/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2001 - 2015 Intel Corporation */ #include "e1000_api.h" STATIC s32 e1000_validate_mdi_setting_generic(struct e1000_hw *hw); STATIC void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw); STATIC void e1000_config_collision_dist_generic(struct e1000_hw *hw); STATIC int e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index); /** * e1000_init_mac_ops_generic - Initialize MAC function pointers * @hw: pointer to the HW structure * * Setups up the function pointers to no-op functions **/ void e1000_init_mac_ops_generic(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; DEBUGFUNC("e1000_init_mac_ops_generic"); /* General Setup */ mac->ops.init_params = e1000_null_ops_generic; mac->ops.init_hw = e1000_null_ops_generic; mac->ops.reset_hw = e1000_null_ops_generic; mac->ops.setup_physical_interface = e1000_null_ops_generic; mac->ops.get_bus_info = e1000_null_ops_generic; mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pcie; mac->ops.read_mac_addr = e1000_read_mac_addr_generic; mac->ops.config_collision_dist = e1000_config_collision_dist_generic; mac->ops.clear_hw_cntrs = e1000_null_mac_generic; /* LED */ mac->ops.cleanup_led = e1000_null_ops_generic; mac->ops.setup_led = e1000_null_ops_generic; mac->ops.blink_led = e1000_null_ops_generic; mac->ops.led_on = e1000_null_ops_generic; mac->ops.led_off = e1000_null_ops_generic; /* LINK */ mac->ops.setup_link = e1000_null_ops_generic; mac->ops.get_link_up_info = e1000_null_link_info; mac->ops.check_for_link = e1000_null_ops_generic; /* Management */ mac->ops.check_mng_mode = e1000_null_mng_mode; /* VLAN, MC, etc. */ mac->ops.update_mc_addr_list = e1000_null_update_mc; mac->ops.clear_vfta = e1000_null_mac_generic; mac->ops.write_vfta = e1000_null_write_vfta; mac->ops.rar_set = e1000_rar_set_generic; mac->ops.validate_mdi_setting = e1000_validate_mdi_setting_generic; } /** * e1000_null_ops_generic - No-op function, returns 0 * @hw: pointer to the HW structure **/ s32 e1000_null_ops_generic(struct e1000_hw E1000_UNUSEDARG *hw) { DEBUGFUNC("e1000_null_ops_generic"); UNREFERENCED_1PARAMETER(hw); return E1000_SUCCESS; } /** * e1000_null_mac_generic - No-op function, return void * @hw: pointer to the HW structure **/ void e1000_null_mac_generic(struct e1000_hw E1000_UNUSEDARG *hw) { DEBUGFUNC("e1000_null_mac_generic"); UNREFERENCED_1PARAMETER(hw); return; } /** * e1000_null_link_info - No-op function, return 0 * @hw: pointer to the HW structure **/ s32 e1000_null_link_info(struct e1000_hw E1000_UNUSEDARG *hw, u16 E1000_UNUSEDARG *s, u16 E1000_UNUSEDARG *d) { DEBUGFUNC("e1000_null_link_info"); UNREFERENCED_3PARAMETER(hw, s, d); return E1000_SUCCESS; } /** * e1000_null_mng_mode - No-op function, return false * @hw: pointer to the HW structure **/ bool e1000_null_mng_mode(struct e1000_hw E1000_UNUSEDARG *hw) { DEBUGFUNC("e1000_null_mng_mode"); UNREFERENCED_1PARAMETER(hw); return false; } /** * e1000_null_update_mc - No-op function, return void * @hw: pointer to the HW structure **/ void e1000_null_update_mc(struct e1000_hw E1000_UNUSEDARG *hw, u8 E1000_UNUSEDARG *h, u32 E1000_UNUSEDARG a) { DEBUGFUNC("e1000_null_update_mc"); UNREFERENCED_3PARAMETER(hw, h, a); return; } /** * e1000_null_write_vfta - No-op function, return void * @hw: pointer to the HW structure **/ void e1000_null_write_vfta(struct e1000_hw E1000_UNUSEDARG *hw, u32 E1000_UNUSEDARG a, u32 E1000_UNUSEDARG b) { DEBUGFUNC("e1000_null_write_vfta"); UNREFERENCED_3PARAMETER(hw, a, b); return; } /** * e1000_null_rar_set - No-op function, return 0 * @hw: pointer to the HW structure **/ int e1000_null_rar_set(struct e1000_hw E1000_UNUSEDARG *hw, u8 E1000_UNUSEDARG *h, u32 E1000_UNUSEDARG a) { DEBUGFUNC("e1000_null_rar_set"); UNREFERENCED_3PARAMETER(hw, h, a); return E1000_SUCCESS; } /** * e1000_get_bus_info_pci_generic - Get PCI(x) bus information * @hw: pointer to the HW structure * * Determines and stores the system bus information for a particular * network interface. The following bus information is determined and stored: * bus speed, bus width, type (PCI/PCIx), and PCI(-x) function. **/ s32 e1000_get_bus_info_pci_generic(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; struct e1000_bus_info *bus = &hw->bus; u32 status = E1000_READ_REG(hw, E1000_STATUS); s32 ret_val = E1000_SUCCESS; DEBUGFUNC("e1000_get_bus_info_pci_generic"); /* PCI or PCI-X? */ bus->type = (status & E1000_STATUS_PCIX_MODE) ? e1000_bus_type_pcix : e1000_bus_type_pci; /* Bus speed */ if (bus->type == e1000_bus_type_pci) { bus->speed = (status & E1000_STATUS_PCI66) ? e1000_bus_speed_66 : e1000_bus_speed_33; } else { switch (status & E1000_STATUS_PCIX_SPEED) { case E1000_STATUS_PCIX_SPEED_66: bus->speed = e1000_bus_speed_66; break; case E1000_STATUS_PCIX_SPEED_100: bus->speed = e1000_bus_speed_100; break; case E1000_STATUS_PCIX_SPEED_133: bus->speed = e1000_bus_speed_133; break; default: bus->speed = e1000_bus_speed_reserved; break; } } /* Bus width */ bus->width = (status & E1000_STATUS_BUS64) ? e1000_bus_width_64 : e1000_bus_width_32; /* Which PCI(-X) function? */ mac->ops.set_lan_id(hw); return ret_val; } /** * e1000_get_bus_info_pcie_generic - Get PCIe bus information * @hw: pointer to the HW structure * * Determines and stores the system bus information for a particular * network interface. The following bus information is determined and stored: * bus speed, bus width, type (PCIe), and PCIe function. **/ s32 e1000_get_bus_info_pcie_generic(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; struct e1000_bus_info *bus = &hw->bus; s32 ret_val; u16 pcie_link_status; DEBUGFUNC("e1000_get_bus_info_pcie_generic"); bus->type = e1000_bus_type_pci_express; ret_val = e1000_read_pcie_cap_reg(hw, PCIE_LINK_STATUS, &pcie_link_status); if (ret_val) { bus->width = e1000_bus_width_unknown; bus->speed = e1000_bus_speed_unknown; } else { switch (pcie_link_status & PCIE_LINK_SPEED_MASK) { case PCIE_LINK_SPEED_2500: bus->speed = e1000_bus_speed_2500; break; case PCIE_LINK_SPEED_5000: bus->speed = e1000_bus_speed_5000; break; default: bus->speed = e1000_bus_speed_unknown; break; } bus->width = (enum e1000_bus_width)((pcie_link_status & PCIE_LINK_WIDTH_MASK) >> PCIE_LINK_WIDTH_SHIFT); } mac->ops.set_lan_id(hw); return E1000_SUCCESS; } /** * e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices * * @hw: pointer to the HW structure * * Determines the LAN function id by reading memory-mapped registers * and swaps the port value if requested. **/ STATIC void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw) { struct e1000_bus_info *bus = &hw->bus; u32 reg; /* The status register reports the correct function number * for the device regardless of function swap state. */ reg = E1000_READ_REG(hw, E1000_STATUS); bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT; } /** * e1000_set_lan_id_multi_port_pci - Set LAN id for PCI multiple port devices * @hw: pointer to the HW structure * * Determines the LAN function id by reading PCI config space. **/ void e1000_set_lan_id_multi_port_pci(struct e1000_hw *hw) { struct e1000_bus_info *bus = &hw->bus; u16 pci_header_type; u32 status; e1000_read_pci_cfg(hw, PCI_HEADER_TYPE_REGISTER, &pci_header_type); if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC) { status = E1000_READ_REG(hw, E1000_STATUS); bus->func = (status & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT; } else { bus->func = 0; } } /** * e1000_set_lan_id_single_port - Set LAN id for a single port device * @hw: pointer to the HW structure * * Sets the LAN function id to zero for a single port device. **/ void e1000_set_lan_id_single_port(struct e1000_hw *hw) { struct e1000_bus_info *bus = &hw->bus; bus->func = 0; } /** * e1000_clear_vfta_generic - Clear VLAN filter table * @hw: pointer to the HW structure * * Clears the register array which contains the VLAN filter table by * setting all the values to 0. **/ void e1000_clear_vfta_generic(struct e1000_hw *hw) { u32 offset; DEBUGFUNC("e1000_clear_vfta_generic"); for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0); E1000_WRITE_FLUSH(hw); } } /** * e1000_write_vfta_generic - Write value to VLAN filter table * @hw: pointer to the HW structure * @offset: register offset in VLAN filter table * @value: register value written to VLAN filter table * * Writes value at the given offset in the register array which stores * the VLAN filter table. **/ void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value) { DEBUGFUNC("e1000_write_vfta_generic"); E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value); E1000_WRITE_FLUSH(hw); } /** * e1000_init_rx_addrs_generic - Initialize receive address's * @hw: pointer to the HW structure * @rar_count: receive address registers * * Setup the receive address registers by setting the base receive address * register to the devices MAC address and clearing all the other receive * address registers to 0. **/ void e1000_init_rx_addrs_generic(struct e1000_hw *hw, u16 rar_count) { u32 i; u8 mac_addr[ETH_ADDR_LEN] = {0}; DEBUGFUNC("e1000_init_rx_addrs_generic"); /* Setup the receive address */ DEBUGOUT("Programming MAC Address into RAR[0]\n"); hw->mac.ops.rar_set(hw, hw->mac.addr, 0); /* Zero out the other (rar_entry_count - 1) receive addresses */ DEBUGOUT1("Clearing RAR[1-%u]\n", rar_count-1); for (i = 1; i < rar_count; i++) hw->mac.ops.rar_set(hw, mac_addr, i); } /** * e1000_check_alt_mac_addr_generic - Check for alternate MAC addr * @hw: pointer to the HW structure * * Checks the nvm for an alternate MAC address. An alternate MAC address * can be setup by pre-boot software and must be treated like a permanent * address and must override the actual permanent MAC address. If an * alternate MAC address is found it is programmed into RAR0, replacing * the permanent address that was installed into RAR0 by the Si on reset. * This function will return SUCCESS unless it encounters an error while * reading the EEPROM. **/ s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw) { u32 i; s32 ret_val; u16 offset, nvm_alt_mac_addr_offset, nvm_data; u8 alt_mac_addr[ETH_ADDR_LEN]; DEBUGFUNC("e1000_check_alt_mac_addr_generic"); ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &nvm_data); if (ret_val) return ret_val; /* not supported on older hardware or 82573 */ if ((hw->mac.type < e1000_82571) || (hw->mac.type == e1000_82573)) return E1000_SUCCESS; /* Alternate MAC address is handled by the option ROM for 82580 * and newer. SW support not required. */ if (hw->mac.type >= e1000_82580) return E1000_SUCCESS; ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1, &nvm_alt_mac_addr_offset); if (ret_val) { DEBUGOUT("NVM Read Error\n"); return ret_val; } if ((nvm_alt_mac_addr_offset == 0xFFFF) || (nvm_alt_mac_addr_offset == 0x0000)) /* There is no Alternate MAC Address */ return E1000_SUCCESS; if (hw->bus.func == E1000_FUNC_1) nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1; if (hw->bus.func == E1000_FUNC_2) nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2; if (hw->bus.func == E1000_FUNC_3) nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3; for (i = 0; i < ETH_ADDR_LEN; i += 2) { offset = nvm_alt_mac_addr_offset + (i >> 1); ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data); if (ret_val) { DEBUGOUT("NVM Read Error\n"); return ret_val; } alt_mac_addr[i] = (u8)(nvm_data & 0xFF); alt_mac_addr[i + 1] = (u8)(nvm_data >> 8); } /* if multicast bit is set, the alternate address will not be used */ if (alt_mac_addr[0] & 0x01) { DEBUGOUT("Ignoring Alternate Mac Address with MC bit set\n"); return E1000_SUCCESS; } /* We have a valid alternate MAC address, and we want to treat it the * same as the normal permanent MAC address stored by the HW into the * RAR. Do this by mapping this address into RAR0. */ hw->mac.ops.rar_set(hw, alt_mac_addr, 0); return E1000_SUCCESS; } /** * e1000_rar_set_generic - Set receive address register * @hw: pointer to the HW structure * @addr: pointer to the receive address * @index: receive address array register * * Sets the receive address array register at index to the address passed * in by addr. **/ STATIC int e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index) { u32 rar_low, rar_high; DEBUGFUNC("e1000_rar_set_generic"); /* HW expects these in little endian so we reverse the byte order * from network order (big endian) to little endian */ rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) | ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); /* If MAC address zero, no need to set the AV bit */ if (rar_low || rar_high) rar_high |= E1000_RAH_AV; /* Some bridges will combine consecutive 32-bit writes into * a single burst write, which will malfunction on some parts. * The flushes avoid this. */ E1000_WRITE_REG(hw, E1000_RAL(index), rar_low); E1000_WRITE_FLUSH(hw); E1000_WRITE_REG(hw, E1000_RAH(index), rar_high); E1000_WRITE_FLUSH(hw); return E1000_SUCCESS; } /** * e1000_hash_mc_addr_generic - Generate a multicast hash value * @hw: pointer to the HW structure * @mc_addr: pointer to a multicast address * * Generates a multicast address hash value which is used to determine * the multicast filter table array address and new table value. **/ u32 e1000_hash_mc_addr_generic(struct e1000_hw *hw, u8 *mc_addr) { u32 hash_value, hash_mask; u8 bit_shift = 0; DEBUGFUNC("e1000_hash_mc_addr_generic"); /* Register count multiplied by bits per register */ hash_mask = (hw->mac.mta_reg_count * 32) - 1; /* For a mc_filter_type of 0, bit_shift is the number of left-shifts * where 0xFF would still fall within the hash mask. */ while (hash_mask >> bit_shift != 0xFF) bit_shift++; /* The portion of the address that is used for the hash table * is determined by the mc_filter_type setting. * The algorithm is such that there is a total of 8 bits of shifting. * The bit_shift for a mc_filter_type of 0 represents the number of * left-shifts where the MSB of mc_addr[5] would still fall within * the hash_mask. Case 0 does this exactly. Since there are a total * of 8 bits of shifting, then mc_addr[4] will shift right the * remaining number of bits. Thus 8 - bit_shift. The rest of the * cases are a variation of this algorithm...essentially raising the * number of bits to shift mc_addr[5] left, while still keeping the * 8-bit shifting total. * * For example, given the following Destination MAC Address and an * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask), * we can see that the bit_shift for case 0 is 4. These are the hash * values resulting from each mc_filter_type... * [0] [1] [2] [3] [4] [5] * 01 AA 00 12 34 56 * LSB MSB * * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634 */ switch (hw->mac.mc_filter_type) { default: case 0: break; case 1: bit_shift += 1; break; case 2: bit_shift += 2; break; case 3: bit_shift += 4; break; } hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | (((u16) mc_addr[5]) << bit_shift))); return hash_value; } /** * e1000_update_mc_addr_list_generic - Update Multicast addresses * @hw: pointer to the HW structure * @mc_addr_list: array of multicast addresses to program * @mc_addr_count: number of multicast addresses to program * * Updates entire Multicast Table Array. * The caller must have a packed mc_addr_list of multicast addresses. **/ void e1000_update_mc_addr_list_generic(struct e1000_hw *hw, u8 *mc_addr_list, u32 mc_addr_count) { u32 hash_value, hash_bit, hash_reg; int i; DEBUGFUNC("e1000_update_mc_addr_list_generic"); /* clear mta_shadow */ memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow)); /* update mta_shadow from mc_addr_list */ for (i = 0; (u32) i < mc_addr_count; i++) { hash_value = e1000_hash_mc_addr_generic(hw, mc_addr_list); hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); hash_bit = hash_value & 0x1F; hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit); mc_addr_list += (ETH_ADDR_LEN); } /* replace the entire MTA table */ for (i = hw->mac.mta_reg_count - 1; i >= 0; i--) E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]); E1000_WRITE_FLUSH(hw); } /** * e1000_pcix_mmrbc_workaround_generic - Fix incorrect MMRBC value * @hw: pointer to the HW structure * * In certain situations, a system BIOS may report that the PCIx maximum * memory read byte count (MMRBC) value is higher than than the actual * value. We check the PCIx command register with the current PCIx status * register. **/ void e1000_pcix_mmrbc_workaround_generic(struct e1000_hw *hw) { u16 cmd_mmrbc; u16 pcix_cmd; u16 pcix_stat_hi_word; u16 stat_mmrbc; DEBUGFUNC("e1000_pcix_mmrbc_workaround_generic"); /* Workaround for PCI-X issue when BIOS sets MMRBC incorrectly */ if (hw->bus.type != e1000_bus_type_pcix) return; e1000_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd); e1000_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI, &pcix_stat_hi_word); cmd_mmrbc = (pcix_cmd & PCIX_COMMAND_MMRBC_MASK) >> PCIX_COMMAND_MMRBC_SHIFT; stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >> PCIX_STATUS_HI_MMRBC_SHIFT; if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K) stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K; if (cmd_mmrbc > stat_mmrbc) { pcix_cmd &= ~PCIX_COMMAND_MMRBC_MASK; pcix_cmd |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT; e1000_write_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd); } } /** * e1000_clear_hw_cntrs_base_generic - Clear base hardware counters * @hw: pointer to the HW structure * * Clears the base hardware counters by reading the counter registers. **/ void e1000_clear_hw_cntrs_base_generic(struct e1000_hw *hw) { DEBUGFUNC("e1000_clear_hw_cntrs_base_generic"); E1000_READ_REG(hw, E1000_CRCERRS); E1000_READ_REG(hw, E1000_SYMERRS); E1000_READ_REG(hw, E1000_MPC); E1000_READ_REG(hw, E1000_SCC); E1000_READ_REG(hw, E1000_ECOL); E1000_READ_REG(hw, E1000_MCC); E1000_READ_REG(hw, E1000_LATECOL); E1000_READ_REG(hw, E1000_COLC); E1000_READ_REG(hw, E1000_DC); E1000_READ_REG(hw, E1000_SEC); E1000_READ_REG(hw, E1000_RLEC); E1000_READ_REG(hw, E1000_XONRXC); E1000_READ_REG(hw, E1000_XONTXC); E1000_READ_REG(hw, E1000_XOFFRXC); E1000_READ_REG(hw, E1000_XOFFTXC); E1000_READ_REG(hw, E1000_FCRUC); E1000_READ_REG(hw, E1000_GPRC); E1000_READ_REG(hw, E1000_BPRC); E1000_READ_REG(hw, E1000_MPRC); E1000_READ_REG(hw, E1000_GPTC); E1000_READ_REG(hw, E1000_GORCL); E1000_READ_REG(hw, E1000_GORCH); E1000_READ_REG(hw, E1000_GOTCL); E1000_READ_REG(hw, E1000_GOTCH); E1000_READ_REG(hw, E1000_RNBC); E1000_READ_REG(hw, E1000_RUC); E1000_READ_REG(hw, E1000_RFC); E1000_READ_REG(hw, E1000_ROC); E1000_READ_REG(hw, E1000_RJC); E1000_READ_REG(hw, E1000_TORL); E1000_READ_REG(hw, E1000_TORH); E1000_READ_REG(hw, E1000_TOTL); E1000_READ_REG(hw, E1000_TOTH); E1000_READ_REG(hw, E1000_TPR); E1000_READ_REG(hw, E1000_TPT); E1000_READ_REG(hw, E1000_MPTC); E1000_READ_REG(hw, E1000_BPTC); } /** * e1000_check_for_copper_link_generic - Check for link (Copper) * @hw: pointer to the HW structure * * Checks to see of the link status of the hardware has changed. If a * change in link status has been detected, then we read the PHY registers * to get the current speed/duplex if link exists. **/ s32 e1000_check_for_copper_link_generic(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; s32 ret_val; bool link; DEBUGFUNC("e1000_check_for_copper_link"); /* We only want to go out to the PHY registers to see if Auto-Neg * has completed and/or if our link status has changed. The * get_link_status flag is set upon receiving a Link Status * Change or Rx Sequence Error interrupt. */ if (!mac->get_link_status) return E1000_SUCCESS; /* First we want to see if the MII Status Register reports * link. If so, then we want to get the current speed/duplex * of the PHY. */ ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); if (ret_val) return ret_val; if (!link) return E1000_SUCCESS; /* No link detected */ mac->get_link_status = false; /* Check if there was DownShift, must be checked * immediately after link-up */ e1000_check_downshift_generic(hw); /* If we are forcing speed/duplex, then we simply return since * we have already determined whether we have link or not. */ if (!mac->autoneg) return -E1000_ERR_CONFIG; /* Auto-Neg is enabled. Auto Speed Detection takes care * of MAC speed/duplex configuration. So we only need to * configure Collision Distance in the MAC. */ mac->ops.config_collision_dist(hw); /* Configure Flow Control now that Auto-Neg has completed. * First, we need to restore the desired flow control * settings because we may have had to re-autoneg with a * different link partner. */ ret_val = e1000_config_fc_after_link_up_generic(hw); if (ret_val) DEBUGOUT("Error configuring flow control\n"); return ret_val; } /** * e1000_check_for_fiber_link_generic - Check for link (Fiber) * @hw: pointer to the HW structure * * Checks for link up on the hardware. If link is not up and we have * a signal, then we need to force link up. **/ s32 e1000_check_for_fiber_link_generic(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; u32 rxcw; u32 ctrl; u32 status; s32 ret_val; DEBUGFUNC("e1000_check_for_fiber_link_generic"); ctrl = E1000_READ_REG(hw, E1000_CTRL); status = E1000_READ_REG(hw, E1000_STATUS); rxcw = E1000_READ_REG(hw, E1000_RXCW); /* If we don't have link (auto-negotiation failed or link partner * cannot auto-negotiate), the cable is plugged in (we have signal), * and our link partner is not trying to auto-negotiate with us (we * are receiving idles or data), we need to force link up. We also * need to give auto-negotiation time to complete, in case the cable * was just plugged in. The autoneg_failed flag does this. */ /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ if ((ctrl & E1000_CTRL_SWDPIN1) && !(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) { if (!mac->autoneg_failed) { mac->autoneg_failed = true; return E1000_SUCCESS; } DEBUGOUT("NOT Rx'ing /C/, disable AutoNeg and force link.\n"); /* Disable auto-negotiation in the TXCW register */ E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE)); /* Force link-up and also force full-duplex. */ ctrl = E1000_READ_REG(hw, E1000_CTRL); ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); E1000_WRITE_REG(hw, E1000_CTRL, ctrl); /* Configure Flow Control after forcing link up. */ ret_val = e1000_config_fc_after_link_up_generic(hw); if (ret_val) { DEBUGOUT("Error configuring flow control\n"); return ret_val; } } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { /* If we are forcing link and we are receiving /C/ ordered * sets, re-enable auto-negotiation in the TXCW register * and disable forced link in the Device Control register * in an attempt to auto-negotiate with our link partner. */ DEBUGOUT("Rx'ing /C/, enable AutoNeg and stop forcing link.\n"); E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw); E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU)); mac->serdes_has_link = true; } return E1000_SUCCESS; } /** * e1000_check_for_serdes_link_generic - Check for link (Serdes) * @hw: pointer to the HW structure * * Checks for link up on the hardware. If link is not up and we have * a signal, then we need to force link up. **/ s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; u32 rxcw; u32 ctrl; u32 status; s32 ret_val; DEBUGFUNC("e1000_check_for_serdes_link_generic"); ctrl = E1000_READ_REG(hw, E1000_CTRL); status = E1000_READ_REG(hw, E1000_STATUS); rxcw = E1000_READ_REG(hw, E1000_RXCW); /* If we don't have link (auto-negotiation failed or link partner * cannot auto-negotiate), and our link partner is not trying to * auto-negotiate with us (we are receiving idles or data), * we need to force link up. We also need to give auto-negotiation * time to complete. */ /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ if (!(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) { if (!mac->autoneg_failed) { mac->autoneg_failed = true; return E1000_SUCCESS; } DEBUGOUT("NOT Rx'ing /C/, disable AutoNeg and force link.\n"); /* Disable auto-negotiation in the TXCW register */ E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE)); /* Force link-up and also force full-duplex. */ ctrl = E1000_READ_REG(hw, E1000_CTRL); ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); E1000_WRITE_REG(hw, E1000_CTRL, ctrl); /* Configure Flow Control after forcing link up. */ ret_val = e1000_config_fc_after_link_up_generic(hw); if (ret_val) { DEBUGOUT("Error configuring flow control\n"); return ret_val; } } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { /* If we are forcing link and we are receiving /C/ ordered * sets, re-enable auto-negotiation in the TXCW register * and disable forced link in the Device Control register * in an attempt to auto-negotiate with our link partner. */ DEBUGOUT("Rx'ing /C/, enable AutoNeg and stop forcing link.\n"); E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw); E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU)); mac->serdes_has_link = true; } else if (!(E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW))) { /* If we force link for non-auto-negotiation switch, check * link status based on MAC synchronization for internal * serdes media type. */ /* SYNCH bit and IV bit are sticky. */ usec_delay(10); rxcw = E1000_READ_REG(hw, E1000_RXCW); if (rxcw & E1000_RXCW_SYNCH) { if (!(rxcw & E1000_RXCW_IV)) { mac->serdes_has_link = true; DEBUGOUT("SERDES: Link up - forced.\n"); } } else { mac->serdes_has_link = false; DEBUGOUT("SERDES: Link down - force failed.\n"); } } if (E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW)) { status = E1000_READ_REG(hw, E1000_STATUS); if (status & E1000_STATUS_LU) { /* SYNCH bit and IV bit are sticky, so reread rxcw. */ usec_delay(10); rxcw = E1000_READ_REG(hw, E1000_RXCW); if (rxcw & E1000_RXCW_SYNCH) { if (!(rxcw & E1000_RXCW_IV)) { mac->serdes_has_link = true; DEBUGOUT("SERDES: Link up - autoneg completed successfully.\n"); } else { mac->serdes_has_link = false; DEBUGOUT("SERDES: Link down - invalid codewords detected in autoneg.\n"); } } else { mac->serdes_has_link = false; DEBUGOUT("SERDES: Link down - no sync.\n"); } } else { mac->serdes_has_link = false; DEBUGOUT("SERDES: Link down - autoneg failed\n"); } } return E1000_SUCCESS; } /** * e1000_set_default_fc_generic - Set flow control default values * @hw: pointer to the HW structure * * Read the EEPROM for the default values for flow control and store the * values. **/ s32 e1000_set_default_fc_generic(struct e1000_hw *hw) { s32 ret_val; u16 nvm_data; u16 nvm_offset = 0; DEBUGFUNC("e1000_set_default_fc_generic"); /* Read and store word 0x0F of the EEPROM. This word contains bits * that determine the hardware's default PAUSE (flow control) mode, * a bit that determines whether the HW defaults to enabling or * disabling auto-negotiation, and the direction of the * SW defined pins. If there is no SW over-ride of the flow * control setting, then the variable hw->fc will * be initialized based on a value in the EEPROM. */ if (hw->mac.type == e1000_i350) { nvm_offset = NVM_82580_LAN_FUNC_OFFSET(hw->bus.func); ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG + nvm_offset, 1, &nvm_data); } else { ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data); } if (ret_val) { DEBUGOUT("NVM Read Error\n"); return ret_val; } if (!(nvm_data & NVM_WORD0F_PAUSE_MASK)) hw->fc.requested_mode = e1000_fc_none; else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == NVM_WORD0F_ASM_DIR) hw->fc.requested_mode = e1000_fc_tx_pause; else hw->fc.requested_mode = e1000_fc_full; return E1000_SUCCESS; } /** * e1000_setup_link_generic - Setup flow control and link settings * @hw: pointer to the HW structure * * Determines which flow control settings to use, then configures flow * control. Calls the appropriate media-specific link configuration * function. Assuming the adapter has a valid link partner, a valid link * should be established. Assumes the hardware has previously been reset * and the transmitter and receiver are not enabled. **/ s32 e1000_setup_link_generic(struct e1000_hw *hw) { s32 ret_val; DEBUGFUNC("e1000_setup_link_generic"); /* In the case of the phy reset being blocked, we already have a link. * We do not need to set it up again. */ if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw)) return E1000_SUCCESS; /* If requested flow control is set to default, set flow control * based on the EEPROM flow control settings. */ if (hw->fc.requested_mode == e1000_fc_default) { ret_val = e1000_set_default_fc_generic(hw); if (ret_val) return ret_val; } /* Save off the requested flow control mode for use later. Depending * on the link partner's capabilities, we may or may not use this mode. */ hw->fc.current_mode = hw->fc.requested_mode; DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode); /* Call the necessary media_type subroutine to configure the link. */ ret_val = hw->mac.ops.setup_physical_interface(hw); if (ret_val) return ret_val; /* Initialize the flow control address, type, and PAUSE timer * registers to their default values. This is done even if flow * control is disabled, because it does not hurt anything to * initialize these registers. */ DEBUGOUT("Initializing the Flow Control address, type and timer regs\n"); E1000_WRITE_REG(hw, E1000_FCT, FLOW_CONTROL_TYPE); E1000_WRITE_REG(hw, E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH); E1000_WRITE_REG(hw, E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW); E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time); return e1000_set_fc_watermarks_generic(hw); } /** * e1000_commit_fc_settings_generic - Configure flow control * @hw: pointer to the HW structure * * Write the flow control settings to the Transmit Config Word Register (TXCW) * base on the flow control settings in e1000_mac_info. **/ s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; u32 txcw; DEBUGFUNC("e1000_commit_fc_settings_generic"); /* Check for a software override of the flow control settings, and * setup the device accordingly. If auto-negotiation is enabled, then * software will have to set the "PAUSE" bits to the correct value in * the Transmit Config Word Register (TXCW) and re-start auto- * negotiation. However, if auto-negotiation is disabled, then * software will have to manually configure the two flow control enable * bits in the CTRL register. * * The possible values of the "fc" parameter are: * 0: Flow control is completely disabled * 1: Rx flow control is enabled (we can receive pause frames, * but not send pause frames). * 2: Tx flow control is enabled (we can send pause frames but we * do not support receiving pause frames). * 3: Both Rx and Tx flow control (symmetric) are enabled. */ switch (hw->fc.current_mode) { case e1000_fc_none: /* Flow control completely disabled by a software over-ride. */ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); break; case e1000_fc_rx_pause: /* Rx Flow control is enabled and Tx Flow control is disabled * by a software over-ride. Since there really isn't a way to * advertise that we are capable of Rx Pause ONLY, we will * advertise that we support both symmetric and asymmetric Rx * PAUSE. Later, we will disable the adapter's ability to send * PAUSE frames. */ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); break; case e1000_fc_tx_pause: /* Tx Flow control is enabled, and Rx Flow control is disabled, * by a software over-ride. */ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); break; case e1000_fc_full: /* Flow control (both Rx and Tx) is enabled by a software * over-ride. */ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); break; default: DEBUGOUT("Flow control param set incorrectly\n"); return -E1000_ERR_CONFIG; break; } E1000_WRITE_REG(hw, E1000_TXCW, txcw); mac->txcw = txcw; return E1000_SUCCESS; } /** * e1000_poll_fiber_serdes_link_generic - Poll for link up * @hw: pointer to the HW structure * * Polls for link up by reading the status register, if link fails to come * up with auto-negotiation, then the link is forced if a signal is detected. **/ s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; u32 i, status; s32 ret_val; DEBUGFUNC("e1000_poll_fiber_serdes_link_generic"); /* If we have a signal (the cable is plugged in, or assumed true for * serdes media) then poll for a "Link-Up" indication in the Device * Status Register. Time-out if a link isn't seen in 500 milliseconds * seconds (Auto-negotiation should complete in less than 500 * milliseconds even if the other end is doing it in SW). */ for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) { msec_delay(10); status = E1000_READ_REG(hw, E1000_STATUS); if (status & E1000_STATUS_LU) break; } if (i == FIBER_LINK_UP_LIMIT) { DEBUGOUT("Never got a valid link from auto-neg!!!\n"); mac->autoneg_failed = true; /* AutoNeg failed to achieve a link, so we'll call * mac->check_for_link. This routine will force the * link up if we detect a signal. This will allow us to * communicate with non-autonegotiating link partners. */ ret_val = mac->ops.check_for_link(hw); if (ret_val) { DEBUGOUT("Error while checking for link\n"); return ret_val; } mac->autoneg_failed = false; } else { mac->autoneg_failed = false; DEBUGOUT("Valid Link Found\n"); } return E1000_SUCCESS; } /** * e1000_setup_fiber_serdes_link_generic - Setup link for fiber/serdes * @hw: pointer to the HW structure * * Configures collision distance and flow control for fiber and serdes * links. Upon successful setup, poll for link. **/ s32 e1000_setup_fiber_serdes_link_generic(struct e1000_hw *hw) { u32 ctrl; s32 ret_val; DEBUGFUNC("e1000_setup_fiber_serdes_link_generic"); ctrl = E1000_READ_REG(hw, E1000_CTRL); /* Take the link out of reset */ ctrl &= ~E1000_CTRL_LRST; hw->mac.ops.config_collision_dist(hw); ret_val = e1000_commit_fc_settings_generic(hw); if (ret_val) return ret_val; /* Since auto-negotiation is enabled, take the link out of reset (the * link will be in reset, because we previously reset the chip). This * will restart auto-negotiation. If auto-negotiation is successful * then the link-up status bit will be set and the flow control enable * bits (RFCE and TFCE) will be set according to their negotiated value. */ DEBUGOUT("Auto-negotiation enabled\n"); E1000_WRITE_REG(hw, E1000_CTRL, ctrl); E1000_WRITE_FLUSH(hw); msec_delay(1); /* For these adapters, the SW definable pin 1 is set when the optics * detect a signal. If we have a signal, then poll for a "Link-Up" * indication. */ if (hw->phy.media_type == e1000_media_type_internal_serdes || (E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1)) { ret_val = e1000_poll_fiber_serdes_link_generic(hw); } else { DEBUGOUT("No signal detected\n"); } return ret_val; } /** * e1000_config_collision_dist_generic - Configure collision distance * @hw: pointer to the HW structure * * Configures the collision distance to the default value and is used * during link setup. **/ STATIC void e1000_config_collision_dist_generic(struct e1000_hw *hw) { u32 tctl; DEBUGFUNC("e1000_config_collision_dist_generic"); tctl = E1000_READ_REG(hw, E1000_TCTL); tctl &= ~E1000_TCTL_COLD; tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; E1000_WRITE_REG(hw, E1000_TCTL, tctl); E1000_WRITE_FLUSH(hw); } /** * e1000_set_fc_watermarks_generic - Set flow control high/low watermarks * @hw: pointer to the HW structure * * Sets the flow control high/low threshold (watermark) registers. If * flow control XON frame transmission is enabled, then set XON frame * transmission as well. **/ s32 e1000_set_fc_watermarks_generic(struct e1000_hw *hw) { u32 fcrtl = 0, fcrth = 0; DEBUGFUNC("e1000_set_fc_watermarks_generic"); /* Set the flow control receive threshold registers. Normally, * these registers will be set to a default threshold that may be * adjusted later by the driver's runtime code. However, if the * ability to transmit pause frames is not enabled, then these * registers will be set to 0. */ if (hw->fc.current_mode & e1000_fc_tx_pause) { /* We need to set up the Receive Threshold high and low water * marks as well as (optionally) enabling the transmission of * XON frames. */ fcrtl = hw->fc.low_water; if (hw->fc.send_xon) fcrtl |= E1000_FCRTL_XONE; fcrth = hw->fc.high_water; } E1000_WRITE_REG(hw, E1000_FCRTL, fcrtl); E1000_WRITE_REG(hw, E1000_FCRTH, fcrth); return E1000_SUCCESS; } /** * e1000_force_mac_fc_generic - Force the MAC's flow control settings * @hw: pointer to the HW structure * * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the * device control register to reflect the adapter settings. TFCE and RFCE * need to be explicitly set by software when a copper PHY is used because * autonegotiation is managed by the PHY rather than the MAC. Software must * also configure these bits when link is forced on a fiber connection. **/ s32 e1000_force_mac_fc_generic(struct e1000_hw *hw) { u32 ctrl; DEBUGFUNC("e1000_force_mac_fc_generic"); ctrl = E1000_READ_REG(hw, E1000_CTRL); /* Because we didn't get link via the internal auto-negotiation * mechanism (we either forced link or we got link via PHY * auto-neg), we have to manually enable/disable transmit an * receive flow control. * * The "Case" statement below enables/disable flow control * according to the "hw->fc.current_mode" parameter. * * The possible values of the "fc" parameter are: * 0: Flow control is completely disabled * 1: Rx flow control is enabled (we can receive pause * frames but not send pause frames). * 2: Tx flow control is enabled (we can send pause frames * frames but we do not receive pause frames). * 3: Both Rx and Tx flow control (symmetric) is enabled. * other: No other values should be possible at this point. */ DEBUGOUT1("hw->fc.current_mode = %u\n", hw->fc.current_mode); switch (hw->fc.current_mode) { case e1000_fc_none: ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); break; case e1000_fc_rx_pause: ctrl &= (~E1000_CTRL_TFCE); ctrl |= E1000_CTRL_RFCE; break; case e1000_fc_tx_pause: ctrl &= (~E1000_CTRL_RFCE); ctrl |= E1000_CTRL_TFCE; break; case e1000_fc_full: ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); break; default: DEBUGOUT("Flow control param set incorrectly\n"); return -E1000_ERR_CONFIG; } E1000_WRITE_REG(hw, E1000_CTRL, ctrl); return E1000_SUCCESS; } /** * e1000_config_fc_after_link_up_generic - Configures flow control after link * @hw: pointer to the HW structure * * Checks the status of auto-negotiation after link up to ensure that the * speed and duplex were not forced. If the link needed to be forced, then * flow control needs to be forced also. If auto-negotiation is enabled * and did not fail, then we configure flow control based on our link * partner. **/ s32 e1000_config_fc_after_link_up_generic(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; s32 ret_val = E1000_SUCCESS; u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg; u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg; u16 speed, duplex; DEBUGFUNC("e1000_config_fc_after_link_up_generic"); /* Check for the case where we have fiber media and auto-neg failed * so we had to force link. In this case, we need to force the * configuration of the MAC to match the "fc" parameter. */ if (mac->autoneg_failed) { if (hw->phy.media_type == e1000_media_type_fiber || hw->phy.media_type == e1000_media_type_internal_serdes) ret_val = e1000_force_mac_fc_generic(hw); } else { if (hw->phy.media_type == e1000_media_type_copper) ret_val = e1000_force_mac_fc_generic(hw); } if (ret_val) { DEBUGOUT("Error forcing flow control settings\n"); return ret_val; } /* Check for the case where we have copper media and auto-neg is * enabled. In this case, we need to check and see if Auto-Neg * has completed, and if so, how the PHY and link partner has * flow control configured. */ if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) { /* Read the MII Status Register and check to see if AutoNeg * has completed. We read this twice because this reg has * some "sticky" (latched) bits. */ ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg); if (ret_val) return ret_val; ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg); if (ret_val) return ret_val; if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) { DEBUGOUT("Copper PHY and Auto Neg has not completed.\n"); return ret_val; } /* The AutoNeg process has completed, so we now need to * read both the Auto Negotiation Advertisement * Register (Address 4) and the Auto_Negotiation Base * Page Ability Register (Address 5) to determine how * flow control was negotiated. */ ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg); if (ret_val) return ret_val; ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg); if (ret_val) return ret_val; /* Two bits in the Auto Negotiation Advertisement Register * (Address 4) and two bits in the Auto Negotiation Base * Page Ability Register (Address 5) determine flow control * for both the PHY and the link partner. The following * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, * 1999, describes these PAUSE resolution bits and how flow * control is determined based upon these settings. * NOTE: DC = Don't Care * * LOCAL DEVICE | LINK PARTNER * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution *-------|---------|-------|---------|-------------------- * 0 | 0 | DC | DC | e1000_fc_none * 0 | 1 | 0 | DC | e1000_fc_none * 0 | 1 | 1 | 0 | e1000_fc_none * 0 | 1 | 1 | 1 | e1000_fc_tx_pause * 1 | 0 | 0 | DC | e1000_fc_none * 1 | DC | 1 | DC | e1000_fc_full * 1 | 1 | 0 | 0 | e1000_fc_none * 1 | 1 | 0 | 1 | e1000_fc_rx_pause * * Are both PAUSE bits set to 1? If so, this implies * Symmetric Flow Control is enabled at both ends. The * ASM_DIR bits are irrelevant per the spec. * * For Symmetric Flow Control: * * LOCAL DEVICE | LINK PARTNER * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result *-------|---------|-------|---------|-------------------- * 1 | DC | 1 | DC | E1000_fc_full * */ if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { /* Now we need to check if the user selected Rx ONLY * of pause frames. In this case, we had to advertise * FULL flow control because we could not advertise Rx * ONLY. Hence, we must now check to see if we need to * turn OFF the TRANSMISSION of PAUSE frames. */ if (hw->fc.requested_mode == e1000_fc_full) { hw->fc.current_mode = e1000_fc_full; DEBUGOUT("Flow Control = FULL.\n"); } else { hw->fc.current_mode = e1000_fc_rx_pause; DEBUGOUT("Flow Control = Rx PAUSE frames only.\n"); } } /* For receiving PAUSE frames ONLY. * * LOCAL DEVICE | LINK PARTNER * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result *-------|---------|-------|---------|-------------------- * 0 | 1 | 1 | 1 | e1000_fc_tx_pause */ else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { hw->fc.current_mode = e1000_fc_tx_pause; DEBUGOUT("Flow Control = Tx PAUSE frames only.\n"); } /* For transmitting PAUSE frames ONLY. * * LOCAL DEVICE | LINK PARTNER * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result *-------|---------|-------|---------|-------------------- * 1 | 1 | 0 | 1 | e1000_fc_rx_pause */ else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { hw->fc.current_mode = e1000_fc_rx_pause; DEBUGOUT("Flow Control = Rx PAUSE frames only.\n"); } else { /* Per the IEEE spec, at this point flow control * should be disabled. */ hw->fc.current_mode = e1000_fc_none; DEBUGOUT("Flow Control = NONE.\n"); } /* Now we need to do one last check... If we auto- * negotiated to HALF DUPLEX, flow control should not be * enabled per IEEE 802.3 spec. */ ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex); if (ret_val) { DEBUGOUT("Error getting link speed and duplex\n"); return ret_val; } if (duplex == HALF_DUPLEX) hw->fc.current_mode = e1000_fc_none; /* Now we call a subroutine to actually force the MAC * controller to use the correct flow control settings. */ ret_val = e1000_force_mac_fc_generic(hw); if (ret_val) { DEBUGOUT("Error forcing flow control settings\n"); return ret_val; } } /* Check for the case where we have SerDes media and auto-neg is * enabled. In this case, we need to check and see if Auto-Neg * has completed, and if so, how the PHY and link partner has * flow control configured. */ if ((hw->phy.media_type == e1000_media_type_internal_serdes) && mac->autoneg) { /* Read the PCS_LSTS and check to see if AutoNeg * has completed. */ pcs_status_reg = E1000_READ_REG(hw, E1000_PCS_LSTAT); if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) { DEBUGOUT("PCS Auto Neg has not completed.\n"); return ret_val; } /* The AutoNeg process has completed, so we now need to * read both the Auto Negotiation Advertisement * Register (PCS_ANADV) and the Auto_Negotiation Base * Page Ability Register (PCS_LPAB) to determine how * flow control was negotiated. */ pcs_adv_reg = E1000_READ_REG(hw, E1000_PCS_ANADV); pcs_lp_ability_reg = E1000_READ_REG(hw, E1000_PCS_LPAB); /* Two bits in the Auto Negotiation Advertisement Register * (PCS_ANADV) and two bits in the Auto Negotiation Base * Page Ability Register (PCS_LPAB) determine flow control * for both the PHY and the link partner. The following * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, * 1999, describes these PAUSE resolution bits and how flow * control is determined based upon these settings. * NOTE: DC = Don't Care * * LOCAL DEVICE | LINK PARTNER * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution *-------|---------|-------|---------|-------------------- * 0 | 0 | DC | DC | e1000_fc_none * 0 | 1 | 0 | DC | e1000_fc_none * 0 | 1 | 1 | 0 | e1000_fc_none * 0 | 1 | 1 | 1 | e1000_fc_tx_pause * 1 | 0 | 0 | DC | e1000_fc_none * 1 | DC | 1 | DC | e1000_fc_full * 1 | 1 | 0 | 0 | e1000_fc_none * 1 | 1 | 0 | 1 | e1000_fc_rx_pause * * Are both PAUSE bits set to 1? If so, this implies * Symmetric Flow Control is enabled at both ends. The * ASM_DIR bits are irrelevant per the spec. * * For Symmetric Flow Control: * * LOCAL DEVICE | LINK PARTNER * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result *-------|---------|-------|---------|-------------------- * 1 | DC | 1 | DC | e1000_fc_full * */ if ((pcs_adv_reg & E1000_TXCW_PAUSE) && (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) { /* Now we need to check if the user selected Rx ONLY * of pause frames. In this case, we had to advertise * FULL flow control because we could not advertise Rx * ONLY. Hence, we must now check to see if we need to * turn OFF the TRANSMISSION of PAUSE frames. */ if (hw->fc.requested_mode == e1000_fc_full) { hw->fc.current_mode = e1000_fc_full; DEBUGOUT("Flow Control = FULL.\n"); } else { hw->fc.current_mode = e1000_fc_rx_pause; DEBUGOUT("Flow Control = Rx PAUSE frames only.\n"); } } /* For receiving PAUSE frames ONLY. * * LOCAL DEVICE | LINK PARTNER * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result *-------|---------|-------|---------|-------------------- * 0 | 1 | 1 | 1 | e1000_fc_tx_pause */ else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) && (pcs_adv_reg & E1000_TXCW_ASM_DIR) && (pcs_lp_ability_reg & E1000_TXCW_PAUSE) && (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) { hw->fc.current_mode = e1000_fc_tx_pause; DEBUGOUT("Flow Control = Tx PAUSE frames only.\n"); } /* For transmitting PAUSE frames ONLY. * * LOCAL DEVICE | LINK PARTNER * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result *-------|---------|-------|---------|-------------------- * 1 | 1 | 0 | 1 | e1000_fc_rx_pause */ else if ((pcs_adv_reg & E1000_TXCW_PAUSE) && (pcs_adv_reg & E1000_TXCW_ASM_DIR) && !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) && (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) { hw->fc.current_mode = e1000_fc_rx_pause; DEBUGOUT("Flow Control = Rx PAUSE frames only.\n"); } else { /* Per the IEEE spec, at this point flow control * should be disabled. */ hw->fc.current_mode = e1000_fc_none; DEBUGOUT("Flow Control = NONE.\n"); } /* Now we call a subroutine to actually force the MAC * controller to use the correct flow control settings. */ pcs_ctrl_reg = E1000_READ_REG(hw, E1000_PCS_LCTL); pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL; E1000_WRITE_REG(hw, E1000_PCS_LCTL, pcs_ctrl_reg); ret_val = e1000_force_mac_fc_generic(hw); if (ret_val) { DEBUGOUT("Error forcing flow control settings\n"); return ret_val; } } return E1000_SUCCESS; } /** * e1000_get_speed_and_duplex_copper_generic - Retrieve current speed/duplex * @hw: pointer to the HW structure * @speed: stores the current speed * @duplex: stores the current duplex * * Read the status register for the current speed/duplex and store the current * speed and duplex for copper connections. **/ s32 e1000_get_speed_and_duplex_copper_generic(struct e1000_hw *hw, u16 *speed, u16 *duplex) { u32 status; DEBUGFUNC("e1000_get_speed_and_duplex_copper_generic"); status = E1000_READ_REG(hw, E1000_STATUS); if (status & E1000_STATUS_SPEED_1000) { *speed = SPEED_1000; DEBUGOUT("1000 Mbs, "); } else if (status & E1000_STATUS_SPEED_100) { *speed = SPEED_100; DEBUGOUT("100 Mbs, "); } else { *speed = SPEED_10; DEBUGOUT("10 Mbs, "); } if (status & E1000_STATUS_FD) { *duplex = FULL_DUPLEX; DEBUGOUT("Full Duplex\n"); } else { *duplex = HALF_DUPLEX; DEBUGOUT("Half Duplex\n"); } return E1000_SUCCESS; } /** * e1000_get_speed_and_duplex_fiber_generic - Retrieve current speed/duplex * @hw: pointer to the HW structure * @speed: stores the current speed * @duplex: stores the current duplex * * Sets the speed and duplex to gigabit full duplex (the only possible option) * for fiber/serdes links. **/ s32 e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw E1000_UNUSEDARG *hw, u16 *speed, u16 *duplex) { DEBUGFUNC("e1000_get_speed_and_duplex_fiber_serdes_generic"); UNREFERENCED_1PARAMETER(hw); *speed = SPEED_1000; *duplex = FULL_DUPLEX; return E1000_SUCCESS; } /** * e1000_get_hw_semaphore_generic - Acquire hardware semaphore * @hw: pointer to the HW structure * * Acquire the HW semaphore to access the PHY or NVM **/ s32 e1000_get_hw_semaphore_generic(struct e1000_hw *hw) { u32 swsm; s32 timeout = hw->nvm.word_size + 1; s32 i = 0; DEBUGFUNC("e1000_get_hw_semaphore_generic"); /* Get the SW semaphore */ while (i < timeout) { swsm = E1000_READ_REG(hw, E1000_SWSM); if (!(swsm & E1000_SWSM_SMBI)) break; usec_delay(50); i++; } if (i == timeout) { DEBUGOUT("Driver can't access device - SMBI bit is set.\n"); return -E1000_ERR_NVM; } /* Get the FW semaphore. */ for (i = 0; i < timeout; i++) { swsm = E1000_READ_REG(hw, E1000_SWSM); E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI); /* Semaphore acquired if bit latched */ if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI) break; usec_delay(50); } if (i == timeout) { /* Release semaphores */ e1000_put_hw_semaphore_generic(hw); DEBUGOUT("Driver can't access the NVM\n"); return -E1000_ERR_NVM; } return E1000_SUCCESS; } /** * e1000_put_hw_semaphore_generic - Release hardware semaphore * @hw: pointer to the HW structure * * Release hardware semaphore used to access the PHY or NVM **/ void e1000_put_hw_semaphore_generic(struct e1000_hw *hw) { u32 swsm; DEBUGFUNC("e1000_put_hw_semaphore_generic"); swsm = E1000_READ_REG(hw, E1000_SWSM); swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); E1000_WRITE_REG(hw, E1000_SWSM, swsm); } /** * e1000_get_auto_rd_done_generic - Check for auto read completion * @hw: pointer to the HW structure * * Check EEPROM for Auto Read done bit. **/ s32 e1000_get_auto_rd_done_generic(struct e1000_hw *hw) { s32 i = 0; DEBUGFUNC("e1000_get_auto_rd_done_generic"); while (i < AUTO_READ_DONE_TIMEOUT) { if (E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_AUTO_RD) break; msec_delay(1); i++; } if (i == AUTO_READ_DONE_TIMEOUT) { DEBUGOUT("Auto read by HW from NVM has not completed.\n"); return -E1000_ERR_RESET; } return E1000_SUCCESS; } /** * e1000_valid_led_default_generic - Verify a valid default LED config * @hw: pointer to the HW structure * @data: pointer to the NVM (EEPROM) * * Read the EEPROM for the current default LED configuration. If the * LED configuration is not valid, set to a valid LED configuration. **/ s32 e1000_valid_led_default_generic(struct e1000_hw *hw, u16 *data) { s32 ret_val; DEBUGFUNC("e1000_valid_led_default_generic"); ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data); if (ret_val) { DEBUGOUT("NVM Read Error\n"); return ret_val; } if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) *data = ID_LED_DEFAULT; return E1000_SUCCESS; } /** * e1000_id_led_init_generic - * @hw: pointer to the HW structure * **/ s32 e1000_id_led_init_generic(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; s32 ret_val; const u32 ledctl_mask = 0x000000FF; const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; u16 data, i, temp; const u16 led_mask = 0x0F; DEBUGFUNC("e1000_id_led_init_generic"); ret_val = hw->nvm.ops.valid_led_default(hw, &data); if (ret_val) return ret_val; mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL); mac->ledctl_mode1 = mac->ledctl_default; mac->ledctl_mode2 = mac->ledctl_default; for (i = 0; i < 4; i++) { temp = (data >> (i << 2)) & led_mask; switch (temp) { case ID_LED_ON1_DEF2: case ID_LED_ON1_ON2: case ID_LED_ON1_OFF2: mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); mac->ledctl_mode1 |= ledctl_on << (i << 3); break; case ID_LED_OFF1_DEF2: case ID_LED_OFF1_ON2: case ID_LED_OFF1_OFF2: mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); mac->ledctl_mode1 |= ledctl_off << (i << 3); break; default: /* Do nothing */ break; } switch (temp) { case ID_LED_DEF1_ON2: case ID_LED_ON1_ON2: case ID_LED_OFF1_ON2: mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); mac->ledctl_mode2 |= ledctl_on << (i << 3); break; case ID_LED_DEF1_OFF2: case ID_LED_ON1_OFF2: case ID_LED_OFF1_OFF2: mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); mac->ledctl_mode2 |= ledctl_off << (i << 3); break; default: /* Do nothing */ break; } } return E1000_SUCCESS; } /** * e1000_setup_led_generic - Configures SW controllable LED * @hw: pointer to the HW structure * * This prepares the SW controllable LED for use and saves the current state * of the LED so it can be later restored. **/ s32 e1000_setup_led_generic(struct e1000_hw *hw) { u32 ledctl; DEBUGFUNC("e1000_setup_led_generic"); if (hw->mac.ops.setup_led != e1000_setup_led_generic) return -E1000_ERR_CONFIG; if (hw->phy.media_type == e1000_media_type_fiber) { ledctl = E1000_READ_REG(hw, E1000_LEDCTL); hw->mac.ledctl_default = ledctl; /* Turn off LED0 */ ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK | E1000_LEDCTL_LED0_MODE_MASK); ledctl |= (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED0_MODE_SHIFT); E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl); } else if (hw->phy.media_type == e1000_media_type_copper) { E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1); } return E1000_SUCCESS; } /** * e1000_cleanup_led_generic - Set LED config to default operation * @hw: pointer to the HW structure * * Remove the current LED configuration and set the LED configuration * to the default value, saved from the EEPROM. **/ s32 e1000_cleanup_led_generic(struct e1000_hw *hw) { DEBUGFUNC("e1000_cleanup_led_generic"); E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default); return E1000_SUCCESS; } /** * e1000_blink_led_generic - Blink LED * @hw: pointer to the HW structure * * Blink the LEDs which are set to be on. **/ s32 e1000_blink_led_generic(struct e1000_hw *hw) { u32 ledctl_blink = 0; u32 i; DEBUGFUNC("e1000_blink_led_generic"); if (hw->phy.media_type == e1000_media_type_fiber) { /* always blink LED0 for PCI-E fiber */ ledctl_blink = E1000_LEDCTL_LED0_BLINK | (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT); } else { /* Set the blink bit for each LED that's "on" (0x0E) * (or "off" if inverted) in ledctl_mode2. The blink * logic in hardware only works when mode is set to "on" * so it must be changed accordingly when the mode is * "off" and inverted. */ ledctl_blink = hw->mac.ledctl_mode2; for (i = 0; i < 32; i += 8) { u32 mode = (hw->mac.ledctl_mode2 >> i) & E1000_LEDCTL_LED0_MODE_MASK; u32 led_default = hw->mac.ledctl_default >> i; if ((!(led_default & E1000_LEDCTL_LED0_IVRT) && (mode == E1000_LEDCTL_MODE_LED_ON)) || ((led_default & E1000_LEDCTL_LED0_IVRT) && (mode == E1000_LEDCTL_MODE_LED_OFF))) { ledctl_blink &= ~(E1000_LEDCTL_LED0_MODE_MASK << i); ledctl_blink |= (E1000_LEDCTL_LED0_BLINK | E1000_LEDCTL_MODE_LED_ON) << i; } } } E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl_blink); return E1000_SUCCESS; } /** * e1000_led_on_generic - Turn LED on * @hw: pointer to the HW structure * * Turn LED on. **/ s32 e1000_led_on_generic(struct e1000_hw *hw) { u32 ctrl; DEBUGFUNC("e1000_led_on_generic"); switch (hw->phy.media_type) { case e1000_media_type_fiber: ctrl = E1000_READ_REG(hw, E1000_CTRL); ctrl &= ~E1000_CTRL_SWDPIN0; ctrl |= E1000_CTRL_SWDPIO0; E1000_WRITE_REG(hw, E1000_CTRL, ctrl); break; case e1000_media_type_copper: E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2); break; default: break; } return E1000_SUCCESS; } /** * e1000_led_off_generic - Turn LED off * @hw: pointer to the HW structure * * Turn LED off. **/ s32 e1000_led_off_generic(struct e1000_hw *hw) { u32 ctrl; DEBUGFUNC("e1000_led_off_generic"); switch (hw->phy.media_type) { case e1000_media_type_fiber: ctrl = E1000_READ_REG(hw, E1000_CTRL); ctrl |= E1000_CTRL_SWDPIN0; ctrl |= E1000_CTRL_SWDPIO0; E1000_WRITE_REG(hw, E1000_CTRL, ctrl); break; case e1000_media_type_copper: E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1); break; default: break; } return E1000_SUCCESS; } /** * e1000_set_pcie_no_snoop_generic - Set PCI-express capabilities * @hw: pointer to the HW structure * @no_snoop: bitmap of snoop events * * Set the PCI-express register to snoop for events enabled in 'no_snoop'. **/ void e1000_set_pcie_no_snoop_generic(struct e1000_hw *hw, u32 no_snoop) { u32 gcr; DEBUGFUNC("e1000_set_pcie_no_snoop_generic"); if (hw->bus.type != e1000_bus_type_pci_express) return; if (no_snoop) { gcr = E1000_READ_REG(hw, E1000_GCR); gcr &= ~(PCIE_NO_SNOOP_ALL); gcr |= no_snoop; E1000_WRITE_REG(hw, E1000_GCR, gcr); } } /** * e1000_disable_pcie_master_generic - Disables PCI-express master access * @hw: pointer to the HW structure * * Returns E1000_SUCCESS if successful, else returns -10 * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused * the master requests to be disabled. * * Disables PCI-Express master access and verifies there are no pending * requests. **/ s32 e1000_disable_pcie_master_generic(struct e1000_hw *hw) { u32 ctrl; s32 timeout = MASTER_DISABLE_TIMEOUT; DEBUGFUNC("e1000_disable_pcie_master_generic"); if (hw->bus.type != e1000_bus_type_pci_express) return E1000_SUCCESS; ctrl = E1000_READ_REG(hw, E1000_CTRL); ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; E1000_WRITE_REG(hw, E1000_CTRL, ctrl); while (timeout) { if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_GIO_MASTER_ENABLE) || E1000_REMOVED(hw->hw_addr)) break; usec_delay(100); timeout--; } if (!timeout) { DEBUGOUT("Master requests are pending.\n"); return -E1000_ERR_MASTER_REQUESTS_PENDING; } return E1000_SUCCESS; } /** * e1000_reset_adaptive_generic - Reset Adaptive Interframe Spacing * @hw: pointer to the HW structure * * Reset the Adaptive Interframe Spacing throttle to default values. **/ void e1000_reset_adaptive_generic(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; DEBUGFUNC("e1000_reset_adaptive_generic"); if (!mac->adaptive_ifs) { DEBUGOUT("Not in Adaptive IFS mode!\n"); return; } mac->current_ifs_val = 0; mac->ifs_min_val = IFS_MIN; mac->ifs_max_val = IFS_MAX; mac->ifs_step_size = IFS_STEP; mac->ifs_ratio = IFS_RATIO; mac->in_ifs_mode = false; E1000_WRITE_REG(hw, E1000_AIT, 0); } /** * e1000_update_adaptive_generic - Update Adaptive Interframe Spacing * @hw: pointer to the HW structure * * Update the Adaptive Interframe Spacing Throttle value based on the * time between transmitted packets and time between collisions. **/ void e1000_update_adaptive_generic(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; DEBUGFUNC("e1000_update_adaptive_generic"); if (!mac->adaptive_ifs) { DEBUGOUT("Not in Adaptive IFS mode!\n"); return; } if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) { if (mac->tx_packet_delta > MIN_NUM_XMITS) { mac->in_ifs_mode = true; if (mac->current_ifs_val < mac->ifs_max_val) { if (!mac->current_ifs_val) mac->current_ifs_val = mac->ifs_min_val; else mac->current_ifs_val += mac->ifs_step_size; E1000_WRITE_REG(hw, E1000_AIT, mac->current_ifs_val); } } } else { if (mac->in_ifs_mode && (mac->tx_packet_delta <= MIN_NUM_XMITS)) { mac->current_ifs_val = 0; mac->in_ifs_mode = false; E1000_WRITE_REG(hw, E1000_AIT, 0); } } } /** * e1000_validate_mdi_setting_generic - Verify MDI/MDIx settings * @hw: pointer to the HW structure * * Verify that when not using auto-negotiation that MDI/MDIx is correctly * set, which is forced to MDI mode only. **/ STATIC s32 e1000_validate_mdi_setting_generic(struct e1000_hw *hw) { DEBUGFUNC("e1000_validate_mdi_setting_generic"); if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) { DEBUGOUT("Invalid MDI setting detected\n"); hw->phy.mdix = 1; return -E1000_ERR_CONFIG; } return E1000_SUCCESS; } /** * e1000_validate_mdi_setting_crossover_generic - Verify MDI/MDIx settings * @hw: pointer to the HW structure * * Validate the MDI/MDIx setting, allowing for auto-crossover during forced * operation. **/ s32 e1000_validate_mdi_setting_crossover_generic(struct e1000_hw E1000_UNUSEDARG *hw) { DEBUGFUNC("e1000_validate_mdi_setting_crossover_generic"); UNREFERENCED_1PARAMETER(hw); return E1000_SUCCESS; } /** * e1000_write_8bit_ctrl_reg_generic - Write a 8bit CTRL register * @hw: pointer to the HW structure * @reg: 32bit register offset such as E1000_SCTL * @offset: register offset to write to * @data: data to write at register offset * * Writes an address/data control type register. There are several of these * and they all have the format address << 8 | data and bit 31 is polled for * completion. **/ s32 e1000_write_8bit_ctrl_reg_generic(struct e1000_hw *hw, u32 reg, u32 offset, u8 data) { u32 i, regvalue = 0; DEBUGFUNC("e1000_write_8bit_ctrl_reg_generic"); /* Set up the address and data */ regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT); E1000_WRITE_REG(hw, reg, regvalue); /* Poll the ready bit to see if the MDI read completed */ for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) { usec_delay(5); regvalue = E1000_READ_REG(hw, reg); if (regvalue & E1000_GEN_CTL_READY) break; } if (!(regvalue & E1000_GEN_CTL_READY)) { DEBUGOUT1("Reg %08x did not indicate ready\n", reg); return -E1000_ERR_PHY; } return E1000_SUCCESS; }