/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2001 - 2015 Intel Corporation */ /* * 82541EI Gigabit Ethernet Controller * 82541ER Gigabit Ethernet Controller * 82541GI Gigabit Ethernet Controller * 82541PI Gigabit Ethernet Controller * 82547EI Gigabit Ethernet Controller * 82547GI Gigabit Ethernet Controller */ #include "e1000_api.h" STATIC s32 e1000_init_phy_params_82541(struct e1000_hw *hw); STATIC s32 e1000_init_nvm_params_82541(struct e1000_hw *hw); STATIC s32 e1000_init_mac_params_82541(struct e1000_hw *hw); STATIC s32 e1000_reset_hw_82541(struct e1000_hw *hw); STATIC s32 e1000_init_hw_82541(struct e1000_hw *hw); STATIC s32 e1000_get_link_up_info_82541(struct e1000_hw *hw, u16 *speed, u16 *duplex); STATIC s32 e1000_phy_hw_reset_82541(struct e1000_hw *hw); STATIC s32 e1000_setup_copper_link_82541(struct e1000_hw *hw); STATIC s32 e1000_check_for_link_82541(struct e1000_hw *hw); STATIC s32 e1000_get_cable_length_igp_82541(struct e1000_hw *hw); STATIC s32 e1000_set_d3_lplu_state_82541(struct e1000_hw *hw, bool active); STATIC s32 e1000_setup_led_82541(struct e1000_hw *hw); STATIC s32 e1000_cleanup_led_82541(struct e1000_hw *hw); STATIC void e1000_clear_hw_cntrs_82541(struct e1000_hw *hw); STATIC s32 e1000_config_dsp_after_link_change_82541(struct e1000_hw *hw, bool link_up); STATIC s32 e1000_phy_init_script_82541(struct e1000_hw *hw); STATIC void e1000_power_down_phy_copper_82541(struct e1000_hw *hw); STATIC const u16 e1000_igp_cable_length_table[] = { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25, 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40, 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60, 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90, 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120}; #define IGP01E1000_AGC_LENGTH_TABLE_SIZE \ (sizeof(e1000_igp_cable_length_table) / \ sizeof(e1000_igp_cable_length_table[0])) /** * e1000_init_phy_params_82541 - Init PHY func ptrs. * @hw: pointer to the HW structure **/ STATIC s32 e1000_init_phy_params_82541(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; DEBUGFUNC("e1000_init_phy_params_82541"); phy->addr = 1; phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; phy->reset_delay_us = 10000; phy->type = e1000_phy_igp; /* Function Pointers */ phy->ops.check_polarity = e1000_check_polarity_igp; phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp; phy->ops.get_cable_length = e1000_get_cable_length_igp_82541; phy->ops.get_cfg_done = e1000_get_cfg_done_generic; phy->ops.get_info = e1000_get_phy_info_igp; phy->ops.read_reg = e1000_read_phy_reg_igp; phy->ops.reset = e1000_phy_hw_reset_82541; phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82541; phy->ops.write_reg = e1000_write_phy_reg_igp; phy->ops.power_up = e1000_power_up_phy_copper; phy->ops.power_down = e1000_power_down_phy_copper_82541; ret_val = e1000_get_phy_id(hw); if (ret_val) goto out; /* Verify phy id */ if (phy->id != IGP01E1000_I_PHY_ID) { ret_val = -E1000_ERR_PHY; goto out; } out: return ret_val; } /** * e1000_init_nvm_params_82541 - Init NVM func ptrs. * @hw: pointer to the HW structure **/ STATIC s32 e1000_init_nvm_params_82541(struct e1000_hw *hw) { struct e1000_nvm_info *nvm = &hw->nvm; s32 ret_val = E1000_SUCCESS; u32 eecd = E1000_READ_REG(hw, E1000_EECD); u16 size; DEBUGFUNC("e1000_init_nvm_params_82541"); switch (nvm->override) { case e1000_nvm_override_spi_large: nvm->type = e1000_nvm_eeprom_spi; eecd |= E1000_EECD_ADDR_BITS; break; case e1000_nvm_override_spi_small: nvm->type = e1000_nvm_eeprom_spi; eecd &= ~E1000_EECD_ADDR_BITS; break; case e1000_nvm_override_microwire_large: nvm->type = e1000_nvm_eeprom_microwire; eecd |= E1000_EECD_SIZE; break; case e1000_nvm_override_microwire_small: nvm->type = e1000_nvm_eeprom_microwire; eecd &= ~E1000_EECD_SIZE; break; default: nvm->type = eecd & E1000_EECD_TYPE ? e1000_nvm_eeprom_spi : e1000_nvm_eeprom_microwire; break; } if (nvm->type == e1000_nvm_eeprom_spi) { nvm->address_bits = (eecd & E1000_EECD_ADDR_BITS) ? 16 : 8; nvm->delay_usec = 1; nvm->opcode_bits = 8; nvm->page_size = (eecd & E1000_EECD_ADDR_BITS) ? 32 : 8; /* Function Pointers */ nvm->ops.acquire = e1000_acquire_nvm_generic; nvm->ops.read = e1000_read_nvm_spi; nvm->ops.release = e1000_release_nvm_generic; nvm->ops.update = e1000_update_nvm_checksum_generic; nvm->ops.valid_led_default = e1000_valid_led_default_generic; nvm->ops.validate = e1000_validate_nvm_checksum_generic; nvm->ops.write = e1000_write_nvm_spi; /* * nvm->word_size must be discovered after the pointers * are set so we can verify the size from the nvm image * itself. Temporarily set it to a dummy value so the * read will work. */ nvm->word_size = 64; ret_val = nvm->ops.read(hw, NVM_CFG, 1, &size); if (ret_val) goto out; size = (size & NVM_SIZE_MASK) >> NVM_SIZE_SHIFT; /* * if size != 0, it can be added to a constant and become * the left-shift value to set the word_size. Otherwise, * word_size stays at 64. */ if (size) { size += NVM_WORD_SIZE_BASE_SHIFT_82541; nvm->word_size = 1 << size; } } else { nvm->address_bits = (eecd & E1000_EECD_ADDR_BITS) ? 8 : 6; nvm->delay_usec = 50; nvm->opcode_bits = 3; nvm->word_size = (eecd & E1000_EECD_ADDR_BITS) ? 256 : 64; /* Function Pointers */ nvm->ops.acquire = e1000_acquire_nvm_generic; nvm->ops.read = e1000_read_nvm_microwire; nvm->ops.release = e1000_release_nvm_generic; nvm->ops.update = e1000_update_nvm_checksum_generic; nvm->ops.valid_led_default = e1000_valid_led_default_generic; nvm->ops.validate = e1000_validate_nvm_checksum_generic; nvm->ops.write = e1000_write_nvm_microwire; } out: return ret_val; } /** * e1000_init_mac_params_82541 - Init MAC func ptrs. * @hw: pointer to the HW structure **/ STATIC s32 e1000_init_mac_params_82541(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; DEBUGFUNC("e1000_init_mac_params_82541"); /* Set media type */ hw->phy.media_type = e1000_media_type_copper; /* Set mta register count */ mac->mta_reg_count = 128; /* Set rar entry count */ mac->rar_entry_count = E1000_RAR_ENTRIES; /* Set if part includes ASF firmware */ mac->asf_firmware_present = true; /* Function Pointers */ /* bus type/speed/width */ mac->ops.get_bus_info = e1000_get_bus_info_pci_generic; /* function id */ mac->ops.set_lan_id = e1000_set_lan_id_single_port; /* reset */ mac->ops.reset_hw = e1000_reset_hw_82541; /* hw initialization */ mac->ops.init_hw = e1000_init_hw_82541; /* link setup */ mac->ops.setup_link = e1000_setup_link_generic; /* physical interface link setup */ mac->ops.setup_physical_interface = e1000_setup_copper_link_82541; /* check for link */ mac->ops.check_for_link = e1000_check_for_link_82541; /* link info */ mac->ops.get_link_up_info = e1000_get_link_up_info_82541; /* multicast address update */ mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic; /* writing VFTA */ mac->ops.write_vfta = e1000_write_vfta_generic; /* clearing VFTA */ mac->ops.clear_vfta = e1000_clear_vfta_generic; /* ID LED init */ mac->ops.id_led_init = e1000_id_led_init_generic; /* setup LED */ mac->ops.setup_led = e1000_setup_led_82541; /* cleanup LED */ mac->ops.cleanup_led = e1000_cleanup_led_82541; /* turn on/off LED */ mac->ops.led_on = e1000_led_on_generic; mac->ops.led_off = e1000_led_off_generic; /* clear hardware counters */ mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82541; return E1000_SUCCESS; } /** * e1000_init_function_pointers_82541 - Init func ptrs. * @hw: pointer to the HW structure * * Called to initialize all function pointers and parameters. **/ void e1000_init_function_pointers_82541(struct e1000_hw *hw) { DEBUGFUNC("e1000_init_function_pointers_82541"); hw->mac.ops.init_params = e1000_init_mac_params_82541; hw->nvm.ops.init_params = e1000_init_nvm_params_82541; hw->phy.ops.init_params = e1000_init_phy_params_82541; } /** * e1000_reset_hw_82541 - Reset hardware * @hw: pointer to the HW structure * * This resets the hardware into a known state. **/ STATIC s32 e1000_reset_hw_82541(struct e1000_hw *hw) { u32 ledctl, ctrl, manc; DEBUGFUNC("e1000_reset_hw_82541"); DEBUGOUT("Masking off all interrupts\n"); E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF); E1000_WRITE_REG(hw, E1000_RCTL, 0); E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP); E1000_WRITE_FLUSH(hw); /* * Delay to allow any outstanding PCI transactions to complete * before resetting the device. */ msec_delay(10); ctrl = E1000_READ_REG(hw, E1000_CTRL); /* Must reset the Phy before resetting the MAC */ if ((hw->mac.type == e1000_82541) || (hw->mac.type == e1000_82547)) { E1000_WRITE_REG(hw, E1000_CTRL, (ctrl | E1000_CTRL_PHY_RST)); E1000_WRITE_FLUSH(hw); msec_delay(5); } DEBUGOUT("Issuing a global reset to 82541/82547 MAC\n"); switch (hw->mac.type) { case e1000_82541: case e1000_82541_rev_2: /* * These controllers can't ack the 64-bit write when * issuing the reset, so we use IO-mapping as a * workaround to issue the reset. */ E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST); break; default: E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST); break; } /* Wait for NVM reload */ msec_delay(20); /* Disable HW ARPs on ASF enabled adapters */ manc = E1000_READ_REG(hw, E1000_MANC); manc &= ~E1000_MANC_ARP_EN; E1000_WRITE_REG(hw, E1000_MANC, manc); if ((hw->mac.type == e1000_82541) || (hw->mac.type == e1000_82547)) { e1000_phy_init_script_82541(hw); /* Configure activity LED after Phy reset */ ledctl = E1000_READ_REG(hw, E1000_LEDCTL); ledctl &= IGP_ACTIVITY_LED_MASK; ledctl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl); } /* Once again, mask the interrupts */ DEBUGOUT("Masking off all interrupts\n"); E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF); /* Clear any pending interrupt events. */ E1000_READ_REG(hw, E1000_ICR); return E1000_SUCCESS; } /** * e1000_init_hw_82541 - Initialize hardware * @hw: pointer to the HW structure * * This inits the hardware readying it for operation. **/ STATIC s32 e1000_init_hw_82541(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541; u32 i, txdctl; s32 ret_val; DEBUGFUNC("e1000_init_hw_82541"); /* Initialize identification LED */ ret_val = mac->ops.id_led_init(hw); if (ret_val) { DEBUGOUT("Error initializing identification LED\n"); /* This is not fatal and we should not stop init due to this */ } /* Storing the Speed Power Down value for later use */ ret_val = hw->phy.ops.read_reg(hw, IGP01E1000_GMII_FIFO, &dev_spec->spd_default); if (ret_val) goto out; /* Disabling VLAN filtering */ DEBUGOUT("Initializing the IEEE VLAN\n"); mac->ops.clear_vfta(hw); /* Setup the receive address. */ e1000_init_rx_addrs_generic(hw, mac->rar_entry_count); /* Zero out the Multicast HASH table */ DEBUGOUT("Zeroing the MTA\n"); for (i = 0; i < mac->mta_reg_count; i++) { E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); /* * Avoid back to back register writes by adding the register * read (flush). This is to protect against some strange * bridge configurations that may issue Memory Write Block * (MWB) to our register space. */ E1000_WRITE_FLUSH(hw); } /* Setup link and flow control */ ret_val = mac->ops.setup_link(hw); txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0)); txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB; E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl); /* * Clear all of the statistics registers (clear on read). It is * important that we do this after we have tried to establish link * because the symbol error count will increment wildly if there * is no link. */ e1000_clear_hw_cntrs_82541(hw); out: return ret_val; } /** * e1000_get_link_up_info_82541 - Report speed and duplex * @hw: pointer to the HW structure * @speed: pointer to speed buffer * @duplex: pointer to duplex buffer * * Retrieve the current speed and duplex configuration. **/ STATIC s32 e1000_get_link_up_info_82541(struct e1000_hw *hw, u16 *speed, u16 *duplex) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 data; DEBUGFUNC("e1000_get_link_up_info_82541"); ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex); if (ret_val) goto out; if (!phy->speed_downgraded) goto out; /* * IGP01 PHY may advertise full duplex operation after speed * downgrade even if it is operating at half duplex. * Here we set the duplex settings to match the duplex in the * link partner's capabilities. */ ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_EXP, &data); if (ret_val) goto out; if (!(data & NWAY_ER_LP_NWAY_CAPS)) { *duplex = HALF_DUPLEX; } else { ret_val = phy->ops.read_reg(hw, PHY_LP_ABILITY, &data); if (ret_val) goto out; if (*speed == SPEED_100) { if (!(data & NWAY_LPAR_100TX_FD_CAPS)) *duplex = HALF_DUPLEX; } else if (*speed == SPEED_10) { if (!(data & NWAY_LPAR_10T_FD_CAPS)) *duplex = HALF_DUPLEX; } } out: return ret_val; } /** * e1000_phy_hw_reset_82541 - PHY hardware reset * @hw: pointer to the HW structure * * Verify the reset block is not blocking us from resetting. Acquire * semaphore (if necessary) and read/set/write the device control reset * bit in the PHY. Wait the appropriate delay time for the device to * reset and release the semaphore (if necessary). **/ STATIC s32 e1000_phy_hw_reset_82541(struct e1000_hw *hw) { s32 ret_val; u32 ledctl; DEBUGFUNC("e1000_phy_hw_reset_82541"); ret_val = e1000_phy_hw_reset_generic(hw); if (ret_val) goto out; e1000_phy_init_script_82541(hw); if ((hw->mac.type == e1000_82541) || (hw->mac.type == e1000_82547)) { /* Configure activity LED after PHY reset */ ledctl = E1000_READ_REG(hw, E1000_LEDCTL); ledctl &= IGP_ACTIVITY_LED_MASK; ledctl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl); } out: return ret_val; } /** * e1000_setup_copper_link_82541 - Configure copper link settings * @hw: pointer to the HW structure * * Calls the appropriate function to configure the link for auto-neg or forced * speed and duplex. Then we check for link, once link is established calls * to configure collision distance and flow control are called. If link is * not established, we return -E1000_ERR_PHY (-2). **/ STATIC s32 e1000_setup_copper_link_82541(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541; s32 ret_val; u32 ctrl, ledctl; DEBUGFUNC("e1000_setup_copper_link_82541"); ctrl = E1000_READ_REG(hw, E1000_CTRL); ctrl |= E1000_CTRL_SLU; ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); E1000_WRITE_REG(hw, E1000_CTRL, ctrl); /* Earlier revs of the IGP phy require us to force MDI. */ if (hw->mac.type == e1000_82541 || hw->mac.type == e1000_82547) { dev_spec->dsp_config = e1000_dsp_config_disabled; phy->mdix = 1; } else { dev_spec->dsp_config = e1000_dsp_config_enabled; } ret_val = e1000_copper_link_setup_igp(hw); if (ret_val) goto out; if (hw->mac.autoneg) { if (dev_spec->ffe_config == e1000_ffe_config_active) dev_spec->ffe_config = e1000_ffe_config_enabled; } /* Configure activity LED after Phy reset */ ledctl = E1000_READ_REG(hw, E1000_LEDCTL); ledctl &= IGP_ACTIVITY_LED_MASK; ledctl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl); ret_val = e1000_setup_copper_link_generic(hw); out: return ret_val; } /** * e1000_check_for_link_82541 - Check/Store link connection * @hw: pointer to the HW structure * * This checks the link condition of the adapter and stores the * results in the hw->mac structure. **/ STATIC s32 e1000_check_for_link_82541(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; s32 ret_val; bool link; DEBUGFUNC("e1000_check_for_link_82541"); /* * We only want to go out to the PHY registers to see if Auto-Neg * has completed and/or if our link status has changed. The * get_link_status flag is set upon receiving a Link Status * Change or Rx Sequence Error interrupt. */ if (!mac->get_link_status) { ret_val = E1000_SUCCESS; goto out; } /* * First we want to see if the MII Status Register reports * link. If so, then we want to get the current speed/duplex * of the PHY. */ ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); if (ret_val) goto out; if (!link) { ret_val = e1000_config_dsp_after_link_change_82541(hw, false); goto out; /* No link detected */ } mac->get_link_status = false; /* * Check if there was DownShift, must be checked * immediately after link-up */ e1000_check_downshift_generic(hw); /* * If we are forcing speed/duplex, then we simply return since * we have already determined whether we have link or not. */ if (!mac->autoneg) { ret_val = -E1000_ERR_CONFIG; goto out; } ret_val = e1000_config_dsp_after_link_change_82541(hw, true); /* * Auto-Neg is enabled. Auto Speed Detection takes care * of MAC speed/duplex configuration. So we only need to * configure Collision Distance in the MAC. */ mac->ops.config_collision_dist(hw); /* * Configure Flow Control now that Auto-Neg has completed. * First, we need to restore the desired flow control * settings because we may have had to re-autoneg with a * different link partner. */ ret_val = e1000_config_fc_after_link_up_generic(hw); if (ret_val) DEBUGOUT("Error configuring flow control\n"); out: return ret_val; } /** * e1000_config_dsp_after_link_change_82541 - Config DSP after link * @hw: pointer to the HW structure * @link_up: boolean flag for link up status * * Return E1000_ERR_PHY when failing to read/write the PHY, else E1000_SUCCESS * at any other case. * * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a * gigabit link is achieved to improve link quality. **/ STATIC s32 e1000_config_dsp_after_link_change_82541(struct e1000_hw *hw, bool link_up) { struct e1000_phy_info *phy = &hw->phy; struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541; s32 ret_val; u32 idle_errs = 0; u16 phy_data, phy_saved_data, speed, duplex, i; u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20; u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = { IGP01E1000_PHY_AGC_PARAM_A, IGP01E1000_PHY_AGC_PARAM_B, IGP01E1000_PHY_AGC_PARAM_C, IGP01E1000_PHY_AGC_PARAM_D}; DEBUGFUNC("e1000_config_dsp_after_link_change_82541"); if (link_up) { ret_val = hw->mac.ops.get_link_up_info(hw, &speed, &duplex); if (ret_val) { DEBUGOUT("Error getting link speed and duplex\n"); goto out; } if (speed != SPEED_1000) { ret_val = E1000_SUCCESS; goto out; } ret_val = phy->ops.get_cable_length(hw); if (ret_val) goto out; if ((dev_spec->dsp_config == e1000_dsp_config_enabled) && phy->min_cable_length >= 50) { for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { ret_val = phy->ops.read_reg(hw, dsp_reg_array[i], &phy_data); if (ret_val) goto out; phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; ret_val = phy->ops.write_reg(hw, dsp_reg_array[i], phy_data); if (ret_val) goto out; } dev_spec->dsp_config = e1000_dsp_config_activated; } if ((dev_spec->ffe_config != e1000_ffe_config_enabled) || (phy->min_cable_length >= 50)) { ret_val = E1000_SUCCESS; goto out; } /* clear previous idle error counts */ ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data); if (ret_val) goto out; for (i = 0; i < ffe_idle_err_timeout; i++) { usec_delay(1000); ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data); if (ret_val) goto out; idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT); if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) { dev_spec->ffe_config = e1000_ffe_config_active; ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_DSP_FFE, IGP01E1000_PHY_DSP_FFE_CM_CP); if (ret_val) goto out; break; } if (idle_errs) ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_100; } } else { if (dev_spec->dsp_config == e1000_dsp_config_activated) { /* * Save off the current value of register 0x2F5B * to be restored at the end of the routines. */ ret_val = phy->ops.read_reg(hw, 0x2F5B, &phy_saved_data); if (ret_val) goto out; /* Disable the PHY transmitter */ ret_val = phy->ops.write_reg(hw, 0x2F5B, 0x0003); if (ret_val) goto out; msec_delay_irq(20); ret_val = phy->ops.write_reg(hw, 0x0000, IGP01E1000_IEEE_FORCE_GIG); if (ret_val) goto out; for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { ret_val = phy->ops.read_reg(hw, dsp_reg_array[i], &phy_data); if (ret_val) goto out; phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS; ret_val = phy->ops.write_reg(hw, dsp_reg_array[i], phy_data); if (ret_val) goto out; } ret_val = phy->ops.write_reg(hw, 0x0000, IGP01E1000_IEEE_RESTART_AUTONEG); if (ret_val) goto out; msec_delay_irq(20); /* Now enable the transmitter */ ret_val = phy->ops.write_reg(hw, 0x2F5B, phy_saved_data); if (ret_val) goto out; dev_spec->dsp_config = e1000_dsp_config_enabled; } if (dev_spec->ffe_config != e1000_ffe_config_active) { ret_val = E1000_SUCCESS; goto out; } /* * Save off the current value of register 0x2F5B * to be restored at the end of the routines. */ ret_val = phy->ops.read_reg(hw, 0x2F5B, &phy_saved_data); if (ret_val) goto out; /* Disable the PHY transmitter */ ret_val = phy->ops.write_reg(hw, 0x2F5B, 0x0003); if (ret_val) goto out; msec_delay_irq(20); ret_val = phy->ops.write_reg(hw, 0x0000, IGP01E1000_IEEE_FORCE_GIG); if (ret_val) goto out; ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_DSP_FFE, IGP01E1000_PHY_DSP_FFE_DEFAULT); if (ret_val) goto out; ret_val = phy->ops.write_reg(hw, 0x0000, IGP01E1000_IEEE_RESTART_AUTONEG); if (ret_val) goto out; msec_delay_irq(20); /* Now enable the transmitter */ ret_val = phy->ops.write_reg(hw, 0x2F5B, phy_saved_data); if (ret_val) goto out; dev_spec->ffe_config = e1000_ffe_config_enabled; } out: return ret_val; } /** * e1000_get_cable_length_igp_82541 - Determine cable length for igp PHY * @hw: pointer to the HW structure * * The automatic gain control (agc) normalizes the amplitude of the * received signal, adjusting for the attenuation produced by the * cable. By reading the AGC registers, which represent the * combination of coarse and fine gain value, the value can be put * into a lookup table to obtain the approximate cable length * for each channel. **/ STATIC s32 e1000_get_cable_length_igp_82541(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val = E1000_SUCCESS; u16 i, data; u16 cur_agc_value, agc_value = 0; u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE; u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {IGP01E1000_PHY_AGC_A, IGP01E1000_PHY_AGC_B, IGP01E1000_PHY_AGC_C, IGP01E1000_PHY_AGC_D}; DEBUGFUNC("e1000_get_cable_length_igp_82541"); /* Read the AGC registers for all channels */ for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &data); if (ret_val) goto out; cur_agc_value = data >> IGP01E1000_AGC_LENGTH_SHIFT; /* Bounds checking */ if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) || (cur_agc_value == 0)) { ret_val = -E1000_ERR_PHY; goto out; } agc_value += cur_agc_value; if (min_agc_value > cur_agc_value) min_agc_value = cur_agc_value; } /* Remove the minimal AGC result for length < 50m */ if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * 50) { agc_value -= min_agc_value; /* Average the three remaining channels for the length. */ agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1); } else { /* Average the channels for the length. */ agc_value /= IGP01E1000_PHY_CHANNEL_NUM; } phy->min_cable_length = (e1000_igp_cable_length_table[agc_value] > IGP01E1000_AGC_RANGE) ? (e1000_igp_cable_length_table[agc_value] - IGP01E1000_AGC_RANGE) : 0; phy->max_cable_length = e1000_igp_cable_length_table[agc_value] + IGP01E1000_AGC_RANGE; phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; out: return ret_val; } /** * e1000_set_d3_lplu_state_82541 - Sets low power link up state for D3 * @hw: pointer to the HW structure * @active: boolean used to enable/disable lplu * * Success returns 0, Failure returns 1 * * The low power link up (lplu) state is set to the power management level D3 * and SmartSpeed is disabled when active is true, else clear lplu for D3 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU * is used during Dx states where the power conservation is most important. * During driver activity, SmartSpeed should be enabled so performance is * maintained. **/ STATIC s32 e1000_set_d3_lplu_state_82541(struct e1000_hw *hw, bool active) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 data; DEBUGFUNC("e1000_set_d3_lplu_state_82541"); switch (hw->mac.type) { case e1000_82541_rev_2: case e1000_82547_rev_2: break; default: ret_val = e1000_set_d3_lplu_state_generic(hw, active); goto out; break; } ret_val = phy->ops.read_reg(hw, IGP01E1000_GMII_FIFO, &data); if (ret_val) goto out; if (!active) { data &= ~IGP01E1000_GMII_FLEX_SPD; ret_val = phy->ops.write_reg(hw, IGP01E1000_GMII_FIFO, data); if (ret_val) goto out; /* * LPLU and SmartSpeed are mutually exclusive. LPLU is used * during Dx states where the power conservation is most * important. During driver activity we should enable * SmartSpeed, so performance is maintained. */ if (phy->smart_speed == e1000_smart_speed_on) { ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &data); if (ret_val) goto out; data |= IGP01E1000_PSCFR_SMART_SPEED; ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, data); if (ret_val) goto out; } else if (phy->smart_speed == e1000_smart_speed_off) { ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &data); if (ret_val) goto out; data &= ~IGP01E1000_PSCFR_SMART_SPEED; ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, data); if (ret_val) goto out; } } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { data |= IGP01E1000_GMII_FLEX_SPD; ret_val = phy->ops.write_reg(hw, IGP01E1000_GMII_FIFO, data); if (ret_val) goto out; /* When LPLU is enabled, we should disable SmartSpeed */ ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &data); if (ret_val) goto out; data &= ~IGP01E1000_PSCFR_SMART_SPEED; ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, data); } out: return ret_val; } /** * e1000_setup_led_82541 - Configures SW controllable LED * @hw: pointer to the HW structure * * This prepares the SW controllable LED for use and saves the current state * of the LED so it can be later restored. **/ STATIC s32 e1000_setup_led_82541(struct e1000_hw *hw) { struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541; s32 ret_val; DEBUGFUNC("e1000_setup_led_82541"); ret_val = hw->phy.ops.read_reg(hw, IGP01E1000_GMII_FIFO, &dev_spec->spd_default); if (ret_val) goto out; ret_val = hw->phy.ops.write_reg(hw, IGP01E1000_GMII_FIFO, (u16)(dev_spec->spd_default & ~IGP01E1000_GMII_SPD)); if (ret_val) goto out; E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1); out: return ret_val; } /** * e1000_cleanup_led_82541 - Set LED config to default operation * @hw: pointer to the HW structure * * Remove the current LED configuration and set the LED configuration * to the default value, saved from the EEPROM. **/ STATIC s32 e1000_cleanup_led_82541(struct e1000_hw *hw) { struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541; s32 ret_val; DEBUGFUNC("e1000_cleanup_led_82541"); ret_val = hw->phy.ops.write_reg(hw, IGP01E1000_GMII_FIFO, dev_spec->spd_default); if (ret_val) goto out; E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default); out: return ret_val; } /** * e1000_phy_init_script_82541 - Initialize GbE PHY * @hw: pointer to the HW structure * * Initializes the IGP PHY. **/ STATIC s32 e1000_phy_init_script_82541(struct e1000_hw *hw) { struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541; u32 ret_val; u16 phy_saved_data; DEBUGFUNC("e1000_phy_init_script_82541"); if (!dev_spec->phy_init_script) { ret_val = E1000_SUCCESS; goto out; } /* Delay after phy reset to enable NVM configuration to load */ msec_delay(20); /* * Save off the current value of register 0x2F5B to be restored at * the end of this routine. */ ret_val = hw->phy.ops.read_reg(hw, 0x2F5B, &phy_saved_data); /* Disabled the PHY transmitter */ hw->phy.ops.write_reg(hw, 0x2F5B, 0x0003); msec_delay(20); hw->phy.ops.write_reg(hw, 0x0000, 0x0140); msec_delay(5); switch (hw->mac.type) { case e1000_82541: case e1000_82547: hw->phy.ops.write_reg(hw, 0x1F95, 0x0001); hw->phy.ops.write_reg(hw, 0x1F71, 0xBD21); hw->phy.ops.write_reg(hw, 0x1F79, 0x0018); hw->phy.ops.write_reg(hw, 0x1F30, 0x1600); hw->phy.ops.write_reg(hw, 0x1F31, 0x0014); hw->phy.ops.write_reg(hw, 0x1F32, 0x161C); hw->phy.ops.write_reg(hw, 0x1F94, 0x0003); hw->phy.ops.write_reg(hw, 0x1F96, 0x003F); hw->phy.ops.write_reg(hw, 0x2010, 0x0008); break; case e1000_82541_rev_2: case e1000_82547_rev_2: hw->phy.ops.write_reg(hw, 0x1F73, 0x0099); break; default: break; } hw->phy.ops.write_reg(hw, 0x0000, 0x3300); msec_delay(20); /* Now enable the transmitter */ hw->phy.ops.write_reg(hw, 0x2F5B, phy_saved_data); if (hw->mac.type == e1000_82547) { u16 fused, fine, coarse; /* Move to analog registers page */ hw->phy.ops.read_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused); if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) { hw->phy.ops.read_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused); fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK; coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK; if (coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) { coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10; fine -= IGP01E1000_ANALOG_FUSE_FINE_1; } else if (coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH) fine -= IGP01E1000_ANALOG_FUSE_FINE_10; fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) | (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) | (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK); hw->phy.ops.write_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused); hw->phy.ops.write_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS, IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL); } } out: return ret_val; } /** * e1000_init_script_state_82541 - Enable/Disable PHY init script * @hw: pointer to the HW structure * @state: boolean value used to enable/disable PHY init script * * Allows the driver to enable/disable the PHY init script, if the PHY is an * IGP PHY. **/ void e1000_init_script_state_82541(struct e1000_hw *hw, bool state) { struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541; DEBUGFUNC("e1000_init_script_state_82541"); if (hw->phy.type != e1000_phy_igp) { DEBUGOUT("Initialization script not necessary.\n"); goto out; } dev_spec->phy_init_script = state; out: return; } /** * e1000_power_down_phy_copper_82541 - Remove link in case of PHY power down * @hw: pointer to the HW structure * * In the case of a PHY power down to save power, or to turn off link during a * driver unload, or wake on lan is not enabled, remove the link. **/ STATIC void e1000_power_down_phy_copper_82541(struct e1000_hw *hw) { /* If the management interface is not enabled, then power down */ if (!(E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_SMBUS_EN)) e1000_power_down_phy_copper(hw); return; } /** * e1000_clear_hw_cntrs_82541 - Clear device specific hardware counters * @hw: pointer to the HW structure * * Clears the hardware counters by reading the counter registers. **/ STATIC void e1000_clear_hw_cntrs_82541(struct e1000_hw *hw) { DEBUGFUNC("e1000_clear_hw_cntrs_82541"); e1000_clear_hw_cntrs_base_generic(hw); E1000_READ_REG(hw, E1000_PRC64); E1000_READ_REG(hw, E1000_PRC127); E1000_READ_REG(hw, E1000_PRC255); E1000_READ_REG(hw, E1000_PRC511); E1000_READ_REG(hw, E1000_PRC1023); E1000_READ_REG(hw, E1000_PRC1522); E1000_READ_REG(hw, E1000_PTC64); E1000_READ_REG(hw, E1000_PTC127); E1000_READ_REG(hw, E1000_PTC255); E1000_READ_REG(hw, E1000_PTC511); E1000_READ_REG(hw, E1000_PTC1023); E1000_READ_REG(hw, E1000_PTC1522); E1000_READ_REG(hw, E1000_ALGNERRC); E1000_READ_REG(hw, E1000_RXERRC); E1000_READ_REG(hw, E1000_TNCRS); E1000_READ_REG(hw, E1000_CEXTERR); E1000_READ_REG(hw, E1000_TSCTC); E1000_READ_REG(hw, E1000_TSCTFC); E1000_READ_REG(hw, E1000_MGTPRC); E1000_READ_REG(hw, E1000_MGTPDC); E1000_READ_REG(hw, E1000_MGTPTC); }