/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2016 Cavium, Inc */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "base/nicvf_plat.h" #include "nicvf_ethdev.h" #include "nicvf_rxtx.h" #include "nicvf_svf.h" #include "nicvf_logs.h" static int nicvf_dev_stop(struct rte_eth_dev *dev); static void nicvf_dev_stop_cleanup(struct rte_eth_dev *dev, bool cleanup); static void nicvf_vf_stop(struct rte_eth_dev *dev, struct nicvf *nic, bool cleanup); static int nicvf_vlan_offload_config(struct rte_eth_dev *dev, int mask); static int nicvf_vlan_offload_set(struct rte_eth_dev *dev, int mask); RTE_LOG_REGISTER(nicvf_logtype_mbox, pmd.net.thunderx.mbox, NOTICE); RTE_LOG_REGISTER(nicvf_logtype_init, pmd.net.thunderx.init, NOTICE); RTE_LOG_REGISTER(nicvf_logtype_driver, pmd.net.thunderx.driver, NOTICE); static void nicvf_link_status_update(struct nicvf *nic, struct rte_eth_link *link) { memset(link, 0, sizeof(*link)); link->link_status = nic->link_up ? ETH_LINK_UP : ETH_LINK_DOWN; if (nic->duplex == NICVF_HALF_DUPLEX) link->link_duplex = ETH_LINK_HALF_DUPLEX; else if (nic->duplex == NICVF_FULL_DUPLEX) link->link_duplex = ETH_LINK_FULL_DUPLEX; link->link_speed = nic->speed; link->link_autoneg = ETH_LINK_AUTONEG; } static void nicvf_interrupt(void *arg) { struct rte_eth_dev *dev = arg; struct nicvf *nic = nicvf_pmd_priv(dev); struct rte_eth_link link; if (nicvf_reg_poll_interrupts(nic) == NIC_MBOX_MSG_BGX_LINK_CHANGE) { if (dev->data->dev_conf.intr_conf.lsc) { nicvf_link_status_update(nic, &link); rte_eth_linkstatus_set(dev, &link); rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC, NULL); } } rte_eal_alarm_set(NICVF_INTR_POLL_INTERVAL_MS * 1000, nicvf_interrupt, dev); } static void nicvf_vf_interrupt(void *arg) { struct nicvf *nic = arg; nicvf_reg_poll_interrupts(nic); rte_eal_alarm_set(NICVF_INTR_POLL_INTERVAL_MS * 1000, nicvf_vf_interrupt, nic); } static int nicvf_periodic_alarm_start(void (fn)(void *), void *arg) { return rte_eal_alarm_set(NICVF_INTR_POLL_INTERVAL_MS * 1000, fn, arg); } static int nicvf_periodic_alarm_stop(void (fn)(void *), void *arg) { return rte_eal_alarm_cancel(fn, arg); } /* * Return 0 means link status changed, -1 means not changed */ static int nicvf_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete) { #define CHECK_INTERVAL 100 /* 100ms */ #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ struct rte_eth_link link; struct nicvf *nic = nicvf_pmd_priv(dev); int i; PMD_INIT_FUNC_TRACE(); if (wait_to_complete) { /* rte_eth_link_get() might need to wait up to 9 seconds */ for (i = 0; i < MAX_CHECK_TIME; i++) { nicvf_link_status_update(nic, &link); if (link.link_status == ETH_LINK_UP) break; rte_delay_ms(CHECK_INTERVAL); } } else { nicvf_link_status_update(nic, &link); } return rte_eth_linkstatus_set(dev, &link); } static int nicvf_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu) { struct nicvf *nic = nicvf_pmd_priv(dev); uint32_t buffsz, frame_size = mtu + NIC_HW_L2_OVERHEAD; size_t i; struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode; PMD_INIT_FUNC_TRACE(); if (frame_size > NIC_HW_MAX_FRS) return -EINVAL; if (frame_size < NIC_HW_MIN_FRS) return -EINVAL; buffsz = dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM; /* * Refuse mtu that requires the support of scattered packets * when this feature has not been enabled before. */ if (dev->data->dev_started && !dev->data->scattered_rx && (frame_size + 2 * VLAN_TAG_SIZE > buffsz)) return -EINVAL; /* check * >= max_frame */ if (dev->data->scattered_rx && (frame_size + 2 * VLAN_TAG_SIZE > buffsz * NIC_HW_MAX_SEGS)) return -EINVAL; if (frame_size > RTE_ETHER_MAX_LEN) rxmode->offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME; else rxmode->offloads &= ~DEV_RX_OFFLOAD_JUMBO_FRAME; if (nicvf_mbox_update_hw_max_frs(nic, mtu)) return -EINVAL; /* Update max_rx_pkt_len */ rxmode->max_rx_pkt_len = mtu + RTE_ETHER_HDR_LEN; nic->mtu = mtu; for (i = 0; i < nic->sqs_count; i++) nic->snicvf[i]->mtu = mtu; return 0; } static int nicvf_dev_get_regs(struct rte_eth_dev *dev, struct rte_dev_reg_info *regs) { uint64_t *data = regs->data; struct nicvf *nic = nicvf_pmd_priv(dev); if (data == NULL) { regs->length = nicvf_reg_get_count(); regs->width = THUNDERX_REG_BYTES; return 0; } /* Support only full register dump */ if ((regs->length == 0) || (regs->length == (uint32_t)nicvf_reg_get_count())) { regs->version = nic->vendor_id << 16 | nic->device_id; nicvf_reg_dump(nic, data); return 0; } return -ENOTSUP; } static int nicvf_dev_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats) { uint16_t qidx; struct nicvf_hw_rx_qstats rx_qstats; struct nicvf_hw_tx_qstats tx_qstats; struct nicvf_hw_stats port_stats; struct nicvf *nic = nicvf_pmd_priv(dev); uint16_t rx_start, rx_end; uint16_t tx_start, tx_end; size_t i; /* RX queue indices for the first VF */ nicvf_rx_range(dev, nic, &rx_start, &rx_end); /* Reading per RX ring stats */ for (qidx = rx_start; qidx <= rx_end; qidx++) { if (qidx >= RTE_ETHDEV_QUEUE_STAT_CNTRS) break; nicvf_hw_get_rx_qstats(nic, &rx_qstats, qidx); stats->q_ibytes[qidx] = rx_qstats.q_rx_bytes; stats->q_ipackets[qidx] = rx_qstats.q_rx_packets; } /* TX queue indices for the first VF */ nicvf_tx_range(dev, nic, &tx_start, &tx_end); /* Reading per TX ring stats */ for (qidx = tx_start; qidx <= tx_end; qidx++) { if (qidx >= RTE_ETHDEV_QUEUE_STAT_CNTRS) break; nicvf_hw_get_tx_qstats(nic, &tx_qstats, qidx); stats->q_obytes[qidx] = tx_qstats.q_tx_bytes; stats->q_opackets[qidx] = tx_qstats.q_tx_packets; } for (i = 0; i < nic->sqs_count; i++) { struct nicvf *snic = nic->snicvf[i]; if (snic == NULL) break; /* RX queue indices for a secondary VF */ nicvf_rx_range(dev, snic, &rx_start, &rx_end); /* Reading per RX ring stats */ for (qidx = rx_start; qidx <= rx_end; qidx++) { if (qidx >= RTE_ETHDEV_QUEUE_STAT_CNTRS) break; nicvf_hw_get_rx_qstats(snic, &rx_qstats, qidx % MAX_RCV_QUEUES_PER_QS); stats->q_ibytes[qidx] = rx_qstats.q_rx_bytes; stats->q_ipackets[qidx] = rx_qstats.q_rx_packets; } /* TX queue indices for a secondary VF */ nicvf_tx_range(dev, snic, &tx_start, &tx_end); /* Reading per TX ring stats */ for (qidx = tx_start; qidx <= tx_end; qidx++) { if (qidx >= RTE_ETHDEV_QUEUE_STAT_CNTRS) break; nicvf_hw_get_tx_qstats(snic, &tx_qstats, qidx % MAX_SND_QUEUES_PER_QS); stats->q_obytes[qidx] = tx_qstats.q_tx_bytes; stats->q_opackets[qidx] = tx_qstats.q_tx_packets; } } nicvf_hw_get_stats(nic, &port_stats); stats->ibytes = port_stats.rx_bytes; stats->ipackets = port_stats.rx_ucast_frames; stats->ipackets += port_stats.rx_bcast_frames; stats->ipackets += port_stats.rx_mcast_frames; stats->ierrors = port_stats.rx_l2_errors; stats->imissed = port_stats.rx_drop_red; stats->imissed += port_stats.rx_drop_overrun; stats->imissed += port_stats.rx_drop_bcast; stats->imissed += port_stats.rx_drop_mcast; stats->imissed += port_stats.rx_drop_l3_bcast; stats->imissed += port_stats.rx_drop_l3_mcast; stats->obytes = port_stats.tx_bytes_ok; stats->opackets = port_stats.tx_ucast_frames_ok; stats->opackets += port_stats.tx_bcast_frames_ok; stats->opackets += port_stats.tx_mcast_frames_ok; stats->oerrors = port_stats.tx_drops; return 0; } static const uint32_t * nicvf_dev_supported_ptypes_get(struct rte_eth_dev *dev) { size_t copied; static uint32_t ptypes[32]; struct nicvf *nic = nicvf_pmd_priv(dev); static const uint32_t ptypes_common[] = { RTE_PTYPE_L3_IPV4, RTE_PTYPE_L3_IPV4_EXT, RTE_PTYPE_L3_IPV6, RTE_PTYPE_L3_IPV6_EXT, RTE_PTYPE_L4_TCP, RTE_PTYPE_L4_UDP, RTE_PTYPE_L4_FRAG, }; static const uint32_t ptypes_tunnel[] = { RTE_PTYPE_TUNNEL_GRE, RTE_PTYPE_TUNNEL_GENEVE, RTE_PTYPE_TUNNEL_VXLAN, RTE_PTYPE_TUNNEL_NVGRE, }; static const uint32_t ptypes_end = RTE_PTYPE_UNKNOWN; copied = sizeof(ptypes_common); memcpy(ptypes, ptypes_common, copied); if (nicvf_hw_cap(nic) & NICVF_CAP_TUNNEL_PARSING) { memcpy((char *)ptypes + copied, ptypes_tunnel, sizeof(ptypes_tunnel)); copied += sizeof(ptypes_tunnel); } memcpy((char *)ptypes + copied, &ptypes_end, sizeof(ptypes_end)); /* All Ptypes are supported in all Rx functions. */ return ptypes; } static int nicvf_dev_stats_reset(struct rte_eth_dev *dev) { int i; uint16_t rxqs = 0, txqs = 0; struct nicvf *nic = nicvf_pmd_priv(dev); uint16_t rx_start, rx_end; uint16_t tx_start, tx_end; int ret; /* Reset all primary nic counters */ nicvf_rx_range(dev, nic, &rx_start, &rx_end); for (i = rx_start; i <= rx_end; i++) rxqs |= (0x3 << (i * 2)); nicvf_tx_range(dev, nic, &tx_start, &tx_end); for (i = tx_start; i <= tx_end; i++) txqs |= (0x3 << (i * 2)); ret = nicvf_mbox_reset_stat_counters(nic, 0x3FFF, 0x1F, rxqs, txqs); if (ret != 0) return ret; /* Reset secondary nic queue counters */ for (i = 0; i < nic->sqs_count; i++) { struct nicvf *snic = nic->snicvf[i]; if (snic == NULL) break; nicvf_rx_range(dev, snic, &rx_start, &rx_end); for (i = rx_start; i <= rx_end; i++) rxqs |= (0x3 << ((i % MAX_CMP_QUEUES_PER_QS) * 2)); nicvf_tx_range(dev, snic, &tx_start, &tx_end); for (i = tx_start; i <= tx_end; i++) txqs |= (0x3 << ((i % MAX_SND_QUEUES_PER_QS) * 2)); ret = nicvf_mbox_reset_stat_counters(snic, 0, 0, rxqs, txqs); if (ret != 0) return ret; } return 0; } /* Promiscuous mode enabled by default in LMAC to VF 1:1 map configuration */ static int nicvf_dev_promisc_enable(struct rte_eth_dev *dev __rte_unused) { return 0; } static inline uint64_t nicvf_rss_ethdev_to_nic(struct nicvf *nic, uint64_t ethdev_rss) { uint64_t nic_rss = 0; if (ethdev_rss & ETH_RSS_IPV4) nic_rss |= RSS_IP_ENA; if (ethdev_rss & ETH_RSS_IPV6) nic_rss |= RSS_IP_ENA; if (ethdev_rss & ETH_RSS_NONFRAG_IPV4_UDP) nic_rss |= (RSS_IP_ENA | RSS_UDP_ENA); if (ethdev_rss & ETH_RSS_NONFRAG_IPV4_TCP) nic_rss |= (RSS_IP_ENA | RSS_TCP_ENA); if (ethdev_rss & ETH_RSS_NONFRAG_IPV6_UDP) nic_rss |= (RSS_IP_ENA | RSS_UDP_ENA); if (ethdev_rss & ETH_RSS_NONFRAG_IPV6_TCP) nic_rss |= (RSS_IP_ENA | RSS_TCP_ENA); if (ethdev_rss & ETH_RSS_PORT) nic_rss |= RSS_L2_EXTENDED_HASH_ENA; if (nicvf_hw_cap(nic) & NICVF_CAP_TUNNEL_PARSING) { if (ethdev_rss & ETH_RSS_VXLAN) nic_rss |= RSS_TUN_VXLAN_ENA; if (ethdev_rss & ETH_RSS_GENEVE) nic_rss |= RSS_TUN_GENEVE_ENA; if (ethdev_rss & ETH_RSS_NVGRE) nic_rss |= RSS_TUN_NVGRE_ENA; } return nic_rss; } static inline uint64_t nicvf_rss_nic_to_ethdev(struct nicvf *nic, uint64_t nic_rss) { uint64_t ethdev_rss = 0; if (nic_rss & RSS_IP_ENA) ethdev_rss |= (ETH_RSS_IPV4 | ETH_RSS_IPV6); if ((nic_rss & RSS_IP_ENA) && (nic_rss & RSS_TCP_ENA)) ethdev_rss |= (ETH_RSS_NONFRAG_IPV4_TCP | ETH_RSS_NONFRAG_IPV6_TCP); if ((nic_rss & RSS_IP_ENA) && (nic_rss & RSS_UDP_ENA)) ethdev_rss |= (ETH_RSS_NONFRAG_IPV4_UDP | ETH_RSS_NONFRAG_IPV6_UDP); if (nic_rss & RSS_L2_EXTENDED_HASH_ENA) ethdev_rss |= ETH_RSS_PORT; if (nicvf_hw_cap(nic) & NICVF_CAP_TUNNEL_PARSING) { if (nic_rss & RSS_TUN_VXLAN_ENA) ethdev_rss |= ETH_RSS_VXLAN; if (nic_rss & RSS_TUN_GENEVE_ENA) ethdev_rss |= ETH_RSS_GENEVE; if (nic_rss & RSS_TUN_NVGRE_ENA) ethdev_rss |= ETH_RSS_NVGRE; } return ethdev_rss; } static int nicvf_dev_reta_query(struct rte_eth_dev *dev, struct rte_eth_rss_reta_entry64 *reta_conf, uint16_t reta_size) { struct nicvf *nic = nicvf_pmd_priv(dev); uint8_t tbl[NIC_MAX_RSS_IDR_TBL_SIZE]; int ret, i, j; if (reta_size != NIC_MAX_RSS_IDR_TBL_SIZE) { PMD_DRV_LOG(ERR, "The size of hash lookup table configured " "(%u) doesn't match the number hardware can supported " "(%u)", reta_size, NIC_MAX_RSS_IDR_TBL_SIZE); return -EINVAL; } ret = nicvf_rss_reta_query(nic, tbl, NIC_MAX_RSS_IDR_TBL_SIZE); if (ret) return ret; /* Copy RETA table */ for (i = 0; i < (NIC_MAX_RSS_IDR_TBL_SIZE / RTE_RETA_GROUP_SIZE); i++) { for (j = 0; j < RTE_RETA_GROUP_SIZE; j++) if ((reta_conf[i].mask >> j) & 0x01) reta_conf[i].reta[j] = tbl[j]; } return 0; } static int nicvf_dev_reta_update(struct rte_eth_dev *dev, struct rte_eth_rss_reta_entry64 *reta_conf, uint16_t reta_size) { struct nicvf *nic = nicvf_pmd_priv(dev); uint8_t tbl[NIC_MAX_RSS_IDR_TBL_SIZE]; int ret, i, j; if (reta_size != NIC_MAX_RSS_IDR_TBL_SIZE) { PMD_DRV_LOG(ERR, "The size of hash lookup table configured " "(%u) doesn't match the number hardware can supported " "(%u)", reta_size, NIC_MAX_RSS_IDR_TBL_SIZE); return -EINVAL; } ret = nicvf_rss_reta_query(nic, tbl, NIC_MAX_RSS_IDR_TBL_SIZE); if (ret) return ret; /* Copy RETA table */ for (i = 0; i < (NIC_MAX_RSS_IDR_TBL_SIZE / RTE_RETA_GROUP_SIZE); i++) { for (j = 0; j < RTE_RETA_GROUP_SIZE; j++) if ((reta_conf[i].mask >> j) & 0x01) tbl[j] = reta_conf[i].reta[j]; } return nicvf_rss_reta_update(nic, tbl, NIC_MAX_RSS_IDR_TBL_SIZE); } static int nicvf_dev_rss_hash_conf_get(struct rte_eth_dev *dev, struct rte_eth_rss_conf *rss_conf) { struct nicvf *nic = nicvf_pmd_priv(dev); if (rss_conf->rss_key) nicvf_rss_get_key(nic, rss_conf->rss_key); rss_conf->rss_key_len = RSS_HASH_KEY_BYTE_SIZE; rss_conf->rss_hf = nicvf_rss_nic_to_ethdev(nic, nicvf_rss_get_cfg(nic)); return 0; } static int nicvf_dev_rss_hash_update(struct rte_eth_dev *dev, struct rte_eth_rss_conf *rss_conf) { struct nicvf *nic = nicvf_pmd_priv(dev); uint64_t nic_rss; if (rss_conf->rss_key && rss_conf->rss_key_len != RSS_HASH_KEY_BYTE_SIZE) { PMD_DRV_LOG(ERR, "Hash key size mismatch %u", rss_conf->rss_key_len); return -EINVAL; } if (rss_conf->rss_key) nicvf_rss_set_key(nic, rss_conf->rss_key); nic_rss = nicvf_rss_ethdev_to_nic(nic, rss_conf->rss_hf); nicvf_rss_set_cfg(nic, nic_rss); return 0; } static int nicvf_qset_cq_alloc(struct rte_eth_dev *dev, struct nicvf *nic, struct nicvf_rxq *rxq, uint16_t qidx, uint32_t desc_cnt) { const struct rte_memzone *rz; uint32_t ring_size = CMP_QUEUE_SZ_MAX * sizeof(union cq_entry_t); rz = rte_eth_dma_zone_reserve(dev, "cq_ring", nicvf_netdev_qidx(nic, qidx), ring_size, NICVF_CQ_BASE_ALIGN_BYTES, nic->node); if (rz == NULL) { PMD_INIT_LOG(ERR, "Failed to allocate mem for cq hw ring"); return -ENOMEM; } memset(rz->addr, 0, ring_size); rxq->phys = rz->iova; rxq->desc = rz->addr; rxq->qlen_mask = desc_cnt - 1; return 0; } static int nicvf_qset_sq_alloc(struct rte_eth_dev *dev, struct nicvf *nic, struct nicvf_txq *sq, uint16_t qidx, uint32_t desc_cnt) { const struct rte_memzone *rz; uint32_t ring_size = SND_QUEUE_SZ_MAX * sizeof(union sq_entry_t); rz = rte_eth_dma_zone_reserve(dev, "sq", nicvf_netdev_qidx(nic, qidx), ring_size, NICVF_SQ_BASE_ALIGN_BYTES, nic->node); if (rz == NULL) { PMD_INIT_LOG(ERR, "Failed allocate mem for sq hw ring"); return -ENOMEM; } memset(rz->addr, 0, ring_size); sq->phys = rz->iova; sq->desc = rz->addr; sq->qlen_mask = desc_cnt - 1; return 0; } static int nicvf_qset_rbdr_alloc(struct rte_eth_dev *dev, struct nicvf *nic, uint32_t desc_cnt, uint32_t buffsz) { struct nicvf_rbdr *rbdr; const struct rte_memzone *rz; uint32_t ring_size; assert(nic->rbdr == NULL); rbdr = rte_zmalloc_socket("rbdr", sizeof(struct nicvf_rbdr), RTE_CACHE_LINE_SIZE, nic->node); if (rbdr == NULL) { PMD_INIT_LOG(ERR, "Failed to allocate mem for rbdr"); return -ENOMEM; } ring_size = sizeof(struct rbdr_entry_t) * RBDR_QUEUE_SZ_MAX; rz = rte_eth_dma_zone_reserve(dev, "rbdr", nicvf_netdev_qidx(nic, 0), ring_size, NICVF_RBDR_BASE_ALIGN_BYTES, nic->node); if (rz == NULL) { PMD_INIT_LOG(ERR, "Failed to allocate mem for rbdr desc ring"); rte_free(rbdr); return -ENOMEM; } memset(rz->addr, 0, ring_size); rbdr->phys = rz->iova; rbdr->tail = 0; rbdr->next_tail = 0; rbdr->desc = rz->addr; rbdr->buffsz = buffsz; rbdr->qlen_mask = desc_cnt - 1; rbdr->rbdr_status = nicvf_qset_base(nic, 0) + NIC_QSET_RBDR_0_1_STATUS0; rbdr->rbdr_door = nicvf_qset_base(nic, 0) + NIC_QSET_RBDR_0_1_DOOR; nic->rbdr = rbdr; return 0; } static void nicvf_rbdr_release_mbuf(struct rte_eth_dev *dev, struct nicvf *nic, nicvf_iova_addr_t phy) { uint16_t qidx; void *obj; struct nicvf_rxq *rxq; uint16_t rx_start, rx_end; /* Get queue ranges for this VF */ nicvf_rx_range(dev, nic, &rx_start, &rx_end); for (qidx = rx_start; qidx <= rx_end; qidx++) { rxq = dev->data->rx_queues[qidx]; if (rxq->precharge_cnt) { obj = (void *)nicvf_mbuff_phy2virt(phy, rxq->mbuf_phys_off); rte_mempool_put(rxq->pool, obj); rxq->precharge_cnt--; break; } } } static inline void nicvf_rbdr_release_mbufs(struct rte_eth_dev *dev, struct nicvf *nic) { uint32_t qlen_mask, head; struct rbdr_entry_t *entry; struct nicvf_rbdr *rbdr = nic->rbdr; qlen_mask = rbdr->qlen_mask; head = rbdr->head; while (head != rbdr->tail) { entry = rbdr->desc + head; nicvf_rbdr_release_mbuf(dev, nic, entry->full_addr); head++; head = head & qlen_mask; } } static inline void nicvf_tx_queue_release_mbufs(struct nicvf_txq *txq) { uint32_t head; head = txq->head; while (head != txq->tail) { if (txq->txbuffs[head]) { rte_pktmbuf_free_seg(txq->txbuffs[head]); txq->txbuffs[head] = NULL; } head++; head = head & txq->qlen_mask; } } static void nicvf_tx_queue_reset(struct nicvf_txq *txq) { uint32_t txq_desc_cnt = txq->qlen_mask + 1; memset(txq->desc, 0, sizeof(union sq_entry_t) * txq_desc_cnt); memset(txq->txbuffs, 0, sizeof(struct rte_mbuf *) * txq_desc_cnt); txq->tail = 0; txq->head = 0; txq->xmit_bufs = 0; } static inline int nicvf_vf_start_tx_queue(struct rte_eth_dev *dev, struct nicvf *nic, uint16_t qidx) { struct nicvf_txq *txq; int ret; assert(qidx < MAX_SND_QUEUES_PER_QS); if (dev->data->tx_queue_state[nicvf_netdev_qidx(nic, qidx)] == RTE_ETH_QUEUE_STATE_STARTED) return 0; txq = dev->data->tx_queues[nicvf_netdev_qidx(nic, qidx)]; txq->pool = NULL; ret = nicvf_qset_sq_config(nic, qidx, txq); if (ret) { PMD_INIT_LOG(ERR, "Failed to configure sq VF%d %d %d", nic->vf_id, qidx, ret); goto config_sq_error; } dev->data->tx_queue_state[nicvf_netdev_qidx(nic, qidx)] = RTE_ETH_QUEUE_STATE_STARTED; return ret; config_sq_error: nicvf_qset_sq_reclaim(nic, qidx); return ret; } static inline int nicvf_vf_stop_tx_queue(struct rte_eth_dev *dev, struct nicvf *nic, uint16_t qidx) { struct nicvf_txq *txq; int ret; assert(qidx < MAX_SND_QUEUES_PER_QS); if (dev->data->tx_queue_state[nicvf_netdev_qidx(nic, qidx)] == RTE_ETH_QUEUE_STATE_STOPPED) return 0; ret = nicvf_qset_sq_reclaim(nic, qidx); if (ret) PMD_INIT_LOG(ERR, "Failed to reclaim sq VF%d %d %d", nic->vf_id, qidx, ret); txq = dev->data->tx_queues[nicvf_netdev_qidx(nic, qidx)]; nicvf_tx_queue_release_mbufs(txq); nicvf_tx_queue_reset(txq); dev->data->tx_queue_state[nicvf_netdev_qidx(nic, qidx)] = RTE_ETH_QUEUE_STATE_STOPPED; return ret; } static inline int nicvf_configure_cpi(struct rte_eth_dev *dev) { struct nicvf *nic = nicvf_pmd_priv(dev); uint16_t qidx, qcnt; int ret; /* Count started rx queues */ for (qidx = qcnt = 0; qidx < dev->data->nb_rx_queues; qidx++) if (dev->data->rx_queue_state[qidx] == RTE_ETH_QUEUE_STATE_STARTED) qcnt++; nic->cpi_alg = CPI_ALG_NONE; ret = nicvf_mbox_config_cpi(nic, qcnt); if (ret) PMD_INIT_LOG(ERR, "Failed to configure CPI %d", ret); return ret; } static inline int nicvf_configure_rss(struct rte_eth_dev *dev) { struct nicvf *nic = nicvf_pmd_priv(dev); uint64_t rsshf; int ret = -EINVAL; rsshf = nicvf_rss_ethdev_to_nic(nic, dev->data->dev_conf.rx_adv_conf.rss_conf.rss_hf); PMD_DRV_LOG(INFO, "mode=%d rx_queues=%d loopback=%d rsshf=0x%" PRIx64, dev->data->dev_conf.rxmode.mq_mode, dev->data->nb_rx_queues, dev->data->dev_conf.lpbk_mode, rsshf); if (dev->data->dev_conf.rxmode.mq_mode == ETH_MQ_RX_NONE) ret = nicvf_rss_term(nic); else if (dev->data->dev_conf.rxmode.mq_mode == ETH_MQ_RX_RSS) ret = nicvf_rss_config(nic, dev->data->nb_rx_queues, rsshf); if (ret) PMD_INIT_LOG(ERR, "Failed to configure RSS %d", ret); return ret; } static int nicvf_configure_rss_reta(struct rte_eth_dev *dev) { struct nicvf *nic = nicvf_pmd_priv(dev); unsigned int idx, qmap_size; uint8_t qmap[RTE_MAX_QUEUES_PER_PORT]; uint8_t default_reta[NIC_MAX_RSS_IDR_TBL_SIZE]; if (nic->cpi_alg != CPI_ALG_NONE) return -EINVAL; /* Prepare queue map */ for (idx = 0, qmap_size = 0; idx < dev->data->nb_rx_queues; idx++) { if (dev->data->rx_queue_state[idx] == RTE_ETH_QUEUE_STATE_STARTED) qmap[qmap_size++] = idx; } /* Update default RSS RETA */ for (idx = 0; idx < NIC_MAX_RSS_IDR_TBL_SIZE; idx++) default_reta[idx] = qmap[idx % qmap_size]; return nicvf_rss_reta_update(nic, default_reta, NIC_MAX_RSS_IDR_TBL_SIZE); } static void nicvf_dev_tx_queue_release(void *sq) { struct nicvf_txq *txq; PMD_INIT_FUNC_TRACE(); txq = (struct nicvf_txq *)sq; if (txq) { if (txq->txbuffs != NULL) { nicvf_tx_queue_release_mbufs(txq); rte_free(txq->txbuffs); txq->txbuffs = NULL; } rte_free(txq); } } static void nicvf_set_tx_function(struct rte_eth_dev *dev) { struct nicvf_txq *txq = NULL; size_t i; bool multiseg = false; for (i = 0; i < dev->data->nb_tx_queues; i++) { txq = dev->data->tx_queues[i]; if (txq->offloads & DEV_TX_OFFLOAD_MULTI_SEGS) { multiseg = true; break; } } /* Use a simple Tx queue (no offloads, no multi segs) if possible */ if (multiseg) { PMD_DRV_LOG(DEBUG, "Using multi-segment tx callback"); dev->tx_pkt_burst = nicvf_xmit_pkts_multiseg; } else { PMD_DRV_LOG(DEBUG, "Using single-segment tx callback"); dev->tx_pkt_burst = nicvf_xmit_pkts; } if (!txq) return; if (txq->pool_free == nicvf_single_pool_free_xmited_buffers) PMD_DRV_LOG(DEBUG, "Using single-mempool tx free method"); else PMD_DRV_LOG(DEBUG, "Using multi-mempool tx free method"); } static void nicvf_set_rx_function(struct rte_eth_dev *dev) { struct nicvf *nic = nicvf_pmd_priv(dev); const eth_rx_burst_t rx_burst_func[2][2][2] = { /* [NORMAL/SCATTER] [CKSUM/NO_CKSUM] [VLAN_STRIP/NO_VLAN_STRIP] */ [0][0][0] = nicvf_recv_pkts_no_offload, [0][0][1] = nicvf_recv_pkts_vlan_strip, [0][1][0] = nicvf_recv_pkts_cksum, [0][1][1] = nicvf_recv_pkts_cksum_vlan_strip, [1][0][0] = nicvf_recv_pkts_multiseg_no_offload, [1][0][1] = nicvf_recv_pkts_multiseg_vlan_strip, [1][1][0] = nicvf_recv_pkts_multiseg_cksum, [1][1][1] = nicvf_recv_pkts_multiseg_cksum_vlan_strip, }; dev->rx_pkt_burst = rx_burst_func[dev->data->scattered_rx] [nic->offload_cksum][nic->vlan_strip]; } static int nicvf_dev_tx_queue_setup(struct rte_eth_dev *dev, uint16_t qidx, uint16_t nb_desc, unsigned int socket_id, const struct rte_eth_txconf *tx_conf) { uint16_t tx_free_thresh; bool is_single_pool; struct nicvf_txq *txq; struct nicvf *nic = nicvf_pmd_priv(dev); uint64_t offloads; PMD_INIT_FUNC_TRACE(); if (qidx >= MAX_SND_QUEUES_PER_QS) nic = nic->snicvf[qidx / MAX_SND_QUEUES_PER_QS - 1]; qidx = qidx % MAX_SND_QUEUES_PER_QS; /* Socket id check */ if (socket_id != (unsigned int)SOCKET_ID_ANY && socket_id != nic->node) PMD_DRV_LOG(WARNING, "socket_id expected %d, configured %d", socket_id, nic->node); /* Tx deferred start is not supported */ if (tx_conf->tx_deferred_start) { PMD_INIT_LOG(ERR, "Tx deferred start not supported"); return -EINVAL; } /* Roundup nb_desc to available qsize and validate max number of desc */ nb_desc = nicvf_qsize_sq_roundup(nb_desc); if (nb_desc == 0) { PMD_INIT_LOG(ERR, "Value of nb_desc beyond available sq qsize"); return -EINVAL; } /* Validate tx_free_thresh */ tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ? tx_conf->tx_free_thresh : NICVF_DEFAULT_TX_FREE_THRESH); if (tx_free_thresh > (nb_desc) || tx_free_thresh > NICVF_MAX_TX_FREE_THRESH) { PMD_INIT_LOG(ERR, "tx_free_thresh must be less than the number of TX " "descriptors. (tx_free_thresh=%u port=%d " "queue=%d)", (unsigned int)tx_free_thresh, (int)dev->data->port_id, (int)qidx); return -EINVAL; } /* Free memory prior to re-allocation if needed. */ if (dev->data->tx_queues[nicvf_netdev_qidx(nic, qidx)] != NULL) { PMD_TX_LOG(DEBUG, "Freeing memory prior to re-allocation %d", nicvf_netdev_qidx(nic, qidx)); nicvf_dev_tx_queue_release( dev->data->tx_queues[nicvf_netdev_qidx(nic, qidx)]); dev->data->tx_queues[nicvf_netdev_qidx(nic, qidx)] = NULL; } /* Allocating tx queue data structure */ txq = rte_zmalloc_socket("ethdev TX queue", sizeof(struct nicvf_txq), RTE_CACHE_LINE_SIZE, nic->node); if (txq == NULL) { PMD_INIT_LOG(ERR, "Failed to allocate txq=%d", nicvf_netdev_qidx(nic, qidx)); return -ENOMEM; } txq->nic = nic; txq->queue_id = qidx; txq->tx_free_thresh = tx_free_thresh; txq->sq_head = nicvf_qset_base(nic, qidx) + NIC_QSET_SQ_0_7_HEAD; txq->sq_door = nicvf_qset_base(nic, qidx) + NIC_QSET_SQ_0_7_DOOR; offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads; txq->offloads = offloads; is_single_pool = !!(offloads & DEV_TX_OFFLOAD_MBUF_FAST_FREE); /* Choose optimum free threshold value for multipool case */ if (!is_single_pool) { txq->tx_free_thresh = (uint16_t) (tx_conf->tx_free_thresh == NICVF_DEFAULT_TX_FREE_THRESH ? NICVF_TX_FREE_MPOOL_THRESH : tx_conf->tx_free_thresh); txq->pool_free = nicvf_multi_pool_free_xmited_buffers; } else { txq->pool_free = nicvf_single_pool_free_xmited_buffers; } /* Allocate software ring */ txq->txbuffs = rte_zmalloc_socket("txq->txbuffs", nb_desc * sizeof(struct rte_mbuf *), RTE_CACHE_LINE_SIZE, nic->node); if (txq->txbuffs == NULL) { nicvf_dev_tx_queue_release(txq); return -ENOMEM; } if (nicvf_qset_sq_alloc(dev, nic, txq, qidx, nb_desc)) { PMD_INIT_LOG(ERR, "Failed to allocate mem for sq %d", qidx); nicvf_dev_tx_queue_release(txq); return -ENOMEM; } nicvf_tx_queue_reset(txq); PMD_INIT_LOG(DEBUG, "[%d] txq=%p nb_desc=%d desc=%p" " phys=0x%" PRIx64 " offloads=0x%" PRIx64, nicvf_netdev_qidx(nic, qidx), txq, nb_desc, txq->desc, txq->phys, txq->offloads); dev->data->tx_queues[nicvf_netdev_qidx(nic, qidx)] = txq; dev->data->tx_queue_state[nicvf_netdev_qidx(nic, qidx)] = RTE_ETH_QUEUE_STATE_STOPPED; return 0; } static inline void nicvf_rx_queue_release_mbufs(struct rte_eth_dev *dev, struct nicvf_rxq *rxq) { uint32_t rxq_cnt; uint32_t nb_pkts, released_pkts = 0; uint32_t refill_cnt = 0; struct rte_mbuf *rx_pkts[NICVF_MAX_RX_FREE_THRESH]; if (dev->rx_pkt_burst == NULL) return; while ((rxq_cnt = nicvf_dev_rx_queue_count(dev, nicvf_netdev_qidx(rxq->nic, rxq->queue_id)))) { nb_pkts = dev->rx_pkt_burst(rxq, rx_pkts, NICVF_MAX_RX_FREE_THRESH); PMD_DRV_LOG(INFO, "nb_pkts=%d rxq_cnt=%d", nb_pkts, rxq_cnt); while (nb_pkts) { rte_pktmbuf_free_seg(rx_pkts[--nb_pkts]); released_pkts++; } } refill_cnt += nicvf_dev_rbdr_refill(dev, nicvf_netdev_qidx(rxq->nic, rxq->queue_id)); PMD_DRV_LOG(INFO, "free_cnt=%d refill_cnt=%d", released_pkts, refill_cnt); } static void nicvf_rx_queue_reset(struct nicvf_rxq *rxq) { rxq->head = 0; rxq->available_space = 0; rxq->recv_buffers = 0; } static inline int nicvf_vf_start_rx_queue(struct rte_eth_dev *dev, struct nicvf *nic, uint16_t qidx) { struct nicvf_rxq *rxq; int ret; assert(qidx < MAX_RCV_QUEUES_PER_QS); if (dev->data->rx_queue_state[nicvf_netdev_qidx(nic, qidx)] == RTE_ETH_QUEUE_STATE_STARTED) return 0; /* Update rbdr pointer to all rxq */ rxq = dev->data->rx_queues[nicvf_netdev_qidx(nic, qidx)]; rxq->shared_rbdr = nic->rbdr; ret = nicvf_qset_rq_config(nic, qidx, rxq); if (ret) { PMD_INIT_LOG(ERR, "Failed to configure rq VF%d %d %d", nic->vf_id, qidx, ret); goto config_rq_error; } ret = nicvf_qset_cq_config(nic, qidx, rxq); if (ret) { PMD_INIT_LOG(ERR, "Failed to configure cq VF%d %d %d", nic->vf_id, qidx, ret); goto config_cq_error; } dev->data->rx_queue_state[nicvf_netdev_qidx(nic, qidx)] = RTE_ETH_QUEUE_STATE_STARTED; return 0; config_cq_error: nicvf_qset_cq_reclaim(nic, qidx); config_rq_error: nicvf_qset_rq_reclaim(nic, qidx); return ret; } static inline int nicvf_vf_stop_rx_queue(struct rte_eth_dev *dev, struct nicvf *nic, uint16_t qidx) { struct nicvf_rxq *rxq; int ret, other_error; if (dev->data->rx_queue_state[nicvf_netdev_qidx(nic, qidx)] == RTE_ETH_QUEUE_STATE_STOPPED) return 0; ret = nicvf_qset_rq_reclaim(nic, qidx); if (ret) PMD_INIT_LOG(ERR, "Failed to reclaim rq VF%d %d %d", nic->vf_id, qidx, ret); other_error = ret; rxq = dev->data->rx_queues[nicvf_netdev_qidx(nic, qidx)]; nicvf_rx_queue_release_mbufs(dev, rxq); nicvf_rx_queue_reset(rxq); ret = nicvf_qset_cq_reclaim(nic, qidx); if (ret) PMD_INIT_LOG(ERR, "Failed to reclaim cq VF%d %d %d", nic->vf_id, qidx, ret); other_error |= ret; dev->data->rx_queue_state[nicvf_netdev_qidx(nic, qidx)] = RTE_ETH_QUEUE_STATE_STOPPED; return other_error; } static void nicvf_dev_rx_queue_release(void *rx_queue) { PMD_INIT_FUNC_TRACE(); rte_free(rx_queue); } static int nicvf_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t qidx) { struct nicvf *nic = nicvf_pmd_priv(dev); int ret; if (qidx >= MAX_RCV_QUEUES_PER_QS) nic = nic->snicvf[(qidx / MAX_RCV_QUEUES_PER_QS - 1)]; qidx = qidx % MAX_RCV_QUEUES_PER_QS; ret = nicvf_vf_start_rx_queue(dev, nic, qidx); if (ret) return ret; ret = nicvf_configure_cpi(dev); if (ret) return ret; return nicvf_configure_rss_reta(dev); } static int nicvf_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t qidx) { int ret; struct nicvf *nic = nicvf_pmd_priv(dev); if (qidx >= MAX_SND_QUEUES_PER_QS) nic = nic->snicvf[(qidx / MAX_SND_QUEUES_PER_QS - 1)]; qidx = qidx % MAX_RCV_QUEUES_PER_QS; ret = nicvf_vf_stop_rx_queue(dev, nic, qidx); ret |= nicvf_configure_cpi(dev); ret |= nicvf_configure_rss_reta(dev); return ret; } static int nicvf_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t qidx) { struct nicvf *nic = nicvf_pmd_priv(dev); if (qidx >= MAX_SND_QUEUES_PER_QS) nic = nic->snicvf[(qidx / MAX_SND_QUEUES_PER_QS - 1)]; qidx = qidx % MAX_SND_QUEUES_PER_QS; return nicvf_vf_start_tx_queue(dev, nic, qidx); } static int nicvf_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t qidx) { struct nicvf *nic = nicvf_pmd_priv(dev); if (qidx >= MAX_SND_QUEUES_PER_QS) nic = nic->snicvf[(qidx / MAX_SND_QUEUES_PER_QS - 1)]; qidx = qidx % MAX_SND_QUEUES_PER_QS; return nicvf_vf_stop_tx_queue(dev, nic, qidx); } static inline void nicvf_rxq_mbuf_setup(struct nicvf_rxq *rxq) { uintptr_t p; struct rte_mbuf mb_def; struct nicvf *nic = rxq->nic; RTE_BUILD_BUG_ON(sizeof(union mbuf_initializer) != 8); RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_off) % 8 != 0); RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, refcnt) - offsetof(struct rte_mbuf, data_off) != 2); RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, nb_segs) - offsetof(struct rte_mbuf, data_off) != 4); RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, port) - offsetof(struct rte_mbuf, data_off) != 6); RTE_BUILD_BUG_ON(offsetof(struct nicvf_rxq, rxq_fastpath_data_end) - offsetof(struct nicvf_rxq, rxq_fastpath_data_start) > 128); mb_def.nb_segs = 1; mb_def.data_off = RTE_PKTMBUF_HEADROOM + (nic->skip_bytes); mb_def.port = rxq->port_id; rte_mbuf_refcnt_set(&mb_def, 1); /* Prevent compiler reordering: rearm_data covers previous fields */ rte_compiler_barrier(); p = (uintptr_t)&mb_def.rearm_data; rxq->mbuf_initializer.value = *(uint64_t *)p; } static int nicvf_dev_rx_queue_setup(struct rte_eth_dev *dev, uint16_t qidx, uint16_t nb_desc, unsigned int socket_id, const struct rte_eth_rxconf *rx_conf, struct rte_mempool *mp) { uint16_t rx_free_thresh; struct nicvf_rxq *rxq; struct nicvf *nic = nicvf_pmd_priv(dev); uint64_t offloads; uint32_t buffsz; struct rte_pktmbuf_pool_private *mbp_priv; PMD_INIT_FUNC_TRACE(); /* First skip check */ mbp_priv = rte_mempool_get_priv(mp); buffsz = mbp_priv->mbuf_data_room_size - RTE_PKTMBUF_HEADROOM; if (buffsz < (uint32_t)(nic->skip_bytes)) { PMD_INIT_LOG(ERR, "First skip is more than configured buffer size"); return -EINVAL; } if (qidx >= MAX_RCV_QUEUES_PER_QS) nic = nic->snicvf[qidx / MAX_RCV_QUEUES_PER_QS - 1]; qidx = qidx % MAX_RCV_QUEUES_PER_QS; /* Socket id check */ if (socket_id != (unsigned int)SOCKET_ID_ANY && socket_id != nic->node) PMD_DRV_LOG(WARNING, "socket_id expected %d, configured %d", socket_id, nic->node); /* Mempool memory must be contiguous, so must be one memory segment*/ if (mp->nb_mem_chunks != 1) { PMD_INIT_LOG(ERR, "Non-contiguous mempool, add more huge pages"); return -EINVAL; } /* Mempool memory must be physically contiguous */ if (mp->flags & MEMPOOL_F_NO_IOVA_CONTIG) { PMD_INIT_LOG(ERR, "Mempool memory must be physically contiguous"); return -EINVAL; } /* Rx deferred start is not supported */ if (rx_conf->rx_deferred_start) { PMD_INIT_LOG(ERR, "Rx deferred start not supported"); return -EINVAL; } /* Roundup nb_desc to available qsize and validate max number of desc */ nb_desc = nicvf_qsize_cq_roundup(nb_desc); if (nb_desc == 0) { PMD_INIT_LOG(ERR, "Value nb_desc beyond available hw cq qsize"); return -EINVAL; } /* Check rx_free_thresh upper bound */ rx_free_thresh = (uint16_t)((rx_conf->rx_free_thresh) ? rx_conf->rx_free_thresh : NICVF_DEFAULT_RX_FREE_THRESH); if (rx_free_thresh > NICVF_MAX_RX_FREE_THRESH || rx_free_thresh >= nb_desc * .75) { PMD_INIT_LOG(ERR, "rx_free_thresh greater than expected %d", rx_free_thresh); return -EINVAL; } /* Free memory prior to re-allocation if needed */ if (dev->data->rx_queues[nicvf_netdev_qidx(nic, qidx)] != NULL) { PMD_RX_LOG(DEBUG, "Freeing memory prior to re-allocation %d", nicvf_netdev_qidx(nic, qidx)); nicvf_dev_rx_queue_release( dev->data->rx_queues[nicvf_netdev_qidx(nic, qidx)]); dev->data->rx_queues[nicvf_netdev_qidx(nic, qidx)] = NULL; } /* Allocate rxq memory */ rxq = rte_zmalloc_socket("ethdev rx queue", sizeof(struct nicvf_rxq), RTE_CACHE_LINE_SIZE, nic->node); if (rxq == NULL) { PMD_INIT_LOG(ERR, "Failed to allocate rxq=%d", nicvf_netdev_qidx(nic, qidx)); return -ENOMEM; } rxq->nic = nic; rxq->pool = mp; rxq->queue_id = qidx; rxq->port_id = dev->data->port_id; rxq->rx_free_thresh = rx_free_thresh; rxq->rx_drop_en = rx_conf->rx_drop_en; rxq->cq_status = nicvf_qset_base(nic, qidx) + NIC_QSET_CQ_0_7_STATUS; rxq->cq_door = nicvf_qset_base(nic, qidx) + NIC_QSET_CQ_0_7_DOOR; rxq->precharge_cnt = 0; if (nicvf_hw_cap(nic) & NICVF_CAP_CQE_RX2) rxq->rbptr_offset = NICVF_CQE_RX2_RBPTR_WORD; else rxq->rbptr_offset = NICVF_CQE_RBPTR_WORD; nicvf_rxq_mbuf_setup(rxq); /* Alloc completion queue */ if (nicvf_qset_cq_alloc(dev, nic, rxq, rxq->queue_id, nb_desc)) { PMD_INIT_LOG(ERR, "failed to allocate cq %u", rxq->queue_id); nicvf_dev_rx_queue_release(rxq); return -ENOMEM; } nicvf_rx_queue_reset(rxq); offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads; PMD_INIT_LOG(DEBUG, "[%d] rxq=%p pool=%s nb_desc=(%d/%d)" " phy=0x%" PRIx64 " offloads=0x%" PRIx64, nicvf_netdev_qidx(nic, qidx), rxq, mp->name, nb_desc, rte_mempool_avail_count(mp), rxq->phys, offloads); dev->data->rx_queues[nicvf_netdev_qidx(nic, qidx)] = rxq; dev->data->rx_queue_state[nicvf_netdev_qidx(nic, qidx)] = RTE_ETH_QUEUE_STATE_STOPPED; return 0; } static int nicvf_dev_info_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) { struct nicvf *nic = nicvf_pmd_priv(dev); struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); PMD_INIT_FUNC_TRACE(); /* Autonegotiation may be disabled */ dev_info->speed_capa = ETH_LINK_SPEED_FIXED; dev_info->speed_capa |= ETH_LINK_SPEED_10M | ETH_LINK_SPEED_100M | ETH_LINK_SPEED_1G | ETH_LINK_SPEED_10G; if (nicvf_hw_version(nic) != PCI_SUB_DEVICE_ID_CN81XX_NICVF) dev_info->speed_capa |= ETH_LINK_SPEED_40G; dev_info->min_rx_bufsize = RTE_ETHER_MIN_MTU; dev_info->max_rx_pktlen = NIC_HW_MAX_MTU + RTE_ETHER_HDR_LEN; dev_info->max_rx_queues = (uint16_t)MAX_RCV_QUEUES_PER_QS * (MAX_SQS_PER_VF + 1); dev_info->max_tx_queues = (uint16_t)MAX_SND_QUEUES_PER_QS * (MAX_SQS_PER_VF + 1); dev_info->max_mac_addrs = 1; dev_info->max_vfs = pci_dev->max_vfs; dev_info->rx_offload_capa = NICVF_RX_OFFLOAD_CAPA; dev_info->tx_offload_capa = NICVF_TX_OFFLOAD_CAPA; dev_info->rx_queue_offload_capa = NICVF_RX_OFFLOAD_CAPA; dev_info->tx_queue_offload_capa = NICVF_TX_OFFLOAD_CAPA; dev_info->reta_size = nic->rss_info.rss_size; dev_info->hash_key_size = RSS_HASH_KEY_BYTE_SIZE; dev_info->flow_type_rss_offloads = NICVF_RSS_OFFLOAD_PASS1; if (nicvf_hw_cap(nic) & NICVF_CAP_TUNNEL_PARSING) dev_info->flow_type_rss_offloads |= NICVF_RSS_OFFLOAD_TUNNEL; dev_info->default_rxconf = (struct rte_eth_rxconf) { .rx_free_thresh = NICVF_DEFAULT_RX_FREE_THRESH, .rx_drop_en = 0, }; dev_info->default_txconf = (struct rte_eth_txconf) { .tx_free_thresh = NICVF_DEFAULT_TX_FREE_THRESH, .offloads = DEV_TX_OFFLOAD_MBUF_FAST_FREE | DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM | DEV_TX_OFFLOAD_UDP_CKSUM | DEV_TX_OFFLOAD_TCP_CKSUM, }; return 0; } static nicvf_iova_addr_t rbdr_rte_mempool_get(void *dev, void *opaque) { uint16_t qidx; uintptr_t mbuf; struct nicvf_rxq *rxq; struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)dev; struct nicvf *nic = (struct nicvf *)opaque; uint16_t rx_start, rx_end; /* Get queue ranges for this VF */ nicvf_rx_range(eth_dev, nic, &rx_start, &rx_end); for (qidx = rx_start; qidx <= rx_end; qidx++) { rxq = eth_dev->data->rx_queues[qidx]; /* Maintain equal buffer count across all pools */ if (rxq->precharge_cnt >= rxq->qlen_mask) continue; rxq->precharge_cnt++; mbuf = (uintptr_t)rte_pktmbuf_alloc(rxq->pool); if (mbuf) return nicvf_mbuff_virt2phy(mbuf, rxq->mbuf_phys_off); } return 0; } static int nicvf_vf_start(struct rte_eth_dev *dev, struct nicvf *nic, uint32_t rbdrsz) { int ret; uint16_t qidx, data_off; uint32_t total_rxq_desc, nb_rbdr_desc, exp_buffs; uint64_t mbuf_phys_off = 0; struct nicvf_rxq *rxq; struct rte_mbuf *mbuf; uint16_t rx_start, rx_end; uint16_t tx_start, tx_end; int mask; PMD_INIT_FUNC_TRACE(); /* Userspace process exited without proper shutdown in last run */ if (nicvf_qset_rbdr_active(nic, 0)) nicvf_vf_stop(dev, nic, false); /* Get queue ranges for this VF */ nicvf_rx_range(dev, nic, &rx_start, &rx_end); /* * Thunderx nicvf PMD can support more than one pool per port only when * 1) Data payload size is same across all the pools in given port * AND * 2) All mbuffs in the pools are from the same hugepage * AND * 3) Mbuff metadata size is same across all the pools in given port * * This is to support existing application that uses multiple pool/port. * But, the purpose of using multipool for QoS will not be addressed. * */ /* Validate mempool attributes */ for (qidx = rx_start; qidx <= rx_end; qidx++) { rxq = dev->data->rx_queues[qidx]; rxq->mbuf_phys_off = nicvf_mempool_phy_offset(rxq->pool); mbuf = rte_pktmbuf_alloc(rxq->pool); if (mbuf == NULL) { PMD_INIT_LOG(ERR, "Failed allocate mbuf VF%d qid=%d " "pool=%s", nic->vf_id, qidx, rxq->pool->name); return -ENOMEM; } data_off = nicvf_mbuff_meta_length(mbuf); data_off += RTE_PKTMBUF_HEADROOM; rte_pktmbuf_free(mbuf); if (data_off % RTE_CACHE_LINE_SIZE) { PMD_INIT_LOG(ERR, "%s: unaligned data_off=%d delta=%d", rxq->pool->name, data_off, data_off % RTE_CACHE_LINE_SIZE); return -EINVAL; } rxq->mbuf_phys_off -= data_off; rxq->mbuf_phys_off -= nic->skip_bytes; if (mbuf_phys_off == 0) mbuf_phys_off = rxq->mbuf_phys_off; if (mbuf_phys_off != rxq->mbuf_phys_off) { PMD_INIT_LOG(ERR, "pool params not same,%s VF%d %" PRIx64, rxq->pool->name, nic->vf_id, mbuf_phys_off); return -EINVAL; } } /* Check the level of buffers in the pool */ total_rxq_desc = 0; for (qidx = rx_start; qidx <= rx_end; qidx++) { rxq = dev->data->rx_queues[qidx]; /* Count total numbers of rxq descs */ total_rxq_desc += rxq->qlen_mask + 1; exp_buffs = RTE_MEMPOOL_CACHE_MAX_SIZE + rxq->rx_free_thresh; exp_buffs *= dev->data->nb_rx_queues; if (rte_mempool_avail_count(rxq->pool) < exp_buffs) { PMD_INIT_LOG(ERR, "Buff shortage in pool=%s (%d/%d)", rxq->pool->name, rte_mempool_avail_count(rxq->pool), exp_buffs); return -ENOENT; } } /* Check RBDR desc overflow */ ret = nicvf_qsize_rbdr_roundup(total_rxq_desc); if (ret == 0) { PMD_INIT_LOG(ERR, "Reached RBDR desc limit, reduce nr desc " "VF%d", nic->vf_id); return -ENOMEM; } /* Enable qset */ ret = nicvf_qset_config(nic); if (ret) { PMD_INIT_LOG(ERR, "Failed to enable qset %d VF%d", ret, nic->vf_id); return ret; } /* Allocate RBDR and RBDR ring desc */ nb_rbdr_desc = nicvf_qsize_rbdr_roundup(total_rxq_desc); ret = nicvf_qset_rbdr_alloc(dev, nic, nb_rbdr_desc, rbdrsz); if (ret) { PMD_INIT_LOG(ERR, "Failed to allocate memory for rbdr alloc " "VF%d", nic->vf_id); goto qset_reclaim; } /* Enable and configure RBDR registers */ ret = nicvf_qset_rbdr_config(nic, 0); if (ret) { PMD_INIT_LOG(ERR, "Failed to configure rbdr %d VF%d", ret, nic->vf_id); goto qset_rbdr_free; } /* Fill rte_mempool buffers in RBDR pool and precharge it */ ret = nicvf_qset_rbdr_precharge(dev, nic, 0, rbdr_rte_mempool_get, total_rxq_desc); if (ret) { PMD_INIT_LOG(ERR, "Failed to fill rbdr %d VF%d", ret, nic->vf_id); goto qset_rbdr_reclaim; } PMD_DRV_LOG(INFO, "Filled %d out of %d entries in RBDR VF%d", nic->rbdr->tail, nb_rbdr_desc, nic->vf_id); /* Configure VLAN Strip */ mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | ETH_VLAN_EXTEND_MASK; ret = nicvf_vlan_offload_config(dev, mask); /* Based on the packet type(IPv4 or IPv6), the nicvf HW aligns L3 data * to the 64bit memory address. * The alignment creates a hole in mbuf(between the end of headroom and * packet data start). The new revision of the HW provides an option to * disable the L3 alignment feature and make mbuf layout looks * more like other NICs. For better application compatibility, disabling * l3 alignment feature on the hardware revisions it supports */ nicvf_apad_config(nic, false); /* Get queue ranges for this VF */ nicvf_tx_range(dev, nic, &tx_start, &tx_end); /* Configure TX queues */ for (qidx = tx_start; qidx <= tx_end; qidx++) { ret = nicvf_vf_start_tx_queue(dev, nic, qidx % MAX_SND_QUEUES_PER_QS); if (ret) goto start_txq_error; } /* Configure RX queues */ for (qidx = rx_start; qidx <= rx_end; qidx++) { ret = nicvf_vf_start_rx_queue(dev, nic, qidx % MAX_RCV_QUEUES_PER_QS); if (ret) goto start_rxq_error; } if (!nic->sqs_mode) { /* Configure CPI algorithm */ ret = nicvf_configure_cpi(dev); if (ret) goto start_txq_error; ret = nicvf_mbox_get_rss_size(nic); if (ret) { PMD_INIT_LOG(ERR, "Failed to get rss table size"); goto qset_rss_error; } /* Configure RSS */ ret = nicvf_configure_rss(dev); if (ret) goto qset_rss_error; } /* Done; Let PF make the BGX's RX and TX switches to ON position */ nicvf_mbox_cfg_done(nic); return 0; qset_rss_error: nicvf_rss_term(nic); start_rxq_error: for (qidx = rx_start; qidx <= rx_end; qidx++) nicvf_vf_stop_rx_queue(dev, nic, qidx % MAX_RCV_QUEUES_PER_QS); start_txq_error: for (qidx = tx_start; qidx <= tx_end; qidx++) nicvf_vf_stop_tx_queue(dev, nic, qidx % MAX_SND_QUEUES_PER_QS); qset_rbdr_reclaim: nicvf_qset_rbdr_reclaim(nic, 0); nicvf_rbdr_release_mbufs(dev, nic); qset_rbdr_free: if (nic->rbdr) { rte_free(nic->rbdr); nic->rbdr = NULL; } qset_reclaim: nicvf_qset_reclaim(nic); return ret; } static int nicvf_dev_start(struct rte_eth_dev *dev) { uint16_t qidx; int ret; size_t i; struct nicvf *nic = nicvf_pmd_priv(dev); struct rte_eth_rxmode *rx_conf = &dev->data->dev_conf.rxmode; uint16_t mtu; uint32_t buffsz = 0, rbdrsz = 0; struct rte_pktmbuf_pool_private *mbp_priv; struct nicvf_rxq *rxq; PMD_INIT_FUNC_TRACE(); /* This function must be called for a primary device */ assert_primary(nic); /* Validate RBDR buff size */ for (qidx = 0; qidx < dev->data->nb_rx_queues; qidx++) { rxq = dev->data->rx_queues[qidx]; mbp_priv = rte_mempool_get_priv(rxq->pool); buffsz = mbp_priv->mbuf_data_room_size - RTE_PKTMBUF_HEADROOM; if (buffsz % 128) { PMD_INIT_LOG(ERR, "rxbuf size must be multiply of 128"); return -EINVAL; } if (rbdrsz == 0) rbdrsz = buffsz; if (rbdrsz != buffsz) { PMD_INIT_LOG(ERR, "buffsz not same, qidx=%d (%d/%d)", qidx, rbdrsz, buffsz); return -EINVAL; } } /* Configure loopback */ ret = nicvf_loopback_config(nic, dev->data->dev_conf.lpbk_mode); if (ret) { PMD_INIT_LOG(ERR, "Failed to configure loopback %d", ret); return ret; } /* Reset all statistics counters attached to this port */ ret = nicvf_mbox_reset_stat_counters(nic, 0x3FFF, 0x1F, 0xFFFF, 0xFFFF); if (ret) { PMD_INIT_LOG(ERR, "Failed to reset stat counters %d", ret); return ret; } /* Setup scatter mode if needed by jumbo */ if (dev->data->dev_conf.rxmode.max_rx_pkt_len + 2 * VLAN_TAG_SIZE > buffsz) dev->data->scattered_rx = 1; if ((rx_conf->offloads & DEV_RX_OFFLOAD_SCATTER) != 0) dev->data->scattered_rx = 1; /* Setup MTU based on max_rx_pkt_len or default */ mtu = dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME ? dev->data->dev_conf.rxmode.max_rx_pkt_len - RTE_ETHER_HDR_LEN : RTE_ETHER_MTU; if (nicvf_dev_set_mtu(dev, mtu)) { PMD_INIT_LOG(ERR, "Failed to set default mtu size"); return -EBUSY; } ret = nicvf_vf_start(dev, nic, rbdrsz); if (ret != 0) return ret; for (i = 0; i < nic->sqs_count; i++) { assert(nic->snicvf[i]); ret = nicvf_vf_start(dev, nic->snicvf[i], rbdrsz); if (ret != 0) return ret; } /* Configure callbacks based on offloads */ nicvf_set_tx_function(dev); nicvf_set_rx_function(dev); return 0; } static void nicvf_dev_stop_cleanup(struct rte_eth_dev *dev, bool cleanup) { size_t i; int ret; struct nicvf *nic = nicvf_pmd_priv(dev); PMD_INIT_FUNC_TRACE(); dev->data->dev_started = 0; /* Teardown secondary vf first */ for (i = 0; i < nic->sqs_count; i++) { if (!nic->snicvf[i]) continue; nicvf_vf_stop(dev, nic->snicvf[i], cleanup); } /* Stop the primary VF now */ nicvf_vf_stop(dev, nic, cleanup); /* Disable loopback */ ret = nicvf_loopback_config(nic, 0); if (ret) PMD_INIT_LOG(ERR, "Failed to disable loopback %d", ret); /* Reclaim CPI configuration */ ret = nicvf_mbox_config_cpi(nic, 0); if (ret) PMD_INIT_LOG(ERR, "Failed to reclaim CPI config %d", ret); } static int nicvf_dev_stop(struct rte_eth_dev *dev) { PMD_INIT_FUNC_TRACE(); nicvf_dev_stop_cleanup(dev, false); return 0; } static void nicvf_vf_stop(struct rte_eth_dev *dev, struct nicvf *nic, bool cleanup) { int ret; uint16_t qidx; uint16_t tx_start, tx_end; uint16_t rx_start, rx_end; PMD_INIT_FUNC_TRACE(); if (cleanup) { /* Let PF make the BGX's RX and TX switches to OFF position */ nicvf_mbox_shutdown(nic); } /* Disable VLAN Strip */ nicvf_vlan_hw_strip(nic, 0); /* Get queue ranges for this VF */ nicvf_tx_range(dev, nic, &tx_start, &tx_end); for (qidx = tx_start; qidx <= tx_end; qidx++) nicvf_vf_stop_tx_queue(dev, nic, qidx % MAX_SND_QUEUES_PER_QS); /* Get queue ranges for this VF */ nicvf_rx_range(dev, nic, &rx_start, &rx_end); /* Reclaim rq */ for (qidx = rx_start; qidx <= rx_end; qidx++) nicvf_vf_stop_rx_queue(dev, nic, qidx % MAX_RCV_QUEUES_PER_QS); /* Reclaim RBDR */ ret = nicvf_qset_rbdr_reclaim(nic, 0); if (ret) PMD_INIT_LOG(ERR, "Failed to reclaim RBDR %d", ret); /* Move all charged buffers in RBDR back to pool */ if (nic->rbdr != NULL) nicvf_rbdr_release_mbufs(dev, nic); /* Disable qset */ ret = nicvf_qset_reclaim(nic); if (ret) PMD_INIT_LOG(ERR, "Failed to disable qset %d", ret); /* Disable all interrupts */ nicvf_disable_all_interrupts(nic); /* Free RBDR SW structure */ if (nic->rbdr) { rte_free(nic->rbdr); nic->rbdr = NULL; } } static int nicvf_dev_close(struct rte_eth_dev *dev) { size_t i; struct nicvf *nic = nicvf_pmd_priv(dev); PMD_INIT_FUNC_TRACE(); if (rte_eal_process_type() != RTE_PROC_PRIMARY) return 0; nicvf_dev_stop_cleanup(dev, true); nicvf_periodic_alarm_stop(nicvf_interrupt, dev); for (i = 0; i < nic->sqs_count; i++) { if (!nic->snicvf[i]) continue; nicvf_periodic_alarm_stop(nicvf_vf_interrupt, nic->snicvf[i]); } return 0; } static int nicvf_request_sqs(struct nicvf *nic) { size_t i; assert_primary(nic); assert(nic->sqs_count > 0); assert(nic->sqs_count <= MAX_SQS_PER_VF); /* Set no of Rx/Tx queues in each of the SQsets */ for (i = 0; i < nic->sqs_count; i++) { if (nicvf_svf_empty()) rte_panic("Cannot assign sufficient number of " "secondary queues to primary VF%" PRIu8 "\n", nic->vf_id); nic->snicvf[i] = nicvf_svf_pop(); nic->snicvf[i]->sqs_id = i; } return nicvf_mbox_request_sqs(nic); } static int nicvf_dev_configure(struct rte_eth_dev *dev) { struct rte_eth_dev_data *data = dev->data; struct rte_eth_conf *conf = &data->dev_conf; struct rte_eth_rxmode *rxmode = &conf->rxmode; struct rte_eth_txmode *txmode = &conf->txmode; struct nicvf *nic = nicvf_pmd_priv(dev); uint8_t cqcount; PMD_INIT_FUNC_TRACE(); if (rxmode->mq_mode & ETH_MQ_RX_RSS_FLAG) rxmode->offloads |= DEV_RX_OFFLOAD_RSS_HASH; if (!rte_eal_has_hugepages()) { PMD_INIT_LOG(INFO, "Huge page is not configured"); return -EINVAL; } if (txmode->mq_mode) { PMD_INIT_LOG(INFO, "Tx mq_mode DCB or VMDq not supported"); return -EINVAL; } if (rxmode->mq_mode != ETH_MQ_RX_NONE && rxmode->mq_mode != ETH_MQ_RX_RSS) { PMD_INIT_LOG(INFO, "Unsupported rx qmode %d", rxmode->mq_mode); return -EINVAL; } if (rxmode->split_hdr_size) { PMD_INIT_LOG(INFO, "Rxmode does not support split header"); return -EINVAL; } if (conf->link_speeds & ETH_LINK_SPEED_FIXED) { PMD_INIT_LOG(INFO, "Setting link speed/duplex not supported"); return -EINVAL; } if (conf->dcb_capability_en) { PMD_INIT_LOG(INFO, "DCB enable not supported"); return -EINVAL; } if (conf->fdir_conf.mode != RTE_FDIR_MODE_NONE) { PMD_INIT_LOG(INFO, "Flow director not supported"); return -EINVAL; } assert_primary(nic); NICVF_STATIC_ASSERT(MAX_RCV_QUEUES_PER_QS == MAX_SND_QUEUES_PER_QS); cqcount = RTE_MAX(data->nb_tx_queues, data->nb_rx_queues); if (cqcount > MAX_RCV_QUEUES_PER_QS) { nic->sqs_count = RTE_ALIGN_CEIL(cqcount, MAX_RCV_QUEUES_PER_QS); nic->sqs_count = (nic->sqs_count / MAX_RCV_QUEUES_PER_QS) - 1; } else { nic->sqs_count = 0; } assert(nic->sqs_count <= MAX_SQS_PER_VF); if (nic->sqs_count > 0) { if (nicvf_request_sqs(nic)) { rte_panic("Cannot assign sufficient number of " "secondary queues to PORT%d VF%" PRIu8 "\n", dev->data->port_id, nic->vf_id); } } if (rxmode->offloads & DEV_RX_OFFLOAD_CHECKSUM) nic->offload_cksum = 1; PMD_INIT_LOG(DEBUG, "Configured ethdev port%d hwcap=0x%" PRIx64, dev->data->port_id, nicvf_hw_cap(nic)); return 0; } static int nicvf_dev_set_link_up(struct rte_eth_dev *dev) { struct nicvf *nic = nicvf_pmd_priv(dev); int rc, i; rc = nicvf_mbox_set_link_up_down(nic, true); if (rc) goto done; /* Start tx queues */ for (i = 0; i < dev->data->nb_tx_queues; i++) nicvf_dev_tx_queue_start(dev, i); done: return rc; } static int nicvf_dev_set_link_down(struct rte_eth_dev *dev) { struct nicvf *nic = nicvf_pmd_priv(dev); int i; /* Stop tx queues */ for (i = 0; i < dev->data->nb_tx_queues; i++) nicvf_dev_tx_queue_stop(dev, i); return nicvf_mbox_set_link_up_down(nic, false); } /* Initialize and register driver with DPDK Application */ static const struct eth_dev_ops nicvf_eth_dev_ops = { .dev_configure = nicvf_dev_configure, .dev_start = nicvf_dev_start, .dev_stop = nicvf_dev_stop, .link_update = nicvf_dev_link_update, .dev_close = nicvf_dev_close, .stats_get = nicvf_dev_stats_get, .stats_reset = nicvf_dev_stats_reset, .promiscuous_enable = nicvf_dev_promisc_enable, .dev_infos_get = nicvf_dev_info_get, .dev_supported_ptypes_get = nicvf_dev_supported_ptypes_get, .mtu_set = nicvf_dev_set_mtu, .vlan_offload_set = nicvf_vlan_offload_set, .reta_update = nicvf_dev_reta_update, .reta_query = nicvf_dev_reta_query, .rss_hash_update = nicvf_dev_rss_hash_update, .rss_hash_conf_get = nicvf_dev_rss_hash_conf_get, .rx_queue_start = nicvf_dev_rx_queue_start, .rx_queue_stop = nicvf_dev_rx_queue_stop, .tx_queue_start = nicvf_dev_tx_queue_start, .tx_queue_stop = nicvf_dev_tx_queue_stop, .rx_queue_setup = nicvf_dev_rx_queue_setup, .rx_queue_release = nicvf_dev_rx_queue_release, .tx_queue_setup = nicvf_dev_tx_queue_setup, .tx_queue_release = nicvf_dev_tx_queue_release, .dev_set_link_up = nicvf_dev_set_link_up, .dev_set_link_down = nicvf_dev_set_link_down, .get_reg = nicvf_dev_get_regs, }; static int nicvf_vlan_offload_config(struct rte_eth_dev *dev, int mask) { struct rte_eth_rxmode *rxmode; struct nicvf *nic = nicvf_pmd_priv(dev); rxmode = &dev->data->dev_conf.rxmode; if (mask & ETH_VLAN_STRIP_MASK) { if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP) nicvf_vlan_hw_strip(nic, true); else nicvf_vlan_hw_strip(nic, false); } return 0; } static int nicvf_vlan_offload_set(struct rte_eth_dev *dev, int mask) { nicvf_vlan_offload_config(dev, mask); return 0; } static inline int nicvf_set_first_skip(struct rte_eth_dev *dev) { int bytes_to_skip = 0; int ret = 0; unsigned int i; struct rte_kvargs *kvlist; static const char *const skip[] = { SKIP_DATA_BYTES, NULL}; struct nicvf *nic = nicvf_pmd_priv(dev); if (!dev->device->devargs) { nicvf_first_skip_config(nic, 0); return ret; } kvlist = rte_kvargs_parse(dev->device->devargs->args, skip); if (!kvlist) return -EINVAL; if (kvlist->count == 0) goto exit; for (i = 0; i != kvlist->count; ++i) { const struct rte_kvargs_pair *pair = &kvlist->pairs[i]; if (!strcmp(pair->key, SKIP_DATA_BYTES)) bytes_to_skip = atoi(pair->value); } /*128 bytes amounts to one cache line*/ if (bytes_to_skip >= 0 && bytes_to_skip < 128) { if (!(bytes_to_skip % 8)) { nicvf_first_skip_config(nic, (bytes_to_skip / 8)); nic->skip_bytes = bytes_to_skip; goto kvlist_free; } else { PMD_INIT_LOG(ERR, "skip_data_bytes should be multiple of 8"); ret = -EINVAL; goto exit; } } else { PMD_INIT_LOG(ERR, "skip_data_bytes should be less than 128"); ret = -EINVAL; goto exit; } exit: nicvf_first_skip_config(nic, 0); kvlist_free: rte_kvargs_free(kvlist); return ret; } static int nicvf_eth_dev_uninit(struct rte_eth_dev *dev) { PMD_INIT_FUNC_TRACE(); nicvf_dev_close(dev); return 0; } static int nicvf_eth_dev_init(struct rte_eth_dev *eth_dev) { int ret; struct rte_pci_device *pci_dev; struct nicvf *nic = nicvf_pmd_priv(eth_dev); PMD_INIT_FUNC_TRACE(); eth_dev->dev_ops = &nicvf_eth_dev_ops; eth_dev->rx_queue_count = nicvf_dev_rx_queue_count; /* For secondary processes, the primary has done all the work */ if (rte_eal_process_type() != RTE_PROC_PRIMARY) { if (nic) { /* Setup callbacks for secondary process */ nicvf_set_tx_function(eth_dev); nicvf_set_rx_function(eth_dev); return 0; } else { /* If nic == NULL than it is secondary function * so ethdev need to be released by caller */ return ENOTSUP; } } pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); rte_eth_copy_pci_info(eth_dev, pci_dev); eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS; nic->device_id = pci_dev->id.device_id; nic->vendor_id = pci_dev->id.vendor_id; nic->subsystem_device_id = pci_dev->id.subsystem_device_id; nic->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id; PMD_INIT_LOG(DEBUG, "nicvf: device (%x:%x) %u:%u:%u:%u", pci_dev->id.vendor_id, pci_dev->id.device_id, pci_dev->addr.domain, pci_dev->addr.bus, pci_dev->addr.devid, pci_dev->addr.function); nic->reg_base = (uintptr_t)pci_dev->mem_resource[0].addr; if (!nic->reg_base) { PMD_INIT_LOG(ERR, "Failed to map BAR0"); ret = -ENODEV; goto fail; } nicvf_disable_all_interrupts(nic); ret = nicvf_periodic_alarm_start(nicvf_interrupt, eth_dev); if (ret) { PMD_INIT_LOG(ERR, "Failed to start period alarm"); goto fail; } ret = nicvf_mbox_check_pf_ready(nic); if (ret) { PMD_INIT_LOG(ERR, "Failed to get ready message from PF"); goto alarm_fail; } else { PMD_INIT_LOG(INFO, "node=%d vf=%d mode=%s sqs=%s loopback_supported=%s", nic->node, nic->vf_id, nic->tns_mode == NIC_TNS_MODE ? "tns" : "tns-bypass", nic->sqs_mode ? "true" : "false", nic->loopback_supported ? "true" : "false" ); } ret = nicvf_base_init(nic); if (ret) { PMD_INIT_LOG(ERR, "Failed to execute nicvf_base_init"); goto malloc_fail; } if (nic->sqs_mode) { /* Push nic to stack of secondary vfs */ nicvf_svf_push(nic); /* Steal nic pointer from the device for further reuse */ eth_dev->data->dev_private = NULL; nicvf_periodic_alarm_stop(nicvf_interrupt, eth_dev); ret = nicvf_periodic_alarm_start(nicvf_vf_interrupt, nic); if (ret) { PMD_INIT_LOG(ERR, "Failed to start period alarm"); goto fail; } /* Detach port by returning positive error number */ return ENOTSUP; } eth_dev->data->mac_addrs = rte_zmalloc("mac_addr", RTE_ETHER_ADDR_LEN, 0); if (eth_dev->data->mac_addrs == NULL) { PMD_INIT_LOG(ERR, "Failed to allocate memory for mac addr"); ret = -ENOMEM; goto alarm_fail; } if (rte_is_zero_ether_addr((struct rte_ether_addr *)nic->mac_addr)) rte_eth_random_addr(&nic->mac_addr[0]); rte_ether_addr_copy((struct rte_ether_addr *)nic->mac_addr, ð_dev->data->mac_addrs[0]); ret = nicvf_mbox_set_mac_addr(nic, nic->mac_addr); if (ret) { PMD_INIT_LOG(ERR, "Failed to set mac addr"); goto malloc_fail; } ret = nicvf_set_first_skip(eth_dev); if (ret) { PMD_INIT_LOG(ERR, "Failed to configure first skip"); goto malloc_fail; } PMD_INIT_LOG(INFO, "Port %d (%x:%x) mac=%02x:%02x:%02x:%02x:%02x:%02x", eth_dev->data->port_id, nic->vendor_id, nic->device_id, nic->mac_addr[0], nic->mac_addr[1], nic->mac_addr[2], nic->mac_addr[3], nic->mac_addr[4], nic->mac_addr[5]); return 0; malloc_fail: rte_free(eth_dev->data->mac_addrs); eth_dev->data->mac_addrs = NULL; alarm_fail: nicvf_periodic_alarm_stop(nicvf_interrupt, eth_dev); fail: return ret; } static const struct rte_pci_id pci_id_nicvf_map[] = { { .class_id = RTE_CLASS_ANY_ID, .vendor_id = PCI_VENDOR_ID_CAVIUM, .device_id = PCI_DEVICE_ID_THUNDERX_CN88XX_PASS1_NICVF, .subsystem_vendor_id = PCI_VENDOR_ID_CAVIUM, .subsystem_device_id = PCI_SUB_DEVICE_ID_CN88XX_PASS1_NICVF, }, { .class_id = RTE_CLASS_ANY_ID, .vendor_id = PCI_VENDOR_ID_CAVIUM, .device_id = PCI_DEVICE_ID_THUNDERX_NICVF, .subsystem_vendor_id = PCI_VENDOR_ID_CAVIUM, .subsystem_device_id = PCI_SUB_DEVICE_ID_CN88XX_PASS2_NICVF, }, { .class_id = RTE_CLASS_ANY_ID, .vendor_id = PCI_VENDOR_ID_CAVIUM, .device_id = PCI_DEVICE_ID_THUNDERX_NICVF, .subsystem_vendor_id = PCI_VENDOR_ID_CAVIUM, .subsystem_device_id = PCI_SUB_DEVICE_ID_CN81XX_NICVF, }, { .class_id = RTE_CLASS_ANY_ID, .vendor_id = PCI_VENDOR_ID_CAVIUM, .device_id = PCI_DEVICE_ID_THUNDERX_NICVF, .subsystem_vendor_id = PCI_VENDOR_ID_CAVIUM, .subsystem_device_id = PCI_SUB_DEVICE_ID_CN83XX_NICVF, }, { .vendor_id = 0, }, }; static int nicvf_eth_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, struct rte_pci_device *pci_dev) { return rte_eth_dev_pci_generic_probe(pci_dev, sizeof(struct nicvf), nicvf_eth_dev_init); } static int nicvf_eth_pci_remove(struct rte_pci_device *pci_dev) { return rte_eth_dev_pci_generic_remove(pci_dev, nicvf_eth_dev_uninit); } static struct rte_pci_driver rte_nicvf_pmd = { .id_table = pci_id_nicvf_map, .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_KEEP_MAPPED_RES | RTE_PCI_DRV_INTR_LSC, .probe = nicvf_eth_pci_probe, .remove = nicvf_eth_pci_remove, }; RTE_PMD_REGISTER_PCI(net_thunderx, rte_nicvf_pmd); RTE_PMD_REGISTER_PCI_TABLE(net_thunderx, pci_id_nicvf_map); RTE_PMD_REGISTER_KMOD_DEP(net_thunderx, "* igb_uio | uio_pci_generic | vfio-pci"); RTE_PMD_REGISTER_PARAM_STRING(net_thunderx, SKIP_DATA_BYTES "=");