc_value - IGP02E1000_AGC_RANGE) : 0); phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE; phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; return E1000_SUCCESS; } /** * e1000_get_phy_info_m88 - Retrieve PHY information * @hw: pointer to the HW structure * * Valid for only copper links. Read the PHY status register (sticky read) * to verify that link is up. Read the PHY special control register to * determine the polarity and 10base-T extended distance. Read the PHY * special status register to determine MDI/MDIx and current speed. If * speed is 1000, then determine cable length, local and remote receiver. **/ s32 e1000_get_phy_info_m88(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 phy_data; bool link; DEBUGFUNC("e1000_get_phy_info_m88"); if (phy->media_type != e1000_media_type_copper) { DEBUGOUT("Phy info is only valid for copper media\n"); return -E1000_ERR_CONFIG; } ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); if (ret_val) return ret_val; if (!link) { DEBUGOUT("Phy info is only valid if link is up\n"); return -E1000_ERR_CONFIG; } ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); if (ret_val) return ret_val; phy->polarity_correction = !!(phy_data & M88E1000_PSCR_POLARITY_REVERSAL); ret_val = e1000_check_polarity_m88(hw); if (ret_val) return ret_val; ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); if (ret_val) return ret_val; phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX); if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { ret_val = hw->phy.ops.get_cable_length(hw); if (ret_val) return ret_val; ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data); if (ret_val) return ret_val; phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; } else { /* Set values to "undefined" */ phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; phy->local_rx = e1000_1000t_rx_status_undefined; phy->remote_rx = e1000_1000t_rx_status_undefined; } return ret_val; } /** * e1000_get_phy_info_igp - Retrieve igp PHY information * @hw: pointer to the HW structure * * Read PHY status to determine if link is up. If link is up, then * set/determine 10base-T extended distance and polarity correction. Read * PHY port status to determine MDI/MDIx and speed. Based on the speed, * determine on the cable length, local and remote receiver. **/ s32 e1000_get_phy_info_igp(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 data; bool link; DEBUGFUNC("e1000_get_phy_info_igp"); ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); if (ret_val) return ret_val; if (!link) { DEBUGOUT("Phy info is only valid if link is up\n"); return -E1000_ERR_CONFIG; } phy->polarity_correction = true; ret_val = e1000_check_polarity_igp(hw); if (ret_val) return ret_val; ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data); if (ret_val) return ret_val; phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX); if ((data & IGP01E1000_PSSR_SPEED_MASK) == IGP01E1000_PSSR_SPEED_1000MBPS) { ret_val = phy->ops.get_cable_length(hw); if (ret_val) return ret_val; ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data); if (ret_val) return ret_val; phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS) ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS) ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; } else { phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; phy->local_rx = e1000_1000t_rx_status_undefined; phy->remote_rx = e1000_1000t_rx_status_undefined; } return ret_val; } /** * e1000_get_phy_info_ife - Retrieves various IFE PHY states * @hw: pointer to the HW structure * * Populates "phy" structure with various feature states. **/ s32 e1000_get_phy_info_ife(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 data; bool link; DEBUGFUNC("e1000_get_phy_info_ife"); ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); if (ret_val) return ret_val; if (!link) { DEBUGOUT("Phy info is only valid if link is up\n"); return -E1000_ERR_CONFIG; } ret_val = phy->ops.read_reg(hw, IFE_PHY_SPECIAL_CONTROL, &data); if (ret_val) return ret_val; phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE); if (phy->polarity_correction) { ret_val = e1000_check_polarity_ife(hw); if (ret_val) return ret_val; } else { /* Polarity is forced */ phy->cable_polarity = ((data & IFE_PSC_FORCE_POLARITY) ? e1000_rev_polarity_reversed : e1000_rev_polarity_normal); } ret_val = phy->ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, &data); if (ret_val) return ret_val; phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS); /* The following parameters are undefined for 10/100 operation. */ phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; phy->local_rx = e1000_1000t_rx_status_undefined; phy->remote_rx = e1000_1000t_rx_status_undefined; return E1000_SUCCESS; } /** * e1000_phy_sw_reset_generic - PHY software reset * @hw: pointer to the HW structure * * Does a software reset of the PHY by reading the PHY control register and * setting/write the control register reset bit to the PHY. **/ s32 e1000_phy_sw_reset_generic(struct e1000_hw *hw) { s32 ret_val; u16 phy_ctrl; DEBUGFUNC("e1000_phy_sw_reset_generic"); if (!hw->phy.ops.read_reg) return E1000_SUCCESS; ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl); if (ret_val) return ret_val; phy_ctrl |= MII_CR_RESET; ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl); if (ret_val) return ret_val; usec_delay(1); return ret_val; } /** * e1000_phy_hw_reset_generic - PHY hardware reset * @hw: pointer to the HW structure * * Verify the reset block is not blocking us from resetting. Acquire * semaphore (if necessary) and read/set/write the device control reset * bit in the PHY. Wait the appropriate delay time for the device to * reset and release the semaphore (if necessary). **/ s32 e1000_phy_hw_reset_generic(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u32 ctrl; DEBUGFUNC("e1000_phy_hw_reset_generic"); if (phy->ops.check_reset_block) { ret_val = phy->ops.check_reset_block(hw); if (ret_val) return E1000_SUCCESS; } ret_val = phy->ops.acquire(hw); if (ret_val) return ret_val; ctrl = E1000_READ_REG(hw, E1000_CTRL); E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PHY_RST); E1000_WRITE_FLUSH(hw); usec_delay(phy->reset_delay_us); E1000_WRITE_REG(hw, E1000_CTRL, ctrl); E1000_WRITE_FLUSH(hw); usec_delay(150); phy->ops.release(hw); return phy->ops.get_cfg_done(hw); } /** * e1000_get_cfg_done_generic - Generic configuration done * @hw: pointer to the HW structure * * Generic function to wait 10 milli-seconds for configuration to complete * and return success. **/ s32 e1000_get_cfg_done_generic(struct e1000_hw E1000_UNUSEDARG *hw) { DEBUGFUNC("e1000_get_cfg_done_generic"); UNREFERENCED_1PARAMETER(hw); msec_delay_irq(10); return E1000_SUCCESS; } /** * e1000_phy_init_script_igp3 - Inits the IGP3 PHY * @hw: pointer to the HW structure * * Initializes a Intel Gigabit PHY3 when an EEPROM is not present. **/ s32 e1000_phy_init_script_igp3(struct e1000_hw *hw) { DEBUGOUT("Running IGP 3 PHY init script\n"); /* PHY init IGP 3 */ /* Enable rise/fall, 10-mode work in class-A */ hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018); /* Remove all caps from Replica path filter */ hw->phy.ops.write_reg(hw, 0x2F52, 0x0000); /* Bias trimming for ADC, AFE and Driver (Default) */ hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24); /* Increase Hybrid poly bias */ hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0); /* Add 4% to Tx amplitude in Gig mode */ hw->phy.ops.write_reg(hw, 0x2010, 0x10B0); /* Disable trimming (TTT) */ hw->phy.ops.write_reg(hw, 0x2011, 0x0000); /* Poly DC correction to 94.6% + 2% for all channels */ hw->phy.ops.write_reg(hw, 0x20DD, 0x249A); /* ABS DC correction to 95.9% */ hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3); /* BG temp curve trim */ hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE); /* Increasing ADC OPAMP stage 1 currents to max */ hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4); /* Force 1000 ( required for enabling PHY regs configuration) */ hw->phy.ops.write_reg(hw, 0x0000, 0x0140); /* Set upd_freq to 6 */ hw->phy.ops.write_reg(hw, 0x1F30, 0x1606); /* Disable NPDFE */ hw->phy.ops.write_reg(hw, 0x1F31, 0xB814); /* Disable adaptive fixed FFE (Default) */ hw->phy.ops.write_reg(hw, 0x1F35, 0x002A); /* Enable FFE hysteresis */ hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067); /* Fixed FFE for short cable lengths */ hw->phy.ops.write_reg(hw, 0x1F54, 0x0065); /* Fixed FFE for medium cable lengths */ hw->phy.ops.write_reg(hw, 0x1F55, 0x002A); /* Fixed FFE for long cable lengths */ hw->phy.ops.write_reg(hw, 0x1F56, 0x002A); /* Enable Adaptive Clip Threshold */ hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0); /* AHT reset limit to 1 */ hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF); /* Set AHT master delay to 127 msec */ hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC); /* Set scan bits for AHT */ hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF); /* Set AHT Preset bits */ hw->phy.ops.write_reg(hw, 0x1F79, 0x0210); /* Change integ_factor of channel A to 3 */ hw->phy.ops.write_reg(hw, 0x1895, 0x0003); /* Change prop_factor of channels BCD to 8 */ hw->phy.ops.write_reg(hw, 0x1796, 0x0008); /* Change cg_icount + enable integbp for channels BCD */ hw->phy.ops.write_reg(hw, 0x1798, 0xD008); /* Change cg_icount + enable integbp + change prop_factor_master * to 8 for channel A */ hw->phy.ops.write_reg(hw, 0x1898, 0xD918); /* Disable AHT in Slave mode on channel A */ hw->phy.ops.write_reg(hw, 0x187A, 0x0800); /* Enable LPLU and disable AN to 1000 in non-D0a states, * Enable SPD+B2B */ hw->phy.ops.write_reg(hw, 0x0019, 0x008D); /* Enable restart AN on an1000_dis change */ hw->phy.ops.write_reg(hw, 0x001B, 0x2080); /* Enable wh_fifo read clock in 10/100 modes */ hw->phy.ops.write_reg(hw, 0x0014, 0x0045); /* Restart AN, Speed selection is 1000 */ hw->phy.ops.write_reg(hw, 0x0000, 0x1340); return E1000_SUCCESS; } /** * e1000_get_phy_type_from_id - Get PHY type from id * @phy_id: phy_id read from the phy * * Returns the phy type from the id. **/ enum e1000_phy_type e1000_get_phy_type_from_id(u32 phy_id) { enum e1000_phy_type phy_type = e1000_phy_unknown; switch (phy_id) { case M88E1000_I_PHY_ID: case M88E1000_E_PHY_ID: case M88E1111_I_PHY_ID: case M88E1011_I_PHY_ID: case M88E1543_E_PHY_ID: case M88E1512_E_PHY_ID: case I347AT4_E_PHY_ID: case M88E1112_E_PHY_ID: case M88E1340M_E_PHY_ID: phy_type = e1000_phy_m88; break; case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */ phy_type = e1000_phy_igp_2; break; case GG82563_E_PHY_ID: phy_type = e1000_phy_gg82563; break; case IGP03E1000_E_PHY_ID: phy_type = e1000_phy_igp_3; break; case IFE_E_PHY_ID: case IFE_PLUS_E_PHY_ID: case IFE_C_E_PHY_ID: phy_type = e1000_phy_ife; break; case BME1000_E_PHY_ID: case BME1000_E_PHY_ID_R2: phy_type = e1000_phy_bm; break; case I82578_E_PHY_ID: phy_type = e1000_phy_82578; break; case I82577_E_PHY_ID: phy_type = e1000_phy_82577; break; case I82579_E_PHY_ID: phy_type = e1000_phy_82579; break; case I217_E_PHY_ID: phy_type = e1000_phy_i217; break; case I82580_I_PHY_ID: phy_type = e1000_phy_82580; break; case I210_I_PHY_ID: phy_type = e1000_phy_i210; break; default: phy_type = e1000_phy_unknown; break; } return phy_type; } /** * e1000_determine_phy_address - Determines PHY address. * @hw: pointer to the HW structure * * This uses a trial and error method to loop through possible PHY * addresses. It tests each by reading the PHY ID registers and * checking for a match. **/ s32 e1000_determine_phy_address(struct e1000_hw *hw) { u32 phy_addr = 0; u32 i; enum e1000_phy_type phy_type = e1000_phy_unknown; hw->phy.id = phy_type; for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) { hw->phy.addr = phy_addr; i = 0; do { e1000_get_phy_id(hw); phy_type = e1000_get_phy_type_from_id(hw->phy.id); /* If phy_type is valid, break - we found our * PHY address */ if (phy_type != e1000_phy_unknown) return E1000_SUCCESS; msec_delay(1); i++; } while (i < 10); } return -E1000_ERR_PHY_TYPE; } /** * e1000_get_phy_addr_for_bm_page - Retrieve PHY page address * @page: page to access * * Returns the phy address for the page requested. **/ STATIC u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg) { u32 phy_addr = 2; if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31)) phy_addr = 1; return phy_addr; } /** * e1000_write_phy_reg_bm - Write BM PHY register * @hw: pointer to the HW structure * @offset: register offset to write to * @data: data to write at register offset * * Acquires semaphore, if necessary, then writes the data to PHY register * at the offset. Release any acquired semaphores before exiting. **/ s32 e1000_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data) { s32 ret_val; u32 page = offset >> IGP_PAGE_SHIFT; DEBUGFUNC("e1000_write_phy_reg_bm"); ret_val = hw->phy.ops.acquire(hw); if (ret_val) return ret_val; /* Page 800 works differently than the rest so it has its own func */ if (page == BM_WUC_PAGE) { ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data, false, false); goto release; } hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset); if (offset > MAX_PHY_MULTI_PAGE_REG) { u32 page_shift, page_select; /* Page select is register 31 for phy address 1 and 22 for * phy address 2 and 3. Page select is shifted only for * phy address 1. */ if (hw->phy.addr == 1) { page_shift = IGP_PAGE_SHIFT; page_select = IGP01E1000_PHY_PAGE_SELECT; } else { page_shift = 0; page_select = BM_PHY_PAGE_SELECT; } /* Page is shifted left, PHY expects (page x 32) */ ret_val = e1000_write_phy_reg_mdic(hw, page_select, (page << page_shift)); if (ret_val) goto release; } ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, data); release: hw->phy.ops.release(hw); return ret_val; } /** * e1000_read_phy_reg_bm - Read BM PHY register * @hw: pointer to the HW structure * @offset: register offset to be read * @data: pointer to the read data * * Acquires semaphore, if necessary, then reads the PHY register at offset * and storing the retrieved information in data. Release any acquired * semaphores before exiting. **/ s32 e1000_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data) { s32 ret_val; u32 page = offset >> IGP_PAGE_SHIFT; DEBUGFUNC("e1000_read_phy_reg_bm"); ret_val = hw->phy.ops.acquire(hw); if (ret_val) return ret_val; /* Page 800 works differently than the rest so it has its own func */ if (page == BM_WUC_PAGE) { ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data, true, false); goto release; } hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset); if (offset > MAX_PHY_MULTI_PAGE_REG) { u32 page_shift, page_select; /* Page select is register 31 for phy address 1 and 22 for * phy address 2 and 3. Page select is shifted only for * phy address 1. */ if (hw->phy.addr == 1) { page_shift = IGP_PAGE_SHIFT; page_select = IGP01E1000_PHY_PAGE_SELECT; } else { page_shift = 0; page_select = BM_PHY_PAGE_SELECT; } /* Page is shifted left, PHY expects (page x 32) */ ret_val = e1000_write_phy_reg_mdic(hw, page_select, (page << page_shift)); if (ret_val) goto release; } ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, data); release: hw->phy.ops.release(hw); return ret_val; } /** * e1000_read_phy_reg_bm2 - Read BM PHY register * @hw: pointer to the HW structure * @offset: register offset to be read * @data: pointer to the read data * * Acquires semaphore, if necessary, then reads the PHY register at offset * and storing the retrieved information in data. Release any acquired * semaphores before exiting. **/ s32 e1000_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data) { s32 ret_val; u16 page = (u16)(offset >> IGP_PAGE_SHIFT); DEBUGFUNC("e1000_read_phy_reg_bm2"); ret_val = hw->phy.ops.acquire(hw); if (ret_val) return ret_val; /* Page 800 works differently than the rest so it has its own func */ if (page == BM_WUC_PAGE) { ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data, true, false); goto release; } hw->phy.addr = 1; if (offset > MAX_PHY_MULTI_PAGE_REG) { /* Page is shifted left, PHY expects (page x 32) */ ret_val = e1000_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT, page); if (ret_val) goto release; } ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, data); release: hw->phy.ops.release(hw); return ret_val; } /** * e1000_write_phy_reg_bm2 - Write BM PHY register * @hw: pointer to the HW structure * @offset: register offset to write to * @data: data to write at register offset * * Acquires semaphore, if necessary, then writes the data to PHY register * at the offset. Release any acquired semaphores before exiting. **/ s32 e1000_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data) { s32 ret_val; u16 page = (u16)(offset >> IGP_PAGE_SHIFT); DEBUGFUNC("e1000_write_phy_reg_bm2"); ret_val = hw->phy.ops.acquire(hw); if (ret_val) return ret_val; /* Page 800 works differently than the rest so it has its own func */ if (page == BM_WUC_PAGE) { ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data, false, false); goto release; } hw->phy.addr = 1; if (offset > MAX_PHY_MULTI_PAGE_REG) { /* Page is shifted left, PHY expects (page x 32) */ ret_val = e1000_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT, page); if (ret_val) goto release; } ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, data); release: hw->phy.ops.release(hw); return ret_val; } /** * e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers * @hw: pointer to the HW structure * @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG * * Assumes semaphore already acquired and phy_reg points to a valid memory * address to store contents of the BM_WUC_ENABLE_REG register. **/ s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg) { s32 ret_val; u16 temp; DEBUGFUNC("e1000_enable_phy_wakeup_reg_access_bm"); if (!phy_reg) return -E1000_ERR_PARAM; /* All page select, port ctrl and wakeup registers use phy address 1 */ hw->phy.addr = 1; /* Select Port Control Registers page */ ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT)); if (ret_val) { DEBUGOUT("Could not set Port Control page\n"); return ret_val; } ret_val = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg); if (ret_val) { DEBUGOUT2("Could not read PHY register %d.%d\n", BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG); return ret_val; } /* Enable both PHY wakeup mode and Wakeup register page writes. * Prevent a power state change by disabling ME and Host PHY wakeup. */ temp = *phy_reg; temp |= BM_WUC_ENABLE_BIT; temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT); ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp); if (ret_val) { DEBUGOUT2("Could not write PHY register %d.%d\n", BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG); return ret_val; } /* Select Host Wakeup Registers page - caller now able to write * registers on the Wakeup registers page */ return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT)); } /** * e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs * @hw: pointer to the HW structure * @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG * * Restore BM_WUC_ENABLE_REG to its original value. * * Assumes semaphore already acquired and *phy_reg is the contents of the * BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by * caller. **/ s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg) { s32 ret_val; DEBUGFUNC("e1000_disable_phy_wakeup_reg_access_bm"); if (!phy_reg) return -E1000_ERR_PARAM; /* Select Port Control Registers page */ ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT)); if (ret_val) { DEBUGOUT("Could not set Port Control page\n"); return ret_val; } /* Restore 769.17 to its original value */ ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg); if (ret_val) DEBUGOUT2("Could not restore PHY register %d.%d\n", BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG); return ret_val; } /** * e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register * @hw: pointer to the HW structure * @offset: register offset to be read or written * @data: pointer to the data to read or write * @read: determines if operation is read or write * @page_set: BM_WUC_PAGE already set and access enabled * * Read the PHY register at offset and store the retrieved information in * data, or write data to PHY register at offset. Note the procedure to * access the PHY wakeup registers is different than reading the other PHY * registers. It works as such: * 1) Set 769.17.2 (page 769, register 17, bit 2) = 1 * 2) Set page to 800 for host (801 if we were manageability) * 3) Write the address using the address opcode (0x11) * 4) Read or write the data using the data opcode (0x12) * 5) Restore 769.17.2 to its original value * * Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and * step 5 is done by e1000_disable_phy_wakeup_reg_access_bm(). * * Assumes semaphore is already acquired. When page_set==true, assumes * the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack * is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()). **/ STATIC s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data, bool read, bool page_set) { s32 ret_val; u16 reg = BM_PHY_REG_NUM(offset); u16 page = BM_PHY_REG_PAGE(offset); u16 phy_reg = 0; DEBUGFUNC("e1000_access_phy_wakeup_reg_bm"); /* Gig must be disabled for MDIO accesses to Host Wakeup reg page */ if ((hw->mac.type == e1000_pchlan) && (!(E1000_READ_REG(hw, E1000_PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE))) DEBUGOUT1("Attempting to access page %d while gig enabled.\n", page); if (!page_set) { /* Enable access to PHY wakeup registers */ ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg); if (ret_val) { DEBUGOUT("Could not enable PHY wakeup reg access\n"); return ret_val; } } DEBUGOUT2("Accessing PHY page %d reg 0x%x\n", page, reg); /* Write the Wakeup register page offset value using opcode 0x11 */ ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg); if (ret_val) { DEBUGOUT1("Could not write address opcode to page %d\n", page); return ret_val; } if (read) { /* Read the Wakeup register page value using opcode 0x12 */ ret_val = e1000_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE, data); } else { /* Write the Wakeup register page value using opcode 0x12 */ ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE, *data); } if (ret_val) { DEBUGOUT2("Could not access PHY reg %d.%d\n", page, reg); return ret_val; } if (!page_set) ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg); return ret_val; } /** * e1000_power_up_phy_copper - Restore copper link in case of PHY power down * @hw: pointer to the HW structure * * In the case of a PHY power down to save power, or to turn off link during a * driver unload, or wake on lan is not enabled, restore the link to previous * settings. **/ void e1000_power_up_phy_copper(struct e1000_hw *hw) { u16 mii_reg = 0; /* The PHY will retain its settings across a power down/up cycle */ hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg); mii_reg &= ~MII_CR_POWER_DOWN; hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg); } /** * e1000_power_down_phy_copper - Restore copper link in case of PHY power down * @hw: pointer to the HW structure * * In the case of a PHY power down to save power, or to turn off link during a * driver unload, or wake on lan is not enabled, restore the link to previous * settings. **/ void e1000_power_down_phy_copper(struct e1000_hw *hw) { u16 mii_reg = 0; /* The PHY will retain its settings across a power down/up cycle */ hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg); mii_reg |= MII_CR_POWER_DOWN; hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg); msec_delay(1); } /** * __e1000_read_phy_reg_hv - Read HV PHY register * @hw: pointer to the HW structure * @offset: register offset to be read * @data: pointer to the read data * @locked: semaphore has already been acquired or not * * Acquires semaphore, if necessary, then reads the PHY register at offset * and stores the retrieved information in data. Release any acquired * semaphore before exiting. **/ STATIC s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data, bool locked, bool page_set) { s32 ret_val; u16 page = BM_PHY_REG_PAGE(offset); u16 reg = BM_PHY_REG_NUM(offset); u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page); DEBUGFUNC("__e1000_read_phy_reg_hv"); if (!locked) { ret_val = hw->phy.ops.acquire(hw); if (ret_val) return ret_val; } /* Page 800 works differently than the rest so it has its own func */ if (page == BM_WUC_PAGE) { ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data, true, page_set); goto out; } if (page > 0 && page < HV_INTC_FC_PAGE_START) { ret_val = e1000_access_phy_debug_regs_hv(hw, offset, data, true); goto out; } if (!page_set) { if (page == HV_INTC_FC_PAGE_START) page = 0; if (reg > MAX_PHY_MULTI_PAGE_REG) { /* Page is shifted left, PHY expects (page x 32) */ ret_val = e1000_set_page_igp(hw, (page << IGP_PAGE_SHIFT)); hw->phy.addr = phy_addr; if (ret_val) goto out; } } DEBUGOUT3("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page, page << IGP_PAGE_SHIFT, reg); ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, data); out: if (!locked) hw->phy.ops.release(hw); return ret_val; } /** * e1000_read_phy_reg_hv - Read HV PHY register * @hw: pointer to the HW structure * @offset: register offset to be read * @data: pointer to the read data * * Acquires semaphore then reads the PHY register at offset and stores * the retrieved information in data. Release the acquired semaphore * before exiting. **/ s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data) { return __e1000_read_phy_reg_hv(hw, offset, data, false, false); } /** * e1000_read_phy_reg_hv_locked - Read HV PHY register * @hw: pointer to the HW structure * @offset: register offset to be read * @data: pointer to the read data * * Reads the PHY register at offset and stores the retrieved information * in data. Assumes semaphore already acquired. **/ s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data) { return __e1000_read_phy_reg_hv(hw, offset, data, true, false); } /** * e1000_read_phy_reg_page_hv - Read HV PHY register * @hw: pointer to the HW structure * @offset: register offset to write to * @data: data to write at register offset * * Reads the PHY register at offset and stores the retrieved information * in data. Assumes semaphore already acquired and page already set. **/ s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data) { return __e1000_read_phy_reg_hv(hw, offset, data, true, true); } /** * __e1000_write_phy_reg_hv - Write HV PHY register * @hw: pointer to the HW structure * @offset: register offset to write to * @data: data to write at register offset * @locked: semaphore has already been acquired or not * * Acquires semaphore, if necessary, then writes the data to PHY register * at the offset. Release any acquired semaphores before exiting. **/ STATIC s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data, bool locked, bool page_set) { s32 ret_val; u16 page = BM_PHY_REG_PAGE(offset); u16 reg = BM_PHY_REG_NUM(offset); u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page); DEBUGFUNC("__e1000_write_phy_reg_hv"); if (!locked) { ret_val = hw->phy.ops.acquire(hw); if (ret_val) return ret_val; } /* Page 800 works differently than the rest so it has its own func */ if (page == BM_WUC_PAGE) { ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data, false, page_set); goto out; } if (page > 0 && page < HV_INTC_FC_PAGE_START) { ret_val = e1000_access_phy_debug_regs_hv(hw, offset, &data, false); goto out; } if (!page_set) { if (page == HV_INTC_FC_PAGE_START) page = 0; /* Workaround MDIO accesses being disabled after entering IEEE * Power Down (when bit 11 of the PHY Control register is set) */ if ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision >= 1) && (hw->phy.addr == 2) && !(MAX_PHY_REG_ADDRESS & reg) && (data & (1 << 11))) { u16 data2 = 0x7EFF; ret_val = e1000_access_phy_debug_regs_hv(hw, (1 << 6) | 0x3, &data2, false); if (ret_val) goto out; } if (reg > MAX_PHY_MULTI_PAGE_REG) { /* Page is shifted left, PHY expects (page x 32) */ ret_val = e1000_set_page_igp(hw, (page << IGP_PAGE_SHIFT)); hw->phy.addr = phy_addr; if (ret_val) goto out; } } DEBUGOUT3("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page, page << IGP_PAGE_SHIFT, reg); ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, data); out: if (!locked) hw->phy.ops.release(hw); return ret_val; } /** * e1000_write_phy_reg_hv - Write HV PHY register * @hw: pointer to the HW structure * @offset: register offset to write to * @data: data to write at register offset * * Acquires semaphore then writes the data to PHY register at the offset. * Release the acquired semaphores before exiting. **/ s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data) { return __e1000_write_phy_reg_hv(hw, offset, data, false, false); } /** * e1000_write_phy_reg_hv_locked - Write HV PHY register * @hw: pointer to the HW structure * @offset: register offset to write to * @data: data to write at register offset * * Writes the data to PHY register at the offset. Assumes semaphore * already acquired. **/ s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data) { return __e1000_write_phy_reg_hv(hw, offset, data, true, false); } /** * e1000_write_phy_reg_page_hv - Write HV PHY register * @hw: pointer to the HW structure * @offset: register offset to write to * @data: data to write at register offset * * Writes the data to PHY register at the offset. Assumes semaphore * already acquired and page already set. **/ s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data) { return __e1000_write_phy_reg_hv(hw, offset, data, true, true); } /** * e1000_get_phy_addr_for_hv_page - Get PHY adrress based on page * @page: page to be accessed **/ STATIC u32 e1000_get_phy_addr_for_hv_page(u32 page) { u32 phy_addr = 2; if (page >= HV_INTC_FC_PAGE_START) phy_addr = 1; return phy_addr; } /** * e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers * @hw: pointer to the HW structure * @offset: register offset to be read or written * @data: pointer to the data to be read or written * @read: determines if operation is read or write * * Reads the PHY register at offset and stores the retreived information * in data. Assumes semaphore already acquired. Note that the procedure * to access these regs uses the address port and data port to read/write. * These accesses done with PHY address 2 and without using pages. **/ STATIC s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset, u16 *data, bool read) { s32 ret_val; u32 addr_reg; u32 data_reg; DEBUGFUNC("e1000_access_phy_debug_regs_hv"); /* This takes care of the difference with desktop vs mobile phy */ addr_reg = ((hw->phy.type == e1000_phy_82578) ? I82578_ADDR_REG : I82577_ADDR_REG); data_reg = addr_reg + 1; /* All operations in this function are phy address 2 */ hw->phy.addr = 2; /* masking with 0x3F to remove the page from offset */ ret_val = e1000_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F); if (ret_val) { DEBUGOUT("Could not write the Address Offset port register\n"); return ret_val; } /* Read or write the data value next */ if (read) ret_val = e1000_read_phy_reg_mdic(hw, data_reg, data); else ret_val = e1000_write_phy_reg_mdic(hw, data_reg, *data); if (ret_val) DEBUGOUT("Could not access the Data port register\n"); return ret_val; } /** * e1000_link_stall_workaround_hv - Si workaround * @hw: pointer to the HW structure * * This function works around a Si bug where the link partner can get * a link up indication before the PHY does. If small packets are sent * by the link partner they can be placed in the packet buffer without * being properly accounted for by the PHY and will stall preventing * further packets from being received. The workaround is to clear the * packet buffer after the PHY detects link up. **/ s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw) { s32 ret_val = E1000_SUCCESS; u16 data; DEBUGFUNC("e1000_link_stall_workaround_hv"); if (hw->phy.type != e1000_phy_82578) return E1000_SUCCESS; /* Do not apply workaround if in PHY loopback bit 14 set */ hw->phy.ops.read_reg(hw, PHY_CONTROL, &data); if (data & PHY_CONTROL_LB) return E1000_SUCCESS; /* check if link is up and at 1Gbps */ ret_val = hw->phy.ops.read_reg(hw, BM_CS_STATUS, &data); if (ret_val) return ret_val; data &= (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED | BM_CS_STATUS_SPEED_MASK); if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED | BM_CS_STATUS_SPEED_1000)) return E1000_SUCCESS; msec_delay(200); /* flush the packets in the fifo buffer */ ret_val = hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL, (HV_MUX_DATA_CTRL_GEN_TO_MAC | HV_MUX_DATA_CTRL_FORCE_SPEED)); if (ret_val) return ret_val; return hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC); } /** * e1000_check_polarity_82577 - Checks the polarity. * @hw: pointer to the HW structure * * Success returns 0, Failure returns -E1000_ERR_PHY (-2) * * Polarity is determined based on the PHY specific status register. **/ s32 e1000_check_polarity_82577(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 data; DEBUGFUNC("e1000_check_polarity_82577"); ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data); if (!ret_val) phy->cable_polarity = ((data & I82577_PHY_STATUS2_REV_POLARITY) ? e1000_rev_polarity_reversed : e1000_rev_polarity_normal); return ret_val; } /** * e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY * @hw: pointer to the HW structure * * Calls the PHY setup function to force speed and duplex. **/ s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 phy_data; bool link; DEBUGFUNC("e1000_phy_force_speed_duplex_82577"); ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data); if (ret_val) return ret_val; e1000_phy_force_speed_duplex_setup(hw, &phy_data); ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data); if (ret_val) return ret_val; usec_delay(1); if (phy->autoneg_wait_to_complete) { DEBUGOUT("Waiting for forced speed/duplex link on 82577 phy\n"); ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 100000, &link); if (ret_val) return ret_val; if (!link) DEBUGOUT("Link taking longer than expected.\n"); /* Try once more */ ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 100000, &link); } return ret_val; } /** * e1000_get_phy_info_82577 - Retrieve I82577 PHY information * @hw: pointer to the HW structure * * Read PHY status to determine if link is up. If link is up, then * set/determine 10base-T extended distance and polarity correction. Read * PHY port status to determine MDI/MDIx and speed. Based on the speed, * determine on the cable length, local and remote receiver. **/ s32 e1000_get_phy_info_82577(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 data; bool link; DEBUGFUNC("e1000_get_phy_info_82577"); ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); if (ret_val) return ret_val; if (!link) { DEBUGOUT("Phy info is only valid if link is up\n"); return -E1000_ERR_CONFIG; } phy->polarity_correction = true; ret_val = e1000_check_polarity_82577(hw); if (ret_val) return ret_val; ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data); if (ret_val) return ret_val; phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX); if ((data & I82577_PHY_STATUS2_SPEED_MASK) == I82577_PHY_STATUS2_SPEED_1000MBPS) { ret_val = hw->phy.ops.get_cable_length(hw); if (ret_val) return ret_val; ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data); if (ret_val) return ret_val; phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS) ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS) ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; } else { phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; phy->local_rx = e1000_1000t_rx_status_undefined; phy->remote_rx = e1000_1000t_rx_status_undefined; } return E1000_SUCCESS; } /** * e1000_get_cable_length_82577 - Determine cable length for 82577 PHY * @hw: pointer to the HW structure * * Reads the diagnostic status register and verifies result is valid before * placing it in the phy_cable_length field. **/ s32 e1000_get_cable_length_82577(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 phy_data, length; DEBUGFUNC("e1000_get_cable_length_82577"); ret_val = phy->ops.read_reg(hw, I82577_PHY_DIAG_STATUS, &phy_data); if (ret_val) return ret_val; length = ((phy_data & I82577_DSTATUS_CABLE_LENGTH) >> I82577_DSTATUS_CABLE_LENGTH_SHIFT); if (length == E1000_CABLE_LENGTH_UNDEFINED) return -E1000_ERR_PHY; phy->cable_length = length; return E1000_SUCCESS; } /** * e1000_write_phy_reg_gs40g - Write GS40G PHY register * @hw: pointer to the HW structure * @offset: register offset to write to * @data: data to write at register offset * * Acquires semaphore, if necessary, then writes the data to PHY register * at the offset. Release any acquired semaphores before exiting. **/ s32 e1000_write_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 data) { s32 ret_val; u16 page = offset >> GS40G_PAGE_SHIFT; DEBUGFUNC("e1000_write_phy_reg_gs40g"); offset = offset & GS40G_OFFSET_MASK; ret_val = hw->phy.ops.acquire(hw); if (ret_val) return ret_val; ret_val = e1000_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page); if (ret_val) goto release; ret_val = e1000_write_phy_reg_mdic(hw, offset, data); release: hw->phy.ops.release(hw); return ret_val; } /** * e1000_read_phy_reg_gs40g - Read GS40G PHY register * @hw: pointer to the HW structure * @offset: lower half is register offset to read to * upper half is page to use. * @data: data to read at register offset * * Acquires semaphore, if necessary, then reads the data in the PHY register * at the offset. Release any acquired semaphores before exiting. **/ s32 e1000_read_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 *data) { s32 ret_val; u16 page = offset >> GS40G_PAGE_SHIFT; DEBUGFUNC("e1000_read_phy_reg_gs40g"); offset = offset & GS40G_OFFSET_MASK; ret_val = hw->phy.ops.acquire(hw); if (ret_val) return ret_val; ret_val = e1000_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page); if (ret_val) goto release; ret_val = e1000_read_phy_reg_mdic(hw, offset, data); release: hw->phy.ops.release(hw); return ret_val; } /** * e1000_read_phy_reg_mphy - Read mPHY control register * @hw: pointer to the HW structure * @address: address to be read * @data: pointer to the read data * * Reads the mPHY control register in the PHY at offset and stores the * information read to data. **/ s32 e1000_read_phy_reg_mphy(struct e1000_hw *hw, u32 address, u32 *data) { u32 mphy_ctrl = 0; bool locked = false; bool ready; DEBUGFUNC("e1000_read_phy_reg_mphy"); /* Check if mPHY is ready to read/write operations */ ready = e1000_is_mphy_ready(hw); if (!ready) return -E1000_ERR_PHY; /* Check if mPHY access is disabled and enable it if so */ mphy_ctrl = E1000_READ_REG(hw, E1000_MPHY_ADDR_CTRL); if (mphy_ctrl & E1000_MPHY_DIS_ACCESS) { locked = true; ready = e1000_is_mphy_ready(hw); if (!ready) return -E1000_ERR_PHY; mphy_ctrl |= E1000_MPHY_ENA_ACCESS; E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, mphy_ctrl); } /* Set the address that we want to read */ ready = e1000_is_mphy_ready(hw); if (!ready) return -E1000_ERR_PHY; /* We mask address, because we want to use only current lane */ mphy_ctrl = (mphy_ctrl & ~E1000_MPHY_ADDRESS_MASK & ~E1000_MPHY_ADDRESS_FNC_OVERRIDE) | (address & E1000_MPHY_ADDRESS_MASK); E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, mphy_ctrl); /* Read data from the address */ ready = e1000_is_mphy_ready(hw); if (!ready) return -E1000_ERR_PHY; *data = E1000_READ_REG(hw, E1000_MPHY_DATA); /* Disable access to mPHY if it was originally disabled */ if (locked) { ready = e1000_is_mphy_ready(hw); if (!ready) return -E1000_ERR_PHY; E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, E1000_MPHY_DIS_ACCESS); } return E1000_SUCCESS; } /** * e1000_write_phy_reg_mphy - Write mPHY control register * @hw: pointer to the HW structure * @address: address to write to * @data: data to write to register at offset * @line_override: used when we want to use different line than default one * * Writes data to mPHY control register. **/ s32 e1000_write_phy_reg_mphy(struct e1000_hw *hw, u32 address, u32 data, bool line_override) { u32 mphy_ctrl = 0; bool locked = false; bool ready; DEBUGFUNC("e1000_write_phy_reg_mphy"); /* Check if mPHY is ready to read/write operations */ ready = e1000_is_mphy_ready(hw); if (!ready) return -E1000_ERR_PHY; /* Check if mPHY access is disabled and enable it if so */ mphy_ctrl = E1000_READ_REG(hw, E1000_MPHY_ADDR_CTRL); if (mphy_ctrl & E1000_MPHY_DIS_ACCESS) { locked = true; ready = e1000_is_mphy_ready(hw); if (!ready) return -E1000_ERR_PHY; mphy_ctrl |= E1000_MPHY_ENA_ACCESS; E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, mphy_ctrl); } /* Set the address that we want to read */ ready = e1000_is_mphy_ready(hw); if (!ready) return -E1000_ERR_PHY; /* We mask address, because we want to use only current lane */ if (line_override) mphy_ctrl |= E1000_MPHY_ADDRESS_FNC_OVERRIDE; else mphy_ctrl &= ~E1000_MPHY_ADDRESS_FNC_OVERRIDE; mphy_ctrl = (mphy_ctrl & ~E1000_MPHY_ADDRESS_MASK) | (address & E1000_MPHY_ADDRESS_MASK); E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, mphy_ctrl); /* Read data from the address */ ready = e1000_is_mphy_ready(hw); if (!ready) return -E1000_ERR_PHY; E1000_WRITE_REG(hw, E1000_MPHY_DATA, data); /* Disable access to mPHY if it was originally disabled */ if (locked) { ready = e1000_is_mphy_ready(hw); if (!ready) return -E1000_ERR_PHY; E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, E1000_MPHY_DIS_ACCESS); } return E1000_SUCCESS; } /** * e1000_is_mphy_ready - Check if mPHY control register is not busy * @hw: pointer to the HW structure * * Returns mPHY control register status. **/ bool e1000_is_mphy_ready(struct e1000_hw *hw) { u16 retry_count = 0; u32 mphy_ctrl = 0; bool ready = false; while (retry_count < 2) { mphy_ctrl = E1000_READ_REG(hw, E1000_MPHY_ADDR_CTRL); if (mphy_ctrl & E1000_MPHY_BUSY) { usec_delay(20); retry_count++; continue; } ready = true; break; } if (!ready) DEBUGOUT("ERROR READING mPHY control register, phy is busy.\n"); return ready; }