/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2015-2017 Intel Corporation */ #include #include #include #include #include #include #include #include #include "aesni_mb_pmd_private.h" #define AES_CCM_DIGEST_MIN_LEN 4 #define AES_CCM_DIGEST_MAX_LEN 16 #define HMAC_MAX_BLOCK_SIZE 128 static uint8_t cryptodev_driver_id; typedef void (*hash_one_block_t)(const void *data, void *digest); typedef void (*aes_keyexp_t)(const void *key, void *enc_exp_keys, void *dec_exp_keys); /** * Calculate the authentication pre-computes * * @param one_block_hash Function pointer to calculate digest on ipad/opad * @param ipad Inner pad output byte array * @param opad Outer pad output byte array * @param hkey Authentication key * @param hkey_len Authentication key length * @param blocksize Block size of selected hash algo */ static void calculate_auth_precomputes(hash_one_block_t one_block_hash, uint8_t *ipad, uint8_t *opad, const uint8_t *hkey, uint16_t hkey_len, uint16_t blocksize) { unsigned i, length; uint8_t ipad_buf[blocksize] __rte_aligned(16); uint8_t opad_buf[blocksize] __rte_aligned(16); /* Setup inner and outer pads */ memset(ipad_buf, HMAC_IPAD_VALUE, blocksize); memset(opad_buf, HMAC_OPAD_VALUE, blocksize); /* XOR hash key with inner and outer pads */ length = hkey_len > blocksize ? blocksize : hkey_len; for (i = 0; i < length; i++) { ipad_buf[i] ^= hkey[i]; opad_buf[i] ^= hkey[i]; } /* Compute partial hashes */ (*one_block_hash)(ipad_buf, ipad); (*one_block_hash)(opad_buf, opad); /* Clean up stack */ memset(ipad_buf, 0, blocksize); memset(opad_buf, 0, blocksize); } /** Get xform chain order */ static enum aesni_mb_operation aesni_mb_get_chain_order(const struct rte_crypto_sym_xform *xform) { if (xform == NULL) return AESNI_MB_OP_NOT_SUPPORTED; if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER) { if (xform->next == NULL) return AESNI_MB_OP_CIPHER_ONLY; if (xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH) return AESNI_MB_OP_CIPHER_HASH; } if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH) { if (xform->next == NULL) return AESNI_MB_OP_HASH_ONLY; if (xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER) return AESNI_MB_OP_HASH_CIPHER; } #if IMB_VERSION_NUM > IMB_VERSION(0, 52, 0) if (xform->type == RTE_CRYPTO_SYM_XFORM_AEAD) { if (xform->aead.op == RTE_CRYPTO_AEAD_OP_ENCRYPT) { /* * CCM requires to hash first and cipher later * when encrypting */ if (xform->aead.algo == RTE_CRYPTO_AEAD_AES_CCM) return AESNI_MB_OP_AEAD_HASH_CIPHER; else return AESNI_MB_OP_AEAD_CIPHER_HASH; } else { if (xform->aead.algo == RTE_CRYPTO_AEAD_AES_CCM) return AESNI_MB_OP_AEAD_CIPHER_HASH; else return AESNI_MB_OP_AEAD_HASH_CIPHER; } } #else if (xform->type == RTE_CRYPTO_SYM_XFORM_AEAD) { if (xform->aead.algo == RTE_CRYPTO_AEAD_AES_CCM || xform->aead.algo == RTE_CRYPTO_AEAD_AES_GCM) { if (xform->aead.op == RTE_CRYPTO_AEAD_OP_ENCRYPT) return AESNI_MB_OP_AEAD_CIPHER_HASH; else return AESNI_MB_OP_AEAD_HASH_CIPHER; } } #endif return AESNI_MB_OP_NOT_SUPPORTED; } /** Set session authentication parameters */ static int aesni_mb_set_session_auth_parameters(const MB_MGR *mb_mgr, struct aesni_mb_session *sess, const struct rte_crypto_sym_xform *xform) { hash_one_block_t hash_oneblock_fn = NULL; unsigned int key_larger_block_size = 0; uint8_t hashed_key[HMAC_MAX_BLOCK_SIZE] = { 0 }; uint32_t auth_precompute = 1; if (xform == NULL) { sess->auth.algo = NULL_HASH; return 0; } if (xform->type != RTE_CRYPTO_SYM_XFORM_AUTH) { AESNI_MB_LOG(ERR, "Crypto xform struct not of type auth"); return -1; } /* Set the request digest size */ sess->auth.req_digest_len = xform->auth.digest_length; /* Select auth generate/verify */ sess->auth.operation = xform->auth.op; /* Set Authentication Parameters */ if (xform->auth.algo == RTE_CRYPTO_AUTH_AES_XCBC_MAC) { sess->auth.algo = AES_XCBC; uint16_t xcbc_mac_digest_len = get_truncated_digest_byte_length(AES_XCBC); if (sess->auth.req_digest_len != xcbc_mac_digest_len) { AESNI_MB_LOG(ERR, "Invalid digest size\n"); return -EINVAL; } sess->auth.gen_digest_len = sess->auth.req_digest_len; IMB_AES_XCBC_KEYEXP(mb_mgr, xform->auth.key.data, sess->auth.xcbc.k1_expanded, sess->auth.xcbc.k2, sess->auth.xcbc.k3); return 0; } if (xform->auth.algo == RTE_CRYPTO_AUTH_AES_CMAC) { uint32_t dust[4*15]; sess->auth.algo = AES_CMAC; uint16_t cmac_digest_len = get_digest_byte_length(AES_CMAC); if (sess->auth.req_digest_len > cmac_digest_len) { AESNI_MB_LOG(ERR, "Invalid digest size\n"); return -EINVAL; } /* * Multi-buffer lib supports digest sizes from 4 to 16 bytes * in version 0.50 and sizes of 12 and 16 bytes, * in version 0.49. * If size requested is different, generate the full digest * (16 bytes) in a temporary location and then memcpy * the requested number of bytes. */ if (sess->auth.req_digest_len < 4) sess->auth.gen_digest_len = cmac_digest_len; else sess->auth.gen_digest_len = sess->auth.req_digest_len; IMB_AES_KEYEXP_128(mb_mgr, xform->auth.key.data, sess->auth.cmac.expkey, dust); IMB_AES_CMAC_SUBKEY_GEN_128(mb_mgr, sess->auth.cmac.expkey, sess->auth.cmac.skey1, sess->auth.cmac.skey2); return 0; } if (xform->auth.algo == RTE_CRYPTO_AUTH_AES_GMAC) { if (xform->auth.op == RTE_CRYPTO_AUTH_OP_GENERATE) { sess->cipher.direction = ENCRYPT; sess->chain_order = CIPHER_HASH; } else sess->cipher.direction = DECRYPT; sess->auth.algo = AES_GMAC; /* * Multi-buffer lib supports 8, 12 and 16 bytes of digest. * If size requested is different, generate the full digest * (16 bytes) in a temporary location and then memcpy * the requested number of bytes. */ if (sess->auth.req_digest_len != 16 && sess->auth.req_digest_len != 12 && sess->auth.req_digest_len != 8) { sess->auth.gen_digest_len = 16; } else { sess->auth.gen_digest_len = sess->auth.req_digest_len; } sess->iv.length = xform->auth.iv.length; sess->iv.offset = xform->auth.iv.offset; switch (xform->auth.key.length) { case AES_128_BYTES: IMB_AES128_GCM_PRE(mb_mgr, xform->auth.key.data, &sess->cipher.gcm_key); sess->cipher.key_length_in_bytes = AES_128_BYTES; break; case AES_192_BYTES: IMB_AES192_GCM_PRE(mb_mgr, xform->auth.key.data, &sess->cipher.gcm_key); sess->cipher.key_length_in_bytes = AES_192_BYTES; break; case AES_256_BYTES: IMB_AES256_GCM_PRE(mb_mgr, xform->auth.key.data, &sess->cipher.gcm_key); sess->cipher.key_length_in_bytes = AES_256_BYTES; break; default: RTE_LOG(ERR, PMD, "failed to parse test type\n"); return -EINVAL; } return 0; } switch (xform->auth.algo) { case RTE_CRYPTO_AUTH_MD5_HMAC: sess->auth.algo = MD5; hash_oneblock_fn = mb_mgr->md5_one_block; break; case RTE_CRYPTO_AUTH_SHA1_HMAC: sess->auth.algo = SHA1; hash_oneblock_fn = mb_mgr->sha1_one_block; if (xform->auth.key.length > get_auth_algo_blocksize(SHA1)) { IMB_SHA1(mb_mgr, xform->auth.key.data, xform->auth.key.length, hashed_key); key_larger_block_size = 1; } break; case RTE_CRYPTO_AUTH_SHA1: sess->auth.algo = PLAIN_SHA1; auth_precompute = 0; break; case RTE_CRYPTO_AUTH_SHA224_HMAC: sess->auth.algo = SHA_224; hash_oneblock_fn = mb_mgr->sha224_one_block; if (xform->auth.key.length > get_auth_algo_blocksize(SHA_224)) { IMB_SHA224(mb_mgr, xform->auth.key.data, xform->auth.key.length, hashed_key); key_larger_block_size = 1; } break; case RTE_CRYPTO_AUTH_SHA224: sess->auth.algo = PLAIN_SHA_224; auth_precompute = 0; break; case RTE_CRYPTO_AUTH_SHA256_HMAC: sess->auth.algo = SHA_256; hash_oneblock_fn = mb_mgr->sha256_one_block; if (xform->auth.key.length > get_auth_algo_blocksize(SHA_256)) { IMB_SHA256(mb_mgr, xform->auth.key.data, xform->auth.key.length, hashed_key); key_larger_block_size = 1; } break; case RTE_CRYPTO_AUTH_SHA256: sess->auth.algo = PLAIN_SHA_256; auth_precompute = 0; break; case RTE_CRYPTO_AUTH_SHA384_HMAC: sess->auth.algo = SHA_384; hash_oneblock_fn = mb_mgr->sha384_one_block; if (xform->auth.key.length > get_auth_algo_blocksize(SHA_384)) { IMB_SHA384(mb_mgr, xform->auth.key.data, xform->auth.key.length, hashed_key); key_larger_block_size = 1; } break; case RTE_CRYPTO_AUTH_SHA384: sess->auth.algo = PLAIN_SHA_384; auth_precompute = 0; break; case RTE_CRYPTO_AUTH_SHA512_HMAC: sess->auth.algo = SHA_512; hash_oneblock_fn = mb_mgr->sha512_one_block; if (xform->auth.key.length > get_auth_algo_blocksize(SHA_512)) { IMB_SHA512(mb_mgr, xform->auth.key.data, xform->auth.key.length, hashed_key); key_larger_block_size = 1; } break; case RTE_CRYPTO_AUTH_SHA512: sess->auth.algo = PLAIN_SHA_512; auth_precompute = 0; break; default: AESNI_MB_LOG(ERR, "Unsupported authentication algorithm selection"); return -ENOTSUP; } uint16_t trunc_digest_size = get_truncated_digest_byte_length(sess->auth.algo); uint16_t full_digest_size = get_digest_byte_length(sess->auth.algo); if (sess->auth.req_digest_len > full_digest_size || sess->auth.req_digest_len == 0) { AESNI_MB_LOG(ERR, "Invalid digest size\n"); return -EINVAL; } if (sess->auth.req_digest_len != trunc_digest_size && sess->auth.req_digest_len != full_digest_size) sess->auth.gen_digest_len = full_digest_size; else sess->auth.gen_digest_len = sess->auth.req_digest_len; /* Plain SHA does not require precompute key */ if (auth_precompute == 0) return 0; /* Calculate Authentication precomputes */ if (key_larger_block_size) { calculate_auth_precomputes(hash_oneblock_fn, sess->auth.pads.inner, sess->auth.pads.outer, hashed_key, xform->auth.key.length, get_auth_algo_blocksize(sess->auth.algo)); } else { calculate_auth_precomputes(hash_oneblock_fn, sess->auth.pads.inner, sess->auth.pads.outer, xform->auth.key.data, xform->auth.key.length, get_auth_algo_blocksize(sess->auth.algo)); } return 0; } /** Set session cipher parameters */ static int aesni_mb_set_session_cipher_parameters(const MB_MGR *mb_mgr, struct aesni_mb_session *sess, const struct rte_crypto_sym_xform *xform) { uint8_t is_aes = 0; uint8_t is_3DES = 0; if (xform == NULL) { sess->cipher.mode = NULL_CIPHER; return 0; } if (xform->type != RTE_CRYPTO_SYM_XFORM_CIPHER) { AESNI_MB_LOG(ERR, "Crypto xform struct not of type cipher"); return -EINVAL; } /* Select cipher direction */ switch (xform->cipher.op) { case RTE_CRYPTO_CIPHER_OP_ENCRYPT: sess->cipher.direction = ENCRYPT; break; case RTE_CRYPTO_CIPHER_OP_DECRYPT: sess->cipher.direction = DECRYPT; break; default: AESNI_MB_LOG(ERR, "Invalid cipher operation parameter"); return -EINVAL; } /* Select cipher mode */ switch (xform->cipher.algo) { case RTE_CRYPTO_CIPHER_AES_CBC: sess->cipher.mode = CBC; is_aes = 1; break; case RTE_CRYPTO_CIPHER_AES_CTR: sess->cipher.mode = CNTR; is_aes = 1; break; case RTE_CRYPTO_CIPHER_AES_DOCSISBPI: sess->cipher.mode = DOCSIS_SEC_BPI; is_aes = 1; break; case RTE_CRYPTO_CIPHER_DES_CBC: sess->cipher.mode = DES; break; case RTE_CRYPTO_CIPHER_DES_DOCSISBPI: sess->cipher.mode = DOCSIS_DES; break; case RTE_CRYPTO_CIPHER_3DES_CBC: sess->cipher.mode = DES3; is_3DES = 1; break; default: AESNI_MB_LOG(ERR, "Unsupported cipher mode parameter"); return -ENOTSUP; } /* Set IV parameters */ sess->iv.offset = xform->cipher.iv.offset; sess->iv.length = xform->cipher.iv.length; /* Check key length and choose key expansion function for AES */ if (is_aes) { switch (xform->cipher.key.length) { case AES_128_BYTES: sess->cipher.key_length_in_bytes = AES_128_BYTES; IMB_AES_KEYEXP_128(mb_mgr, xform->cipher.key.data, sess->cipher.expanded_aes_keys.encode, sess->cipher.expanded_aes_keys.decode); break; case AES_192_BYTES: sess->cipher.key_length_in_bytes = AES_192_BYTES; IMB_AES_KEYEXP_192(mb_mgr, xform->cipher.key.data, sess->cipher.expanded_aes_keys.encode, sess->cipher.expanded_aes_keys.decode); break; case AES_256_BYTES: sess->cipher.key_length_in_bytes = AES_256_BYTES; IMB_AES_KEYEXP_256(mb_mgr, xform->cipher.key.data, sess->cipher.expanded_aes_keys.encode, sess->cipher.expanded_aes_keys.decode); break; default: AESNI_MB_LOG(ERR, "Invalid cipher key length"); return -EINVAL; } } else if (is_3DES) { uint64_t *keys[3] = {sess->cipher.exp_3des_keys.key[0], sess->cipher.exp_3des_keys.key[1], sess->cipher.exp_3des_keys.key[2]}; switch (xform->cipher.key.length) { case 24: IMB_DES_KEYSCHED(mb_mgr, keys[0], xform->cipher.key.data); IMB_DES_KEYSCHED(mb_mgr, keys[1], xform->cipher.key.data + 8); IMB_DES_KEYSCHED(mb_mgr, keys[2], xform->cipher.key.data + 16); /* Initialize keys - 24 bytes: [K1-K2-K3] */ sess->cipher.exp_3des_keys.ks_ptr[0] = keys[0]; sess->cipher.exp_3des_keys.ks_ptr[1] = keys[1]; sess->cipher.exp_3des_keys.ks_ptr[2] = keys[2]; break; case 16: IMB_DES_KEYSCHED(mb_mgr, keys[0], xform->cipher.key.data); IMB_DES_KEYSCHED(mb_mgr, keys[1], xform->cipher.key.data + 8); /* Initialize keys - 16 bytes: [K1=K1,K2=K2,K3=K1] */ sess->cipher.exp_3des_keys.ks_ptr[0] = keys[0]; sess->cipher.exp_3des_keys.ks_ptr[1] = keys[1]; sess->cipher.exp_3des_keys.ks_ptr[2] = keys[0]; break; case 8: IMB_DES_KEYSCHED(mb_mgr, keys[0], xform->cipher.key.data); /* Initialize keys - 8 bytes: [K1 = K2 = K3] */ sess->cipher.exp_3des_keys.ks_ptr[0] = keys[0]; sess->cipher.exp_3des_keys.ks_ptr[1] = keys[0]; sess->cipher.exp_3des_keys.ks_ptr[2] = keys[0]; break; default: AESNI_MB_LOG(ERR, "Invalid cipher key length"); return -EINVAL; } sess->cipher.key_length_in_bytes = 24; } else { if (xform->cipher.key.length != 8) { AESNI_MB_LOG(ERR, "Invalid cipher key length"); return -EINVAL; } sess->cipher.key_length_in_bytes = 8; IMB_DES_KEYSCHED(mb_mgr, (uint64_t *)sess->cipher.expanded_aes_keys.encode, xform->cipher.key.data); IMB_DES_KEYSCHED(mb_mgr, (uint64_t *)sess->cipher.expanded_aes_keys.decode, xform->cipher.key.data); } return 0; } static int aesni_mb_set_session_aead_parameters(const MB_MGR *mb_mgr, struct aesni_mb_session *sess, const struct rte_crypto_sym_xform *xform) { switch (xform->aead.op) { case RTE_CRYPTO_AEAD_OP_ENCRYPT: sess->cipher.direction = ENCRYPT; sess->auth.operation = RTE_CRYPTO_AUTH_OP_GENERATE; break; case RTE_CRYPTO_AEAD_OP_DECRYPT: sess->cipher.direction = DECRYPT; sess->auth.operation = RTE_CRYPTO_AUTH_OP_VERIFY; break; default: AESNI_MB_LOG(ERR, "Invalid aead operation parameter"); return -EINVAL; } switch (xform->aead.algo) { case RTE_CRYPTO_AEAD_AES_CCM: sess->cipher.mode = CCM; sess->auth.algo = AES_CCM; /* Check key length and choose key expansion function for AES */ switch (xform->aead.key.length) { case AES_128_BYTES: sess->cipher.key_length_in_bytes = AES_128_BYTES; IMB_AES_KEYEXP_128(mb_mgr, xform->aead.key.data, sess->cipher.expanded_aes_keys.encode, sess->cipher.expanded_aes_keys.decode); break; default: AESNI_MB_LOG(ERR, "Invalid cipher key length"); return -EINVAL; } break; case RTE_CRYPTO_AEAD_AES_GCM: sess->cipher.mode = GCM; sess->auth.algo = AES_GMAC; switch (xform->aead.key.length) { case AES_128_BYTES: sess->cipher.key_length_in_bytes = AES_128_BYTES; IMB_AES128_GCM_PRE(mb_mgr, xform->aead.key.data, &sess->cipher.gcm_key); break; case AES_192_BYTES: sess->cipher.key_length_in_bytes = AES_192_BYTES; IMB_AES192_GCM_PRE(mb_mgr, xform->aead.key.data, &sess->cipher.gcm_key); break; case AES_256_BYTES: sess->cipher.key_length_in_bytes = AES_256_BYTES; IMB_AES256_GCM_PRE(mb_mgr, xform->aead.key.data, &sess->cipher.gcm_key); break; default: AESNI_MB_LOG(ERR, "Invalid cipher key length"); return -EINVAL; } break; default: AESNI_MB_LOG(ERR, "Unsupported aead mode parameter"); return -ENOTSUP; } /* Set IV parameters */ sess->iv.offset = xform->aead.iv.offset; sess->iv.length = xform->aead.iv.length; sess->auth.req_digest_len = xform->aead.digest_length; /* CCM digests must be between 4 and 16 and an even number */ if (sess->auth.req_digest_len < AES_CCM_DIGEST_MIN_LEN || sess->auth.req_digest_len > AES_CCM_DIGEST_MAX_LEN || (sess->auth.req_digest_len & 1) == 1) { AESNI_MB_LOG(ERR, "Invalid digest size\n"); return -EINVAL; } sess->auth.gen_digest_len = sess->auth.req_digest_len; return 0; } /** Parse crypto xform chain and set private session parameters */ int aesni_mb_set_session_parameters(const MB_MGR *mb_mgr, struct aesni_mb_session *sess, const struct rte_crypto_sym_xform *xform) { const struct rte_crypto_sym_xform *auth_xform = NULL; const struct rte_crypto_sym_xform *cipher_xform = NULL; const struct rte_crypto_sym_xform *aead_xform = NULL; int ret; /* Select Crypto operation - hash then cipher / cipher then hash */ switch (aesni_mb_get_chain_order(xform)) { case AESNI_MB_OP_HASH_CIPHER: sess->chain_order = HASH_CIPHER; auth_xform = xform; cipher_xform = xform->next; break; case AESNI_MB_OP_CIPHER_HASH: sess->chain_order = CIPHER_HASH; auth_xform = xform->next; cipher_xform = xform; break; case AESNI_MB_OP_HASH_ONLY: sess->chain_order = HASH_CIPHER; auth_xform = xform; cipher_xform = NULL; break; case AESNI_MB_OP_CIPHER_ONLY: /* * Multi buffer library operates only at two modes, * CIPHER_HASH and HASH_CIPHER. When doing ciphering only, * chain order depends on cipher operation: encryption is always * the first operation and decryption the last one. */ if (xform->cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) sess->chain_order = CIPHER_HASH; else sess->chain_order = HASH_CIPHER; auth_xform = NULL; cipher_xform = xform; break; case AESNI_MB_OP_AEAD_CIPHER_HASH: sess->chain_order = CIPHER_HASH; sess->aead.aad_len = xform->aead.aad_length; aead_xform = xform; break; case AESNI_MB_OP_AEAD_HASH_CIPHER: sess->chain_order = HASH_CIPHER; sess->aead.aad_len = xform->aead.aad_length; aead_xform = xform; break; case AESNI_MB_OP_NOT_SUPPORTED: default: AESNI_MB_LOG(ERR, "Unsupported operation chain order parameter"); return -ENOTSUP; } /* Default IV length = 0 */ sess->iv.length = 0; ret = aesni_mb_set_session_auth_parameters(mb_mgr, sess, auth_xform); if (ret != 0) { AESNI_MB_LOG(ERR, "Invalid/unsupported authentication parameters"); return ret; } ret = aesni_mb_set_session_cipher_parameters(mb_mgr, sess, cipher_xform); if (ret != 0) { AESNI_MB_LOG(ERR, "Invalid/unsupported cipher parameters"); return ret; } if (aead_xform) { ret = aesni_mb_set_session_aead_parameters(mb_mgr, sess, aead_xform); if (ret != 0) { AESNI_MB_LOG(ERR, "Invalid/unsupported aead parameters"); return ret; } } return 0; } /** * burst enqueue, place crypto operations on ingress queue for processing. * * @param __qp Queue Pair to process * @param ops Crypto operations for processing * @param nb_ops Number of crypto operations for processing * * @return * - Number of crypto operations enqueued */ static uint16_t aesni_mb_pmd_enqueue_burst(void *__qp, struct rte_crypto_op **ops, uint16_t nb_ops) { struct aesni_mb_qp *qp = __qp; unsigned int nb_enqueued; nb_enqueued = rte_ring_enqueue_burst(qp->ingress_queue, (void **)ops, nb_ops, NULL); qp->stats.enqueued_count += nb_enqueued; return nb_enqueued; } /** Get multi buffer session */ static inline struct aesni_mb_session * get_session(struct aesni_mb_qp *qp, struct rte_crypto_op *op) { struct aesni_mb_session *sess = NULL; if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION) { if (likely(op->sym->session != NULL)) sess = (struct aesni_mb_session *) get_sym_session_private_data( op->sym->session, cryptodev_driver_id); } else { void *_sess = rte_cryptodev_sym_session_create(qp->sess_mp); void *_sess_private_data = NULL; if (_sess == NULL) return NULL; if (rte_mempool_get(qp->sess_mp_priv, (void **)&_sess_private_data)) return NULL; sess = (struct aesni_mb_session *)_sess_private_data; if (unlikely(aesni_mb_set_session_parameters(qp->mb_mgr, sess, op->sym->xform) != 0)) { rte_mempool_put(qp->sess_mp, _sess); rte_mempool_put(qp->sess_mp_priv, _sess_private_data); sess = NULL; } op->sym->session = (struct rte_cryptodev_sym_session *)_sess; set_sym_session_private_data(op->sym->session, cryptodev_driver_id, _sess_private_data); } if (unlikely(sess == NULL)) op->status = RTE_CRYPTO_OP_STATUS_INVALID_SESSION; return sess; } static inline uint64_t auth_start_offset(struct rte_crypto_op *op, struct aesni_mb_session *session, uint32_t oop) { struct rte_mbuf *m_src, *m_dst; uint8_t *p_src, *p_dst; uintptr_t u_src, u_dst; uint32_t cipher_end, auth_end; /* Only cipher then hash needs special calculation. */ if (!oop || session->chain_order != CIPHER_HASH) return op->sym->auth.data.offset; m_src = op->sym->m_src; m_dst = op->sym->m_dst; p_src = rte_pktmbuf_mtod(m_src, uint8_t *); p_dst = rte_pktmbuf_mtod(m_dst, uint8_t *); u_src = (uintptr_t)p_src; u_dst = (uintptr_t)p_dst + op->sym->auth.data.offset; /** * Copy the content between cipher offset and auth offset for generating * correct digest. */ if (op->sym->cipher.data.offset > op->sym->auth.data.offset) memcpy(p_dst + op->sym->auth.data.offset, p_src + op->sym->auth.data.offset, op->sym->cipher.data.offset - op->sym->auth.data.offset); /** * Copy the content between (cipher offset + length) and (auth offset + * length) for generating correct digest */ cipher_end = op->sym->cipher.data.offset + op->sym->cipher.data.length; auth_end = op->sym->auth.data.offset + op->sym->auth.data.length; if (cipher_end < auth_end) memcpy(p_dst + cipher_end, p_src + cipher_end, auth_end - cipher_end); /** * Since intel-ipsec-mb only supports positive values, * we need to deduct the correct offset between src and dst. */ return u_src < u_dst ? (u_dst - u_src) : (UINT64_MAX - u_src + u_dst + 1); } /** * Process a crypto operation and complete a JOB_AES_HMAC job structure for * submission to the multi buffer library for processing. * * @param qp queue pair * @param job JOB_AES_HMAC structure to fill * @param m mbuf to process * * @return * - Completed JOB_AES_HMAC structure pointer on success * - NULL pointer if completion of JOB_AES_HMAC structure isn't possible */ static inline int set_mb_job_params(JOB_AES_HMAC *job, struct aesni_mb_qp *qp, struct rte_crypto_op *op, uint8_t *digest_idx) { struct rte_mbuf *m_src = op->sym->m_src, *m_dst; struct aesni_mb_session *session; uint32_t m_offset, oop; session = get_session(qp, op); if (session == NULL) { op->status = RTE_CRYPTO_OP_STATUS_INVALID_SESSION; return -1; } /* Set crypto operation */ job->chain_order = session->chain_order; /* Set cipher parameters */ job->cipher_direction = session->cipher.direction; job->cipher_mode = session->cipher.mode; job->aes_key_len_in_bytes = session->cipher.key_length_in_bytes; /* Set authentication parameters */ job->hash_alg = session->auth.algo; switch (job->hash_alg) { case AES_XCBC: job->u.XCBC._k1_expanded = session->auth.xcbc.k1_expanded; job->u.XCBC._k2 = session->auth.xcbc.k2; job->u.XCBC._k3 = session->auth.xcbc.k3; job->aes_enc_key_expanded = session->cipher.expanded_aes_keys.encode; job->aes_dec_key_expanded = session->cipher.expanded_aes_keys.decode; break; case AES_CCM: job->u.CCM.aad = op->sym->aead.aad.data + 18; job->u.CCM.aad_len_in_bytes = session->aead.aad_len; job->aes_enc_key_expanded = session->cipher.expanded_aes_keys.encode; job->aes_dec_key_expanded = session->cipher.expanded_aes_keys.decode; break; case AES_CMAC: job->u.CMAC._key_expanded = session->auth.cmac.expkey; job->u.CMAC._skey1 = session->auth.cmac.skey1; job->u.CMAC._skey2 = session->auth.cmac.skey2; job->aes_enc_key_expanded = session->cipher.expanded_aes_keys.encode; job->aes_dec_key_expanded = session->cipher.expanded_aes_keys.decode; break; case AES_GMAC: if (session->cipher.mode == GCM) { job->u.GCM.aad = op->sym->aead.aad.data; job->u.GCM.aad_len_in_bytes = session->aead.aad_len; } else { /* For GMAC */ job->u.GCM.aad = rte_pktmbuf_mtod_offset(m_src, uint8_t *, op->sym->auth.data.offset); job->u.GCM.aad_len_in_bytes = op->sym->auth.data.length; job->cipher_mode = GCM; } job->aes_enc_key_expanded = &session->cipher.gcm_key; job->aes_dec_key_expanded = &session->cipher.gcm_key; break; default: job->u.HMAC._hashed_auth_key_xor_ipad = session->auth.pads.inner; job->u.HMAC._hashed_auth_key_xor_opad = session->auth.pads.outer; if (job->cipher_mode == DES3) { job->aes_enc_key_expanded = session->cipher.exp_3des_keys.ks_ptr; job->aes_dec_key_expanded = session->cipher.exp_3des_keys.ks_ptr; } else { job->aes_enc_key_expanded = session->cipher.expanded_aes_keys.encode; job->aes_dec_key_expanded = session->cipher.expanded_aes_keys.decode; } } if (!op->sym->m_dst) { /* in-place operation */ m_dst = m_src; oop = 0; } else if (op->sym->m_dst == op->sym->m_src) { /* in-place operation */ m_dst = m_src; oop = 0; } else { /* out-of-place operation */ m_dst = op->sym->m_dst; oop = 1; } if (job->hash_alg == AES_CCM || (job->hash_alg == AES_GMAC && session->cipher.mode == GCM)) m_offset = op->sym->aead.data.offset; else m_offset = op->sym->cipher.data.offset; /* Set digest output location */ if (job->hash_alg != NULL_HASH && session->auth.operation == RTE_CRYPTO_AUTH_OP_VERIFY) { job->auth_tag_output = qp->temp_digests[*digest_idx]; *digest_idx = (*digest_idx + 1) % MAX_JOBS; } else { if (job->hash_alg == AES_CCM || (job->hash_alg == AES_GMAC && session->cipher.mode == GCM)) job->auth_tag_output = op->sym->aead.digest.data; else job->auth_tag_output = op->sym->auth.digest.data; if (session->auth.req_digest_len != session->auth.gen_digest_len) { job->auth_tag_output = qp->temp_digests[*digest_idx]; *digest_idx = (*digest_idx + 1) % MAX_JOBS; } } /* * Multi-buffer library current only support returning a truncated * digest length as specified in the relevant IPsec RFCs */ /* Set digest length */ job->auth_tag_output_len_in_bytes = session->auth.gen_digest_len; /* Set IV parameters */ job->iv_len_in_bytes = session->iv.length; /* Data Parameters */ job->src = rte_pktmbuf_mtod(m_src, uint8_t *); job->dst = rte_pktmbuf_mtod_offset(m_dst, uint8_t *, m_offset); switch (job->hash_alg) { case AES_CCM: job->cipher_start_src_offset_in_bytes = op->sym->aead.data.offset; job->msg_len_to_cipher_in_bytes = op->sym->aead.data.length; job->hash_start_src_offset_in_bytes = op->sym->aead.data.offset; job->msg_len_to_hash_in_bytes = op->sym->aead.data.length; job->iv = rte_crypto_op_ctod_offset(op, uint8_t *, session->iv.offset + 1); break; case AES_GMAC: if (session->cipher.mode == GCM) { job->cipher_start_src_offset_in_bytes = op->sym->aead.data.offset; job->hash_start_src_offset_in_bytes = op->sym->aead.data.offset; job->msg_len_to_cipher_in_bytes = op->sym->aead.data.length; job->msg_len_to_hash_in_bytes = op->sym->aead.data.length; } else { job->cipher_start_src_offset_in_bytes = op->sym->auth.data.offset; job->hash_start_src_offset_in_bytes = op->sym->auth.data.offset; job->msg_len_to_cipher_in_bytes = 0; job->msg_len_to_hash_in_bytes = 0; } job->iv = rte_crypto_op_ctod_offset(op, uint8_t *, session->iv.offset); break; default: job->cipher_start_src_offset_in_bytes = op->sym->cipher.data.offset; job->msg_len_to_cipher_in_bytes = op->sym->cipher.data.length; job->hash_start_src_offset_in_bytes = auth_start_offset(op, session, oop); job->msg_len_to_hash_in_bytes = op->sym->auth.data.length; job->iv = rte_crypto_op_ctod_offset(op, uint8_t *, session->iv.offset); } /* Set user data to be crypto operation data struct */ job->user_data = op; return 0; } static inline void verify_digest(JOB_AES_HMAC *job, void *digest, uint16_t len, uint8_t *status) { /* Verify digest if required */ if (memcmp(job->auth_tag_output, digest, len) != 0) *status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED; } static inline void generate_digest(JOB_AES_HMAC *job, struct rte_crypto_op *op, struct aesni_mb_session *sess) { /* No extra copy needed */ if (likely(sess->auth.req_digest_len == sess->auth.gen_digest_len)) return; /* * This can only happen for HMAC, so only digest * for authentication algos is required */ memcpy(op->sym->auth.digest.data, job->auth_tag_output, sess->auth.req_digest_len); } /** * Process a completed job and return rte_mbuf which job processed * * @param qp Queue Pair to process * @param job JOB_AES_HMAC job to process * * @return * - Returns processed crypto operation. * - Returns NULL on invalid job */ static inline struct rte_crypto_op * post_process_mb_job(struct aesni_mb_qp *qp, JOB_AES_HMAC *job) { struct rte_crypto_op *op = (struct rte_crypto_op *)job->user_data; struct aesni_mb_session *sess = get_sym_session_private_data( op->sym->session, cryptodev_driver_id); if (likely(op->status == RTE_CRYPTO_OP_STATUS_NOT_PROCESSED)) { switch (job->status) { case STS_COMPLETED: op->status = RTE_CRYPTO_OP_STATUS_SUCCESS; if (job->hash_alg == NULL_HASH) break; if (sess->auth.operation == RTE_CRYPTO_AUTH_OP_VERIFY) { if (job->hash_alg == AES_CCM || (job->hash_alg == AES_GMAC && sess->cipher.mode == GCM)) verify_digest(job, op->sym->aead.digest.data, sess->auth.req_digest_len, &op->status); else verify_digest(job, op->sym->auth.digest.data, sess->auth.req_digest_len, &op->status); } else generate_digest(job, op, sess); break; default: op->status = RTE_CRYPTO_OP_STATUS_ERROR; } } /* Free session if a session-less crypto op */ if (op->sess_type == RTE_CRYPTO_OP_SESSIONLESS) { memset(sess, 0, sizeof(struct aesni_mb_session)); memset(op->sym->session, 0, rte_cryptodev_sym_get_existing_header_session_size( op->sym->session)); rte_mempool_put(qp->sess_mp_priv, sess); rte_mempool_put(qp->sess_mp, op->sym->session); op->sym->session = NULL; } return op; } /** * Process a completed JOB_AES_HMAC job and keep processing jobs until * get_completed_job return NULL * * @param qp Queue Pair to process * @param job JOB_AES_HMAC job * * @return * - Number of processed jobs */ static unsigned handle_completed_jobs(struct aesni_mb_qp *qp, JOB_AES_HMAC *job, struct rte_crypto_op **ops, uint16_t nb_ops) { struct rte_crypto_op *op = NULL; unsigned processed_jobs = 0; while (job != NULL) { op = post_process_mb_job(qp, job); if (op) { ops[processed_jobs++] = op; qp->stats.dequeued_count++; } else { qp->stats.dequeue_err_count++; break; } if (processed_jobs == nb_ops) break; job = IMB_GET_COMPLETED_JOB(qp->mb_mgr); } return processed_jobs; } static inline uint16_t flush_mb_mgr(struct aesni_mb_qp *qp, struct rte_crypto_op **ops, uint16_t nb_ops) { int processed_ops = 0; /* Flush the remaining jobs */ JOB_AES_HMAC *job = IMB_FLUSH_JOB(qp->mb_mgr); if (job) processed_ops += handle_completed_jobs(qp, job, &ops[processed_ops], nb_ops - processed_ops); return processed_ops; } static inline JOB_AES_HMAC * set_job_null_op(JOB_AES_HMAC *job, struct rte_crypto_op *op) { job->chain_order = HASH_CIPHER; job->cipher_mode = NULL_CIPHER; job->hash_alg = NULL_HASH; job->cipher_direction = DECRYPT; /* Set user data to be crypto operation data struct */ job->user_data = op; return job; } static uint16_t aesni_mb_pmd_dequeue_burst(void *queue_pair, struct rte_crypto_op **ops, uint16_t nb_ops) { struct aesni_mb_qp *qp = queue_pair; struct rte_crypto_op *op; JOB_AES_HMAC *job; int retval, processed_jobs = 0; if (unlikely(nb_ops == 0)) return 0; uint8_t digest_idx = qp->digest_idx; do { /* Get next free mb job struct from mb manager */ job = IMB_GET_NEXT_JOB(qp->mb_mgr); if (unlikely(job == NULL)) { /* if no free mb job structs we need to flush mb_mgr */ processed_jobs += flush_mb_mgr(qp, &ops[processed_jobs], nb_ops - processed_jobs); if (nb_ops == processed_jobs) break; job = IMB_GET_NEXT_JOB(qp->mb_mgr); } /* * Get next operation to process from ingress queue. * There is no need to return the job to the MB_MGR * if there are no more operations to process, since the MB_MGR * can use that pointer again in next get_next calls. */ retval = rte_ring_dequeue(qp->ingress_queue, (void **)&op); if (retval < 0) break; retval = set_mb_job_params(job, qp, op, &digest_idx); if (unlikely(retval != 0)) { qp->stats.dequeue_err_count++; set_job_null_op(job, op); } /* Submit job to multi-buffer for processing */ #ifdef RTE_LIBRTE_PMD_AESNI_MB_DEBUG job = IMB_SUBMIT_JOB(qp->mb_mgr); #else job = IMB_SUBMIT_JOB_NOCHECK(qp->mb_mgr); #endif /* * If submit returns a processed job then handle it, * before submitting subsequent jobs */ if (job) processed_jobs += handle_completed_jobs(qp, job, &ops[processed_jobs], nb_ops - processed_jobs); } while (processed_jobs < nb_ops); qp->digest_idx = digest_idx; if (processed_jobs < 1) processed_jobs += flush_mb_mgr(qp, &ops[processed_jobs], nb_ops - processed_jobs); return processed_jobs; } static int cryptodev_aesni_mb_remove(struct rte_vdev_device *vdev); static int cryptodev_aesni_mb_create(const char *name, struct rte_vdev_device *vdev, struct rte_cryptodev_pmd_init_params *init_params) { struct rte_cryptodev *dev; struct aesni_mb_private *internals; enum aesni_mb_vector_mode vector_mode; MB_MGR *mb_mgr; dev = rte_cryptodev_pmd_create(name, &vdev->device, init_params); if (dev == NULL) { AESNI_MB_LOG(ERR, "failed to create cryptodev vdev"); return -ENODEV; } /* Check CPU for supported vector instruction set */ if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F)) vector_mode = RTE_AESNI_MB_AVX512; else if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2)) vector_mode = RTE_AESNI_MB_AVX2; else if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX)) vector_mode = RTE_AESNI_MB_AVX; else vector_mode = RTE_AESNI_MB_SSE; dev->driver_id = cryptodev_driver_id; dev->dev_ops = rte_aesni_mb_pmd_ops; /* register rx/tx burst functions for data path */ dev->dequeue_burst = aesni_mb_pmd_dequeue_burst; dev->enqueue_burst = aesni_mb_pmd_enqueue_burst; dev->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO | RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING | RTE_CRYPTODEV_FF_OOP_LB_IN_LB_OUT; /* Check CPU for support for AES instruction set */ if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AES)) dev->feature_flags |= RTE_CRYPTODEV_FF_CPU_AESNI; else AESNI_MB_LOG(WARNING, "AES instructions not supported by CPU"); mb_mgr = alloc_mb_mgr(0); if (mb_mgr == NULL) return -ENOMEM; switch (vector_mode) { case RTE_AESNI_MB_SSE: dev->feature_flags |= RTE_CRYPTODEV_FF_CPU_SSE; init_mb_mgr_sse(mb_mgr); break; case RTE_AESNI_MB_AVX: dev->feature_flags |= RTE_CRYPTODEV_FF_CPU_AVX; init_mb_mgr_avx(mb_mgr); break; case RTE_AESNI_MB_AVX2: dev->feature_flags |= RTE_CRYPTODEV_FF_CPU_AVX2; init_mb_mgr_avx2(mb_mgr); break; case RTE_AESNI_MB_AVX512: dev->feature_flags |= RTE_CRYPTODEV_FF_CPU_AVX512; init_mb_mgr_avx512(mb_mgr); break; default: AESNI_MB_LOG(ERR, "Unsupported vector mode %u\n", vector_mode); goto error_exit; } /* Set vector instructions mode supported */ internals = dev->data->dev_private; internals->vector_mode = vector_mode; internals->max_nb_queue_pairs = init_params->max_nb_queue_pairs; internals->mb_mgr = mb_mgr; AESNI_MB_LOG(INFO, "IPSec Multi-buffer library version used: %s\n", imb_get_version_str()); return 0; error_exit: if (mb_mgr) free_mb_mgr(mb_mgr); rte_cryptodev_pmd_destroy(dev); return -1; } static int cryptodev_aesni_mb_probe(struct rte_vdev_device *vdev) { struct rte_cryptodev_pmd_init_params init_params = { "", sizeof(struct aesni_mb_private), rte_socket_id(), RTE_CRYPTODEV_PMD_DEFAULT_MAX_NB_QUEUE_PAIRS }; const char *name, *args; int retval; name = rte_vdev_device_name(vdev); if (name == NULL) return -EINVAL; args = rte_vdev_device_args(vdev); retval = rte_cryptodev_pmd_parse_input_args(&init_params, args); if (retval) { AESNI_MB_LOG(ERR, "Failed to parse initialisation arguments[%s]", args); return -EINVAL; } return cryptodev_aesni_mb_create(name, vdev, &init_params); } static int cryptodev_aesni_mb_remove(struct rte_vdev_device *vdev) { struct rte_cryptodev *cryptodev; struct aesni_mb_private *internals; const char *name; name = rte_vdev_device_name(vdev); if (name == NULL) return -EINVAL; cryptodev = rte_cryptodev_pmd_get_named_dev(name); if (cryptodev == NULL) return -ENODEV; internals = cryptodev->data->dev_private; free_mb_mgr(internals->mb_mgr); return rte_cryptodev_pmd_destroy(cryptodev); } static struct rte_vdev_driver cryptodev_aesni_mb_pmd_drv = { .probe = cryptodev_aesni_mb_probe, .remove = cryptodev_aesni_mb_remove }; static struct cryptodev_driver aesni_mb_crypto_drv; RTE_PMD_REGISTER_VDEV(CRYPTODEV_NAME_AESNI_MB_PMD, cryptodev_aesni_mb_pmd_drv); RTE_PMD_REGISTER_ALIAS(CRYPTODEV_NAME_AESNI_MB_PMD, cryptodev_aesni_mb_pmd); RTE_PMD_REGISTER_PARAM_STRING(CRYPTODEV_NAME_AESNI_MB_PMD, "max_nb_queue_pairs= " "socket_id="); RTE_PMD_REGISTER_CRYPTO_DRIVER(aesni_mb_crypto_drv, cryptodev_aesni_mb_pmd_drv.driver, cryptodev_driver_id); RTE_INIT(aesni_mb_init_log) { aesni_mb_logtype_driver = rte_log_register("pmd.crypto.aesni_mb"); }