/* * SPDX-License-Identifier: BSD-3-Clause * Copyright 2017 Cavium, Inc. */ #include "test_pipeline_common.h" int pipeline_test_result(struct evt_test *test, struct evt_options *opt) { RTE_SET_USED(opt); int i; uint64_t total = 0; struct test_pipeline *t = evt_test_priv(test); evt_info("Packet distribution across worker cores :"); for (i = 0; i < t->nb_workers; i++) total += t->worker[i].processed_pkts; for (i = 0; i < t->nb_workers; i++) evt_info("Worker %d packets: "CLGRN"%"PRIx64""CLNRM" percentage:" CLGRN" %3.2f"CLNRM, i, t->worker[i].processed_pkts, (((double)t->worker[i].processed_pkts)/total) * 100); return t->result; } void pipeline_opt_dump(struct evt_options *opt, uint8_t nb_queues) { evt_dump("nb_worker_lcores", "%d", evt_nr_active_lcores(opt->wlcores)); evt_dump_worker_lcores(opt); evt_dump_nb_stages(opt); evt_dump("nb_evdev_ports", "%d", pipeline_nb_event_ports(opt)); evt_dump("nb_evdev_queues", "%d", nb_queues); evt_dump_queue_priority(opt); evt_dump_sched_type_list(opt); evt_dump_producer_type(opt); evt_dump("nb_eth_rx_queues", "%d", opt->eth_queues); evt_dump("event_vector", "%d", opt->ena_vector); if (opt->ena_vector) { evt_dump("vector_size", "%d", opt->vector_size); evt_dump("vector_tmo_ns", "%" PRIu64 "", opt->vector_tmo_nsec); } } static inline uint64_t processed_pkts(struct test_pipeline *t) { uint8_t i; uint64_t total = 0; for (i = 0; i < t->nb_workers; i++) total += t->worker[i].processed_pkts; return total; } /* RFC863 discard port */ #define UDP_SRC_PORT 9 #define UDP_DST_PORT 9 /* RFC2544 reserved test subnet 192.18.0.0 */ #define IP_SRC_ADDR(x, y) ((192U << 24) | (18 << 16) | ((x) << 8) | (y)) #define IP_DST_ADDR(x, y) ((192U << 24) | (18 << 16) | ((x) << 8) | (y)) #define IP_DEFTTL 64 /* from RFC 1340. */ #define IP_VERSION 0x40 #define IP_HDRLEN 0x05 /* default IP header length == five 32-bits words. */ #define IP_VHL_DEF (IP_VERSION | IP_HDRLEN) static void setup_pkt_udp_ip_headers(struct rte_ipv4_hdr *ip_hdr, struct rte_udp_hdr *udp_hdr, uint16_t pkt_data_len, uint8_t port, uint8_t flow) { uint16_t *ptr16; uint32_t ip_cksum; uint16_t pkt_len; /* * Initialize UDP header. */ pkt_len = (uint16_t)(pkt_data_len + sizeof(struct rte_udp_hdr)); udp_hdr->src_port = rte_cpu_to_be_16(UDP_SRC_PORT); udp_hdr->dst_port = rte_cpu_to_be_16(UDP_DST_PORT); udp_hdr->dgram_len = rte_cpu_to_be_16(pkt_len); udp_hdr->dgram_cksum = 0; /* No UDP checksum. */ /* * Initialize IP header. */ pkt_len = (uint16_t)(pkt_len + sizeof(struct rte_ipv4_hdr)); ip_hdr->version_ihl = IP_VHL_DEF; ip_hdr->type_of_service = 0; ip_hdr->fragment_offset = 0; ip_hdr->time_to_live = IP_DEFTTL; ip_hdr->next_proto_id = IPPROTO_UDP; ip_hdr->packet_id = 0; ip_hdr->total_length = rte_cpu_to_be_16(pkt_len); ip_hdr->src_addr = rte_cpu_to_be_32(IP_SRC_ADDR(port, 1)); ip_hdr->dst_addr = rte_cpu_to_be_32(IP_DST_ADDR(port + 1, flow)); /* * Compute IP header checksum. */ ptr16 = (unaligned_uint16_t *)ip_hdr; ip_cksum = 0; ip_cksum += ptr16[0]; ip_cksum += ptr16[1]; ip_cksum += ptr16[2]; ip_cksum += ptr16[3]; ip_cksum += ptr16[4]; ip_cksum += ptr16[6]; ip_cksum += ptr16[7]; ip_cksum += ptr16[8]; ip_cksum += ptr16[9]; /* * Reduce 32 bit checksum to 16 bits and complement it. */ ip_cksum = ((ip_cksum & 0xFFFF0000) >> 16) + (ip_cksum & 0x0000FFFF); if (ip_cksum > 65535) ip_cksum -= 65535; ip_cksum = (~ip_cksum) & 0x0000FFFF; if (ip_cksum == 0) ip_cksum = 0xFFFF; ip_hdr->hdr_checksum = (uint16_t)ip_cksum; } static void pipeline_tx_first(struct test_pipeline *t, struct evt_options *opt) { #define TX_DEF_PACKET_LEN 64 uint16_t eth_port_id = 0; uint16_t pkt_sz, rc; uint32_t i; pkt_sz = opt->tx_pkt_sz; if (pkt_sz > opt->max_pkt_sz) pkt_sz = opt->max_pkt_sz; if (!pkt_sz) pkt_sz = TX_DEF_PACKET_LEN; RTE_ETH_FOREACH_DEV(eth_port_id) { struct rte_ether_addr src_mac; struct rte_ether_addr dst_mac; struct rte_ether_hdr eth_hdr; /* Send to the same dest.mac as port mac */ rte_eth_macaddr_get(eth_port_id, &dst_mac); rte_eth_random_addr((uint8_t *)&src_mac); rte_ether_addr_copy(&dst_mac, ð_hdr.dst_addr); rte_ether_addr_copy(&src_mac, ð_hdr.src_addr); eth_hdr.ether_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4); for (i = 0; i < opt->tx_first; i++) { struct rte_udp_hdr *pkt_udp_hdr; struct rte_ipv4_hdr ip_hdr; struct rte_udp_hdr udp_hdr; struct rte_mbuf *mbuf; mbuf = rte_pktmbuf_alloc( opt->per_port_pool ? t->pool[i] : t->pool[0]); if (mbuf == NULL) continue; setup_pkt_udp_ip_headers( &ip_hdr, &udp_hdr, pkt_sz - sizeof(struct rte_ether_hdr) - sizeof(struct rte_ipv4_hdr) - sizeof(struct rte_udp_hdr), eth_port_id, i); mbuf->port = eth_port_id; mbuf->data_len = pkt_sz; mbuf->pkt_len = pkt_sz; /* Copy Ethernet header */ rte_memcpy(rte_pktmbuf_mtod_offset(mbuf, char *, 0), ð_hdr, sizeof(struct rte_ether_hdr)); /* Copy Ipv4 header */ rte_memcpy(rte_pktmbuf_mtod_offset( mbuf, char *, sizeof(struct rte_ether_hdr)), &ip_hdr, sizeof(struct rte_ipv4_hdr)); /* Copy UDP header */ rte_memcpy( rte_pktmbuf_mtod_offset( mbuf, char *, sizeof(struct rte_ipv4_hdr) + sizeof(struct rte_ether_hdr)), &udp_hdr, sizeof(struct rte_udp_hdr)); pkt_udp_hdr = rte_pktmbuf_mtod_offset( mbuf, struct rte_udp_hdr *, sizeof(struct rte_ipv4_hdr) + sizeof(struct rte_ether_hdr)); pkt_udp_hdr->src_port = rte_cpu_to_be_16(UDP_SRC_PORT + i); pkt_udp_hdr->dst_port = rte_cpu_to_be_16(UDP_SRC_PORT + i); rc = rte_eth_tx_burst(eth_port_id, 0, &mbuf, 1); if (rc == 0) rte_pktmbuf_free(mbuf); } } } int pipeline_launch_lcores(struct evt_test *test, struct evt_options *opt, int (*worker)(void *)) { struct test_pipeline *t = evt_test_priv(test); int ret, lcore_id; int port_idx = 0; if (opt->tx_first) pipeline_tx_first(t, opt); /* launch workers */ RTE_LCORE_FOREACH_WORKER(lcore_id) { if (!(opt->wlcores[lcore_id])) continue; ret = rte_eal_remote_launch(worker, &t->worker[port_idx], lcore_id); if (ret) { evt_err("failed to launch worker %d", lcore_id); return ret; } port_idx++; } uint64_t perf_cycles = rte_get_timer_cycles(); const uint64_t perf_sample = rte_get_timer_hz(); static float total_mpps; static uint64_t samples; uint64_t prev_pkts = 0; while (t->done == false) { const uint64_t new_cycles = rte_get_timer_cycles(); if ((new_cycles - perf_cycles) > perf_sample) { const uint64_t curr_pkts = processed_pkts(t); float mpps = (float)(curr_pkts - prev_pkts)/1000000; prev_pkts = curr_pkts; perf_cycles = new_cycles; total_mpps += mpps; ++samples; printf(CLGRN"\r%.3f mpps avg %.3f mpps"CLNRM, mpps, total_mpps/samples); fflush(stdout); } } printf("\n"); return 0; } int pipeline_opt_check(struct evt_options *opt, uint64_t nb_queues) { unsigned int lcores; /* N worker + main */ lcores = 2; if (opt->prod_type != EVT_PROD_TYPE_ETH_RX_ADPTR) { evt_err("Invalid producer type '%s' valid producer '%s'", evt_prod_id_to_name(opt->prod_type), evt_prod_id_to_name(EVT_PROD_TYPE_ETH_RX_ADPTR)); return -1; } if (!rte_eth_dev_count_avail()) { evt_err("test needs minimum 1 ethernet dev"); return -1; } if (rte_lcore_count() < lcores) { evt_err("test need minimum %d lcores", lcores); return -1; } /* Validate worker lcores */ if (evt_lcores_has_overlap(opt->wlcores, rte_get_main_lcore())) { evt_err("worker lcores overlaps with main lcore"); return -1; } if (evt_has_disabled_lcore(opt->wlcores)) { evt_err("one or more workers lcores are not enabled"); return -1; } if (!evt_has_active_lcore(opt->wlcores)) { evt_err("minimum one worker is required"); return -1; } if (nb_queues > EVT_MAX_QUEUES) { evt_err("number of queues exceeds %d", EVT_MAX_QUEUES); return -1; } if (pipeline_nb_event_ports(opt) > EVT_MAX_PORTS) { evt_err("number of ports exceeds %d", EVT_MAX_PORTS); return -1; } if (opt->prod_type != EVT_PROD_TYPE_ETH_RX_ADPTR) { evt_err("Invalid producer type, only --prod_type_ethdev is supported"); return -1; } if (evt_has_invalid_stage(opt)) return -1; if (evt_has_invalid_sched_type(opt)) return -1; return 0; } #define NB_RX_DESC 128 #define NB_TX_DESC 512 int pipeline_ethdev_setup(struct evt_test *test, struct evt_options *opt) { uint16_t i, j; int ret; uint8_t nb_queues = 1; struct test_pipeline *t = evt_test_priv(test); struct rte_eth_rxconf rx_conf; struct rte_eth_conf port_conf = { .rxmode = { .mq_mode = RTE_ETH_MQ_RX_RSS, }, .rx_adv_conf = { .rss_conf = { .rss_key = NULL, .rss_hf = RTE_ETH_RSS_IP, }, }, }; if (!rte_eth_dev_count_avail()) { evt_err("No ethernet ports found."); return -ENODEV; } if (opt->max_pkt_sz < RTE_ETHER_MIN_LEN) { evt_err("max_pkt_sz can not be less than %d", RTE_ETHER_MIN_LEN); return -EINVAL; } port_conf.rxmode.mtu = opt->max_pkt_sz - RTE_ETHER_HDR_LEN - RTE_ETHER_CRC_LEN; t->internal_port = 1; RTE_ETH_FOREACH_DEV(i) { struct rte_eth_dev_info dev_info; struct rte_eth_conf local_port_conf = port_conf; uint32_t caps = 0; ret = rte_event_eth_tx_adapter_caps_get(opt->dev_id, i, &caps); if (ret != 0) { evt_err("failed to get event tx adapter[%d] caps", i); return ret; } if (!(caps & RTE_EVENT_ETH_TX_ADAPTER_CAP_INTERNAL_PORT)) t->internal_port = 0; ret = rte_event_eth_rx_adapter_caps_get(opt->dev_id, i, &caps); if (ret != 0) { evt_err("failed to get event tx adapter[%d] caps", i); return ret; } if (!(caps & RTE_EVENT_ETH_RX_ADAPTER_CAP_INTERNAL_PORT)) local_port_conf.rxmode.offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH; ret = rte_eth_dev_info_get(i, &dev_info); if (ret != 0) { evt_err("Error during getting device (port %u) info: %s\n", i, strerror(-ret)); return ret; } /* Enable mbuf fast free if PMD has the capability. */ if (dev_info.tx_offload_capa & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE) local_port_conf.txmode.offloads |= RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE; rx_conf = dev_info.default_rxconf; rx_conf.offloads = port_conf.rxmode.offloads; local_port_conf.rx_adv_conf.rss_conf.rss_hf &= dev_info.flow_type_rss_offloads; if (local_port_conf.rx_adv_conf.rss_conf.rss_hf != port_conf.rx_adv_conf.rss_conf.rss_hf) { evt_info("Port %u modified RSS hash function based on hardware support," "requested:%#"PRIx64" configured:%#"PRIx64"", i, port_conf.rx_adv_conf.rss_conf.rss_hf, local_port_conf.rx_adv_conf.rss_conf.rss_hf); } if (rte_eth_dev_configure(i, opt->eth_queues, nb_queues, &local_port_conf) < 0) { evt_err("Failed to configure eth port [%d]", i); return -EINVAL; } for (j = 0; j < opt->eth_queues; j++) { if (rte_eth_rx_queue_setup( i, j, NB_RX_DESC, rte_socket_id(), &rx_conf, opt->per_port_pool ? t->pool[i] : t->pool[0]) < 0) { evt_err("Failed to setup eth port [%d] rx_queue: %d.", i, 0); return -EINVAL; } } if (rte_eth_tx_queue_setup(i, 0, NB_TX_DESC, rte_socket_id(), NULL) < 0) { evt_err("Failed to setup eth port [%d] tx_queue: %d.", i, 0); return -EINVAL; } ret = rte_eth_promiscuous_enable(i); if (ret != 0) { evt_err("Failed to enable promiscuous mode for eth port [%d]: %s", i, rte_strerror(-ret)); return ret; } } return 0; } int pipeline_event_port_setup(struct evt_test *test, struct evt_options *opt, uint8_t *queue_arr, uint8_t nb_queues, const struct rte_event_port_conf p_conf) { int ret; uint8_t port; struct test_pipeline *t = evt_test_priv(test); /* setup one port per worker, linking to all queues */ for (port = 0; port < evt_nr_active_lcores(opt->wlcores); port++) { struct worker_data *w = &t->worker[port]; w->dev_id = opt->dev_id; w->port_id = port; w->t = t; w->processed_pkts = 0; ret = rte_event_port_setup(opt->dev_id, port, &p_conf); if (ret) { evt_err("failed to setup port %d", port); return ret; } if (rte_event_port_link(opt->dev_id, port, queue_arr, NULL, nb_queues) != nb_queues) goto link_fail; } return 0; link_fail: evt_err("failed to link queues to port %d", port); return -EINVAL; } int pipeline_event_rx_adapter_setup(struct evt_options *opt, uint8_t stride, struct rte_event_port_conf prod_conf) { int ret = 0; uint16_t prod; struct rte_mempool *vector_pool = NULL; struct rte_event_eth_rx_adapter_queue_conf queue_conf; memset(&queue_conf, 0, sizeof(struct rte_event_eth_rx_adapter_queue_conf)); queue_conf.ev.sched_type = opt->sched_type_list[0]; if (opt->ena_vector) { unsigned int nb_elem = (opt->pool_sz / opt->vector_size) << 1; nb_elem = RTE_MAX(512U, nb_elem); nb_elem += evt_nr_active_lcores(opt->wlcores) * 32; vector_pool = rte_event_vector_pool_create( "vector_pool", nb_elem, 32, opt->vector_size, opt->socket_id); if (vector_pool == NULL) { evt_err("failed to create event vector pool"); return -ENOMEM; } } RTE_ETH_FOREACH_DEV(prod) { struct rte_event_eth_rx_adapter_vector_limits limits; uint32_t cap; ret = rte_event_eth_rx_adapter_caps_get(opt->dev_id, prod, &cap); if (ret) { evt_err("failed to get event rx adapter[%d]" " capabilities", opt->dev_id); return ret; } if (opt->ena_vector) { memset(&limits, 0, sizeof(limits)); ret = rte_event_eth_rx_adapter_vector_limits_get( opt->dev_id, prod, &limits); if (ret) { evt_err("failed to get vector limits"); return ret; } if (opt->vector_size < limits.min_sz || opt->vector_size > limits.max_sz) { evt_err("Vector size [%d] not within limits max[%d] min[%d]", opt->vector_size, limits.max_sz, limits.min_sz); return -EINVAL; } if (limits.log2_sz && !rte_is_power_of_2(opt->vector_size)) { evt_err("Vector size [%d] not power of 2", opt->vector_size); return -EINVAL; } if (opt->vector_tmo_nsec > limits.max_timeout_ns || opt->vector_tmo_nsec < limits.min_timeout_ns) { evt_err("Vector timeout [%" PRIu64 "] not within limits max[%" PRIu64 "] min[%" PRIu64 "]", opt->vector_tmo_nsec, limits.max_timeout_ns, limits.min_timeout_ns); return -EINVAL; } if (cap & RTE_EVENT_ETH_RX_ADAPTER_CAP_EVENT_VECTOR) { queue_conf.vector_sz = opt->vector_size; queue_conf.vector_timeout_ns = opt->vector_tmo_nsec; queue_conf.rx_queue_flags |= RTE_EVENT_ETH_RX_ADAPTER_QUEUE_EVENT_VECTOR; queue_conf.vector_mp = vector_pool; } else { evt_err("Rx adapter doesn't support event vector"); return -EINVAL; } } queue_conf.ev.queue_id = prod * stride; ret = rte_event_eth_rx_adapter_create(prod, opt->dev_id, &prod_conf); if (ret) { evt_err("failed to create rx adapter[%d]", prod); return ret; } ret = rte_event_eth_rx_adapter_queue_add(prod, prod, -1, &queue_conf); if (ret) { evt_err("failed to add rx queues to adapter[%d]", prod); return ret; } if (!(cap & RTE_EVENT_ETH_RX_ADAPTER_CAP_INTERNAL_PORT)) { uint32_t service_id = -1U; rte_event_eth_rx_adapter_service_id_get(prod, &service_id); ret = evt_service_setup(service_id); if (ret) { evt_err("Failed to setup service core" " for Rx adapter"); return ret; } } evt_info("Port[%d] using Rx adapter[%d] configured", prod, prod); } return ret; } int pipeline_event_tx_adapter_setup(struct evt_options *opt, struct rte_event_port_conf port_conf) { int ret = 0; uint16_t consm; RTE_ETH_FOREACH_DEV(consm) { uint32_t cap; ret = rte_event_eth_tx_adapter_caps_get(opt->dev_id, consm, &cap); if (ret) { evt_err("failed to get event tx adapter[%d] caps", consm); return ret; } if (opt->ena_vector) { if (!(cap & RTE_EVENT_ETH_TX_ADAPTER_CAP_EVENT_VECTOR)) { evt_err("Tx adapter doesn't support event vector"); return -EINVAL; } } ret = rte_event_eth_tx_adapter_create(consm, opt->dev_id, &port_conf); if (ret) { evt_err("failed to create tx adapter[%d]", consm); return ret; } ret = rte_event_eth_tx_adapter_queue_add(consm, consm, -1); if (ret) { evt_err("failed to add tx queues to adapter[%d]", consm); return ret; } if (!(cap & RTE_EVENT_ETH_TX_ADAPTER_CAP_INTERNAL_PORT)) { uint32_t service_id = -1U; ret = rte_event_eth_tx_adapter_service_id_get(consm, &service_id); if (ret != -ESRCH && ret != 0) { evt_err("Failed to get Tx adptr service ID"); return ret; } ret = evt_service_setup(service_id); if (ret) { evt_err("Failed to setup service core" " for Tx adapter"); return ret; } } evt_info("Port[%d] using Tx adapter[%d] Configured", consm, consm); } return ret; } static void pipeline_vector_array_free(struct rte_event events[], uint16_t num) { uint16_t i; for (i = 0; i < num; i++) { rte_pktmbuf_free_bulk( &events[i].vec->mbufs[events[i].vec->elem_offset], events[i].vec->nb_elem); rte_mempool_put(rte_mempool_from_obj(events[i].vec), events[i].vec); } } static void pipeline_event_port_flush(uint8_t dev_id __rte_unused, struct rte_event ev, void *args __rte_unused) { if (ev.event_type & RTE_EVENT_TYPE_VECTOR) pipeline_vector_array_free(&ev, 1); else rte_pktmbuf_free(ev.mbuf); } void pipeline_worker_cleanup(uint8_t dev, uint8_t port, struct rte_event ev[], uint16_t enq, uint16_t deq) { int i; if (deq) { for (i = enq; i < deq; i++) { if (ev[i].op == RTE_EVENT_OP_RELEASE) continue; if (ev[i].event_type & RTE_EVENT_TYPE_VECTOR) pipeline_vector_array_free(&ev[i], 1); else rte_pktmbuf_free(ev[i].mbuf); } for (i = 0; i < deq; i++) ev[i].op = RTE_EVENT_OP_RELEASE; rte_event_enqueue_burst(dev, port, ev, deq); } rte_event_port_quiesce(dev, port, pipeline_event_port_flush, NULL); } void pipeline_ethdev_rx_stop(struct evt_test *test, struct evt_options *opt) { uint16_t i, j; RTE_SET_USED(test); if (opt->prod_type == EVT_PROD_TYPE_ETH_RX_ADPTR) { RTE_ETH_FOREACH_DEV(i) { rte_event_eth_rx_adapter_stop(i); rte_event_eth_rx_adapter_queue_del(i, i, -1); for (j = 0; j < opt->eth_queues; j++) rte_eth_dev_rx_queue_stop(i, j); } } } void pipeline_ethdev_destroy(struct evt_test *test, struct evt_options *opt) { uint16_t i; RTE_SET_USED(test); RTE_SET_USED(opt); RTE_ETH_FOREACH_DEV(i) { rte_event_eth_tx_adapter_stop(i); rte_event_eth_tx_adapter_queue_del(i, i, -1); rte_eth_dev_tx_queue_stop(i, 0); rte_eth_dev_stop(i); } } void pipeline_eventdev_destroy(struct evt_test *test, struct evt_options *opt) { RTE_SET_USED(test); rte_event_dev_stop(opt->dev_id); rte_event_dev_close(opt->dev_id); } int pipeline_mempool_setup(struct evt_test *test, struct evt_options *opt) { struct test_pipeline *t = evt_test_priv(test); int i, ret; if (!opt->mbuf_sz) opt->mbuf_sz = RTE_MBUF_DEFAULT_BUF_SIZE; if (!opt->max_pkt_sz) opt->max_pkt_sz = RTE_ETHER_MAX_LEN; RTE_ETH_FOREACH_DEV(i) { struct rte_eth_dev_info dev_info; uint16_t data_size = 0; memset(&dev_info, 0, sizeof(dev_info)); ret = rte_eth_dev_info_get(i, &dev_info); if (ret != 0) { evt_err("Error during getting device (port %u) info: %s\n", i, strerror(-ret)); return ret; } if (dev_info.rx_desc_lim.nb_mtu_seg_max != UINT16_MAX && dev_info.rx_desc_lim.nb_mtu_seg_max != 0) { data_size = opt->max_pkt_sz / dev_info.rx_desc_lim.nb_mtu_seg_max; data_size += RTE_PKTMBUF_HEADROOM; if (data_size > opt->mbuf_sz) opt->mbuf_sz = data_size; } if (opt->per_port_pool) { char name[RTE_MEMPOOL_NAMESIZE]; snprintf(name, RTE_MEMPOOL_NAMESIZE, "%s-%d", test->name, i); t->pool[i] = rte_pktmbuf_pool_create( name, /* mempool name */ opt->pool_sz, /* number of elements*/ 0, /* cache size*/ 0, opt->mbuf_sz, opt->socket_id); /* flags */ if (t->pool[i] == NULL) { evt_err("failed to create mempool %s", name); return -ENOMEM; } } } if (!opt->per_port_pool) { t->pool[0] = rte_pktmbuf_pool_create( test->name, /* mempool name */ opt->pool_sz, /* number of elements*/ 0, /* cache size*/ 0, opt->mbuf_sz, opt->socket_id); /* flags */ if (t->pool[0] == NULL) { evt_err("failed to create mempool"); return -ENOMEM; } } return 0; } void pipeline_mempool_destroy(struct evt_test *test, struct evt_options *opt) { struct test_pipeline *t = evt_test_priv(test); int i; RTE_SET_USED(opt); if (opt->per_port_pool) { RTE_ETH_FOREACH_DEV(i) rte_mempool_free(t->pool[i]); } else { rte_mempool_free(t->pool[0]); } } int pipeline_test_setup(struct evt_test *test, struct evt_options *opt) { void *test_pipeline; test_pipeline = rte_zmalloc_socket(test->name, sizeof(struct test_pipeline), RTE_CACHE_LINE_SIZE, opt->socket_id); if (test_pipeline == NULL) { evt_err("failed to allocate test_pipeline memory"); goto nomem; } test->test_priv = test_pipeline; struct test_pipeline *t = evt_test_priv(test); t->nb_workers = evt_nr_active_lcores(opt->wlcores); t->outstand_pkts = opt->nb_pkts * evt_nr_active_lcores(opt->wlcores); t->done = false; t->nb_flows = opt->nb_flows; t->result = EVT_TEST_FAILED; t->opt = opt; opt->prod_type = EVT_PROD_TYPE_ETH_RX_ADPTR; memcpy(t->sched_type_list, opt->sched_type_list, sizeof(opt->sched_type_list)); return 0; nomem: return -ENOMEM; } void pipeline_test_destroy(struct evt_test *test, struct evt_options *opt) { RTE_SET_USED(opt); rte_free(test->test_priv); }