/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2001-2020 Intel Corporation */ #include "ixgbe_api.h" #include "ixgbe_common.h" #include "ixgbe_phy.h" STATIC void ixgbe_i2c_start(struct ixgbe_hw *hw); STATIC void ixgbe_i2c_stop(struct ixgbe_hw *hw); STATIC void ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data); STATIC s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data); STATIC s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw); STATIC void ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data); STATIC s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data); STATIC void ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl); STATIC void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl); STATIC s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data); STATIC bool ixgbe_get_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl); STATIC s32 ixgbe_read_i2c_sff8472_generic(struct ixgbe_hw *hw, u8 byte_offset, u8 *sff8472_data); /** * ixgbe_out_i2c_byte_ack - Send I2C byte with ack * @hw: pointer to the hardware structure * @byte: byte to send * * Returns an error code on error. */ STATIC s32 ixgbe_out_i2c_byte_ack(struct ixgbe_hw *hw, u8 byte) { s32 status; status = ixgbe_clock_out_i2c_byte(hw, byte); if (status) return status; return ixgbe_get_i2c_ack(hw); } /** * ixgbe_in_i2c_byte_ack - Receive an I2C byte and send ack * @hw: pointer to the hardware structure * @byte: pointer to a u8 to receive the byte * * Returns an error code on error. */ STATIC s32 ixgbe_in_i2c_byte_ack(struct ixgbe_hw *hw, u8 *byte) { ixgbe_clock_in_i2c_byte(hw, byte); /* ACK */ return ixgbe_clock_out_i2c_bit(hw, false); } /** * ixgbe_ones_comp_byte_add - Perform one's complement addition * @add1: addend 1 * @add2: addend 2 * * Returns one's complement 8-bit sum. */ STATIC u8 ixgbe_ones_comp_byte_add(u8 add1, u8 add2) { u16 sum = add1 + add2; sum = (sum & 0xFF) + (sum >> 8); return sum & 0xFF; } /** * ixgbe_read_i2c_combined_generic_int - Perform I2C read combined operation * @hw: pointer to the hardware structure * @addr: I2C bus address to read from * @reg: I2C device register to read from * @val: pointer to location to receive read value * @lock: true if to take and release semaphore * * Returns an error code on error. */ s32 ixgbe_read_i2c_combined_generic_int(struct ixgbe_hw *hw, u8 addr, u16 reg, u16 *val, bool lock) { u32 swfw_mask = hw->phy.phy_semaphore_mask; int max_retry = 3; int retry = 0; u8 csum_byte; u8 high_bits; u8 low_bits; u8 reg_high; u8 csum; reg_high = ((reg >> 7) & 0xFE) | 1; /* Indicate read combined */ csum = ixgbe_ones_comp_byte_add(reg_high, reg & 0xFF); csum = ~csum; do { if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)) return IXGBE_ERR_SWFW_SYNC; ixgbe_i2c_start(hw); /* Device Address and write indication */ if (ixgbe_out_i2c_byte_ack(hw, addr)) goto fail; /* Write bits 14:8 */ if (ixgbe_out_i2c_byte_ack(hw, reg_high)) goto fail; /* Write bits 7:0 */ if (ixgbe_out_i2c_byte_ack(hw, reg & 0xFF)) goto fail; /* Write csum */ if (ixgbe_out_i2c_byte_ack(hw, csum)) goto fail; /* Re-start condition */ ixgbe_i2c_start(hw); /* Device Address and read indication */ if (ixgbe_out_i2c_byte_ack(hw, addr | 1)) goto fail; /* Get upper bits */ if (ixgbe_in_i2c_byte_ack(hw, &high_bits)) goto fail; /* Get low bits */ if (ixgbe_in_i2c_byte_ack(hw, &low_bits)) goto fail; /* Get csum */ ixgbe_clock_in_i2c_byte(hw, &csum_byte); /* NACK */ if (ixgbe_clock_out_i2c_bit(hw, false)) goto fail; ixgbe_i2c_stop(hw); if (lock) hw->mac.ops.release_swfw_sync(hw, swfw_mask); *val = (high_bits << 8) | low_bits; return 0; fail: ixgbe_i2c_bus_clear(hw); if (lock) hw->mac.ops.release_swfw_sync(hw, swfw_mask); if (retry < max_retry) DEBUGOUT("I2C byte read combined error - Retrying.\n"); else DEBUGOUT("I2C byte read combined error.\n"); retry++; } while (retry <= max_retry); return IXGBE_ERR_I2C; } /** * ixgbe_write_i2c_combined_generic_int - Perform I2C write combined operation * @hw: pointer to the hardware structure * @addr: I2C bus address to write to * @reg: I2C device register to write to * @val: value to write * @lock: true if to take and release semaphore * * Returns an error code on error. */ s32 ixgbe_write_i2c_combined_generic_int(struct ixgbe_hw *hw, u8 addr, u16 reg, u16 val, bool lock) { u32 swfw_mask = hw->phy.phy_semaphore_mask; int max_retry = 1; int retry = 0; u8 reg_high; u8 csum; reg_high = (reg >> 7) & 0xFE; /* Indicate write combined */ csum = ixgbe_ones_comp_byte_add(reg_high, reg & 0xFF); csum = ixgbe_ones_comp_byte_add(csum, val >> 8); csum = ixgbe_ones_comp_byte_add(csum, val & 0xFF); csum = ~csum; do { if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)) return IXGBE_ERR_SWFW_SYNC; ixgbe_i2c_start(hw); /* Device Address and write indication */ if (ixgbe_out_i2c_byte_ack(hw, addr)) goto fail; /* Write bits 14:8 */ if (ixgbe_out_i2c_byte_ack(hw, reg_high)) goto fail; /* Write bits 7:0 */ if (ixgbe_out_i2c_byte_ack(hw, reg & 0xFF)) goto fail; /* Write data 15:8 */ if (ixgbe_out_i2c_byte_ack(hw, val >> 8)) goto fail; /* Write data 7:0 */ if (ixgbe_out_i2c_byte_ack(hw, val & 0xFF)) goto fail; /* Write csum */ if (ixgbe_out_i2c_byte_ack(hw, csum)) goto fail; ixgbe_i2c_stop(hw); if (lock) hw->mac.ops.release_swfw_sync(hw, swfw_mask); return 0; fail: ixgbe_i2c_bus_clear(hw); if (lock) hw->mac.ops.release_swfw_sync(hw, swfw_mask); if (retry < max_retry) DEBUGOUT("I2C byte write combined error - Retrying.\n"); else DEBUGOUT("I2C byte write combined error.\n"); retry++; } while (retry <= max_retry); return IXGBE_ERR_I2C; } /** * ixgbe_init_phy_ops_generic - Inits PHY function ptrs * @hw: pointer to the hardware structure * * Initialize the function pointers. **/ s32 ixgbe_init_phy_ops_generic(struct ixgbe_hw *hw) { struct ixgbe_phy_info *phy = &hw->phy; DEBUGFUNC("ixgbe_init_phy_ops_generic"); /* PHY */ phy->ops.identify = ixgbe_identify_phy_generic; phy->ops.reset = ixgbe_reset_phy_generic; phy->ops.read_reg = ixgbe_read_phy_reg_generic; phy->ops.write_reg = ixgbe_write_phy_reg_generic; phy->ops.read_reg_mdi = ixgbe_read_phy_reg_mdi; phy->ops.write_reg_mdi = ixgbe_write_phy_reg_mdi; phy->ops.setup_link = ixgbe_setup_phy_link_generic; phy->ops.setup_link_speed = ixgbe_setup_phy_link_speed_generic; phy->ops.check_link = NULL; phy->ops.get_firmware_version = ixgbe_get_phy_firmware_version_generic; phy->ops.read_i2c_byte = ixgbe_read_i2c_byte_generic; phy->ops.write_i2c_byte = ixgbe_write_i2c_byte_generic; phy->ops.read_i2c_sff8472 = ixgbe_read_i2c_sff8472_generic; phy->ops.read_i2c_eeprom = ixgbe_read_i2c_eeprom_generic; phy->ops.write_i2c_eeprom = ixgbe_write_i2c_eeprom_generic; phy->ops.i2c_bus_clear = ixgbe_i2c_bus_clear; phy->ops.identify_sfp = ixgbe_identify_module_generic; phy->sfp_type = ixgbe_sfp_type_unknown; phy->ops.read_i2c_byte_unlocked = ixgbe_read_i2c_byte_generic_unlocked; phy->ops.write_i2c_byte_unlocked = ixgbe_write_i2c_byte_generic_unlocked; phy->ops.check_overtemp = ixgbe_tn_check_overtemp; return IXGBE_SUCCESS; } /** * ixgbe_probe_phy - Probe a single address for a PHY * @hw: pointer to hardware structure * @phy_addr: PHY address to probe * * Returns true if PHY found */ static bool ixgbe_probe_phy(struct ixgbe_hw *hw, u16 phy_addr) { u16 ext_ability = 0; if (!ixgbe_validate_phy_addr(hw, phy_addr)) { DEBUGOUT1("Unable to validate PHY address 0x%04X\n", phy_addr); return false; } if (ixgbe_get_phy_id(hw)) return false; hw->phy.type = ixgbe_get_phy_type_from_id(hw->phy.id); if (hw->phy.type == ixgbe_phy_unknown) { hw->phy.ops.read_reg(hw, IXGBE_MDIO_PHY_EXT_ABILITY, IXGBE_MDIO_PMA_PMD_DEV_TYPE, &ext_ability); if (ext_ability & (IXGBE_MDIO_PHY_10GBASET_ABILITY | IXGBE_MDIO_PHY_1000BASET_ABILITY)) hw->phy.type = ixgbe_phy_cu_unknown; else hw->phy.type = ixgbe_phy_generic; } return true; } /** * ixgbe_identify_phy_generic - Get physical layer module * @hw: pointer to hardware structure * * Determines the physical layer module found on the current adapter. **/ s32 ixgbe_identify_phy_generic(struct ixgbe_hw *hw) { s32 status = IXGBE_ERR_PHY_ADDR_INVALID; u16 phy_addr; DEBUGFUNC("ixgbe_identify_phy_generic"); if (!hw->phy.phy_semaphore_mask) { if (hw->bus.lan_id) hw->phy.phy_semaphore_mask = IXGBE_GSSR_PHY1_SM; else hw->phy.phy_semaphore_mask = IXGBE_GSSR_PHY0_SM; } if (hw->phy.type != ixgbe_phy_unknown) return IXGBE_SUCCESS; if (hw->phy.nw_mng_if_sel) { phy_addr = (hw->phy.nw_mng_if_sel & IXGBE_NW_MNG_IF_SEL_MDIO_PHY_ADD) >> IXGBE_NW_MNG_IF_SEL_MDIO_PHY_ADD_SHIFT; if (ixgbe_probe_phy(hw, phy_addr)) return IXGBE_SUCCESS; else return IXGBE_ERR_PHY_ADDR_INVALID; } for (phy_addr = 0; phy_addr < IXGBE_MAX_PHY_ADDR; phy_addr++) { if (ixgbe_probe_phy(hw, phy_addr)) { status = IXGBE_SUCCESS; break; } } /* Certain media types do not have a phy so an address will not * be found and the code will take this path. Caller has to * decide if it is an error or not. */ if (status != IXGBE_SUCCESS) hw->phy.addr = 0; return status; } /** * ixgbe_check_reset_blocked - check status of MNG FW veto bit * @hw: pointer to the hardware structure * * This function checks the MMNGC.MNG_VETO bit to see if there are * any constraints on link from manageability. For MAC's that don't * have this bit just return faluse since the link can not be blocked * via this method. **/ s32 ixgbe_check_reset_blocked(struct ixgbe_hw *hw) { u32 mmngc; DEBUGFUNC("ixgbe_check_reset_blocked"); /* If we don't have this bit, it can't be blocking */ if (hw->mac.type == ixgbe_mac_82598EB) return false; mmngc = IXGBE_READ_REG(hw, IXGBE_MMNGC); if (mmngc & IXGBE_MMNGC_MNG_VETO) { ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "MNG_VETO bit detected.\n"); return true; } return false; } /** * ixgbe_validate_phy_addr - Determines phy address is valid * @hw: pointer to hardware structure * @phy_addr: PHY address * **/ bool ixgbe_validate_phy_addr(struct ixgbe_hw *hw, u32 phy_addr) { u16 phy_id = 0; bool valid = false; DEBUGFUNC("ixgbe_validate_phy_addr"); hw->phy.addr = phy_addr; hw->phy.ops.read_reg(hw, IXGBE_MDIO_PHY_ID_HIGH, IXGBE_MDIO_PMA_PMD_DEV_TYPE, &phy_id); if (phy_id != 0xFFFF && phy_id != 0x0) valid = true; DEBUGOUT1("PHY ID HIGH is 0x%04X\n", phy_id); return valid; } /** * ixgbe_get_phy_id - Get the phy type * @hw: pointer to hardware structure * **/ s32 ixgbe_get_phy_id(struct ixgbe_hw *hw) { u32 status; u16 phy_id_high = 0; u16 phy_id_low = 0; DEBUGFUNC("ixgbe_get_phy_id"); status = hw->phy.ops.read_reg(hw, IXGBE_MDIO_PHY_ID_HIGH, IXGBE_MDIO_PMA_PMD_DEV_TYPE, &phy_id_high); if (status == IXGBE_SUCCESS) { hw->phy.id = (u32)(phy_id_high << 16); status = hw->phy.ops.read_reg(hw, IXGBE_MDIO_PHY_ID_LOW, IXGBE_MDIO_PMA_PMD_DEV_TYPE, &phy_id_low); hw->phy.id |= (u32)(phy_id_low & IXGBE_PHY_REVISION_MASK); hw->phy.revision = (u32)(phy_id_low & ~IXGBE_PHY_REVISION_MASK); } DEBUGOUT2("PHY_ID_HIGH 0x%04X, PHY_ID_LOW 0x%04X\n", phy_id_high, phy_id_low); return status; } /** * ixgbe_get_phy_type_from_id - Get the phy type * @phy_id: PHY ID information * **/ enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id) { enum ixgbe_phy_type phy_type; DEBUGFUNC("ixgbe_get_phy_type_from_id"); switch (phy_id) { case TN1010_PHY_ID: phy_type = ixgbe_phy_tn; break; case X550_PHY_ID2: case X550_PHY_ID3: case X540_PHY_ID: phy_type = ixgbe_phy_aq; break; case QT2022_PHY_ID: phy_type = ixgbe_phy_qt; break; case ATH_PHY_ID: phy_type = ixgbe_phy_nl; break; case X557_PHY_ID: case X557_PHY_ID2: phy_type = ixgbe_phy_x550em_ext_t; break; case IXGBE_M88E1500_E_PHY_ID: case IXGBE_M88E1543_E_PHY_ID: phy_type = ixgbe_phy_ext_1g_t; break; default: phy_type = ixgbe_phy_unknown; break; } return phy_type; } /** * ixgbe_reset_phy_generic - Performs a PHY reset * @hw: pointer to hardware structure **/ s32 ixgbe_reset_phy_generic(struct ixgbe_hw *hw) { u32 i; u16 ctrl = 0; s32 status = IXGBE_SUCCESS; DEBUGFUNC("ixgbe_reset_phy_generic"); if (hw->phy.type == ixgbe_phy_unknown) status = ixgbe_identify_phy_generic(hw); if (status != IXGBE_SUCCESS || hw->phy.type == ixgbe_phy_none) goto out; /* Don't reset PHY if it's shut down due to overtemp. */ if (!hw->phy.reset_if_overtemp && (IXGBE_ERR_OVERTEMP == hw->phy.ops.check_overtemp(hw))) goto out; /* Blocked by MNG FW so bail */ if (ixgbe_check_reset_blocked(hw)) goto out; /* * Perform soft PHY reset to the PHY_XS. * This will cause a soft reset to the PHY */ hw->phy.ops.write_reg(hw, IXGBE_MDIO_PHY_XS_CONTROL, IXGBE_MDIO_PHY_XS_DEV_TYPE, IXGBE_MDIO_PHY_XS_RESET); /* * Poll for reset bit to self-clear indicating reset is complete. * Some PHYs could take up to 3 seconds to complete and need about * 1.7 usec delay after the reset is complete. */ for (i = 0; i < 30; i++) { msec_delay(100); if (hw->phy.type == ixgbe_phy_x550em_ext_t) { status = hw->phy.ops.read_reg(hw, IXGBE_MDIO_TX_VENDOR_ALARMS_3, IXGBE_MDIO_PMA_PMD_DEV_TYPE, &ctrl); if (status != IXGBE_SUCCESS) return status; if (ctrl & IXGBE_MDIO_TX_VENDOR_ALARMS_3_RST_MASK) { usec_delay(2); break; } } else { status = hw->phy.ops.read_reg(hw, IXGBE_MDIO_PHY_XS_CONTROL, IXGBE_MDIO_PHY_XS_DEV_TYPE, &ctrl); if (status != IXGBE_SUCCESS) return status; if (!(ctrl & IXGBE_MDIO_PHY_XS_RESET)) { usec_delay(2); break; } } } if (ctrl & IXGBE_MDIO_PHY_XS_RESET) { status = IXGBE_ERR_RESET_FAILED; ERROR_REPORT1(IXGBE_ERROR_POLLING, "PHY reset polling failed to complete.\n"); } out: return status; } /** * ixgbe_restart_auto_neg - Restart auto negotiation on the PHY * @hw: pointer to hardware structure **/ void ixgbe_restart_auto_neg(struct ixgbe_hw *hw) { u16 autoneg_reg; /* Check if PHY reset is blocked by MNG FW */ if (ixgbe_check_reset_blocked(hw)) return; /* Restart PHY auto-negotiation. */ hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_CONTROL, IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &autoneg_reg); autoneg_reg |= IXGBE_MII_RESTART; hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_CONTROL, IXGBE_MDIO_AUTO_NEG_DEV_TYPE, autoneg_reg); } /** * ixgbe_read_phy_mdi - Reads a value from a specified PHY register without * the SWFW lock * @hw: pointer to hardware structure * @reg_addr: 32 bit address of PHY register to read * @device_type: 5 bit device type * @phy_data: Pointer to read data from PHY register **/ s32 ixgbe_read_phy_reg_mdi(struct ixgbe_hw *hw, u32 reg_addr, u32 device_type, u16 *phy_data) { u32 i, data, command; /* Setup and write the address cycle command */ command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) | (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) | (hw->phy.addr << IXGBE_MSCA_PHY_ADDR_SHIFT) | (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND)); IXGBE_WRITE_REG(hw, IXGBE_MSCA, command); /* * Check every 10 usec to see if the address cycle completed. * The MDI Command bit will clear when the operation is * complete */ for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) { usec_delay(10); command = IXGBE_READ_REG(hw, IXGBE_MSCA); if ((command & IXGBE_MSCA_MDI_COMMAND) == 0) break; } if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) { ERROR_REPORT1(IXGBE_ERROR_POLLING, "PHY address command did not complete.\n"); DEBUGOUT("PHY address command did not complete, returning IXGBE_ERR_PHY\n"); return IXGBE_ERR_PHY; } /* * Address cycle complete, setup and write the read * command */ command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) | (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) | (hw->phy.addr << IXGBE_MSCA_PHY_ADDR_SHIFT) | (IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND)); IXGBE_WRITE_REG(hw, IXGBE_MSCA, command); /* * Check every 10 usec to see if the address cycle * completed. The MDI Command bit will clear when the * operation is complete */ for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) { usec_delay(10); command = IXGBE_READ_REG(hw, IXGBE_MSCA); if ((command & IXGBE_MSCA_MDI_COMMAND) == 0) break; } if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) { ERROR_REPORT1(IXGBE_ERROR_POLLING, "PHY read command didn't complete\n"); DEBUGOUT("PHY read command didn't complete, returning IXGBE_ERR_PHY\n"); return IXGBE_ERR_PHY; } /* * Read operation is complete. Get the data * from MSRWD */ data = IXGBE_READ_REG(hw, IXGBE_MSRWD); data >>= IXGBE_MSRWD_READ_DATA_SHIFT; *phy_data = (u16)(data); return IXGBE_SUCCESS; } /** * ixgbe_read_phy_reg_generic - Reads a value from a specified PHY register * using the SWFW lock - this function is needed in most cases * @hw: pointer to hardware structure * @reg_addr: 32 bit address of PHY register to read * @device_type: 5 bit device type * @phy_data: Pointer to read data from PHY register **/ s32 ixgbe_read_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr, u32 device_type, u16 *phy_data) { s32 status; u32 gssr = hw->phy.phy_semaphore_mask; DEBUGFUNC("ixgbe_read_phy_reg_generic"); if (hw->mac.ops.acquire_swfw_sync(hw, gssr)) return IXGBE_ERR_SWFW_SYNC; status = hw->phy.ops.read_reg_mdi(hw, reg_addr, device_type, phy_data); hw->mac.ops.release_swfw_sync(hw, gssr); return status; } /** * ixgbe_write_phy_reg_mdi - Writes a value to specified PHY register * without SWFW lock * @hw: pointer to hardware structure * @reg_addr: 32 bit PHY register to write * @device_type: 5 bit device type * @phy_data: Data to write to the PHY register **/ s32 ixgbe_write_phy_reg_mdi(struct ixgbe_hw *hw, u32 reg_addr, u32 device_type, u16 phy_data) { u32 i, command; /* Put the data in the MDI single read and write data register*/ IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)phy_data); /* Setup and write the address cycle command */ command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) | (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) | (hw->phy.addr << IXGBE_MSCA_PHY_ADDR_SHIFT) | (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND)); IXGBE_WRITE_REG(hw, IXGBE_MSCA, command); /* * Check every 10 usec to see if the address cycle completed. * The MDI Command bit will clear when the operation is * complete */ for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) { usec_delay(10); command = IXGBE_READ_REG(hw, IXGBE_MSCA); if ((command & IXGBE_MSCA_MDI_COMMAND) == 0) break; } if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) { ERROR_REPORT1(IXGBE_ERROR_POLLING, "PHY address cmd didn't complete\n"); return IXGBE_ERR_PHY; } /* * Address cycle complete, setup and write the write * command */ command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) | (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) | (hw->phy.addr << IXGBE_MSCA_PHY_ADDR_SHIFT) | (IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND)); IXGBE_WRITE_REG(hw, IXGBE_MSCA, command); /* * Check every 10 usec to see if the address cycle * completed. The MDI Command bit will clear when the * operation is complete */ for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) { usec_delay(10); command = IXGBE_READ_REG(hw, IXGBE_MSCA); if ((command & IXGBE_MSCA_MDI_COMMAND) == 0) break; } if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) { ERROR_REPORT1(IXGBE_ERROR_POLLING, "PHY write cmd didn't complete\n"); return IXGBE_ERR_PHY; } return IXGBE_SUCCESS; } /** * ixgbe_write_phy_reg_generic - Writes a value to specified PHY register * using SWFW lock- this function is needed in most cases * @hw: pointer to hardware structure * @reg_addr: 32 bit PHY register to write * @device_type: 5 bit device type * @phy_data: Data to write to the PHY register **/ s32 ixgbe_write_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr, u32 device_type, u16 phy_data) { s32 status; u32 gssr = hw->phy.phy_semaphore_mask; DEBUGFUNC("ixgbe_write_phy_reg_generic"); if (hw->mac.ops.acquire_swfw_sync(hw, gssr) == IXGBE_SUCCESS) { status = hw->phy.ops.write_reg_mdi(hw, reg_addr, device_type, phy_data); hw->mac.ops.release_swfw_sync(hw, gssr); } else { status = IXGBE_ERR_SWFW_SYNC; } return status; } /** * ixgbe_setup_phy_link_generic - Set and restart auto-neg * @hw: pointer to hardware structure * * Restart auto-negotiation and PHY and waits for completion. **/ s32 ixgbe_setup_phy_link_generic(struct ixgbe_hw *hw) { s32 status = IXGBE_SUCCESS; u16 autoneg_reg = IXGBE_MII_AUTONEG_REG; bool autoneg = false; ixgbe_link_speed speed; DEBUGFUNC("ixgbe_setup_phy_link_generic"); ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg); /* Set or unset auto-negotiation 10G advertisement */ hw->phy.ops.read_reg(hw, IXGBE_MII_10GBASE_T_AUTONEG_CTRL_REG, IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &autoneg_reg); autoneg_reg &= ~IXGBE_MII_10GBASE_T_ADVERTISE; if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL) && (speed & IXGBE_LINK_SPEED_10GB_FULL)) autoneg_reg |= IXGBE_MII_10GBASE_T_ADVERTISE; hw->phy.ops.write_reg(hw, IXGBE_MII_10GBASE_T_AUTONEG_CTRL_REG, IXGBE_MDIO_AUTO_NEG_DEV_TYPE, autoneg_reg); hw->phy.ops.read_reg(hw, IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG, IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &autoneg_reg); if (hw->mac.type == ixgbe_mac_X550) { /* Set or unset auto-negotiation 5G advertisement */ autoneg_reg &= ~IXGBE_MII_5GBASE_T_ADVERTISE; if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_5GB_FULL) && (speed & IXGBE_LINK_SPEED_5GB_FULL)) autoneg_reg |= IXGBE_MII_5GBASE_T_ADVERTISE; /* Set or unset auto-negotiation 2.5G advertisement */ autoneg_reg &= ~IXGBE_MII_2_5GBASE_T_ADVERTISE; if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_2_5GB_FULL) && (speed & IXGBE_LINK_SPEED_2_5GB_FULL)) autoneg_reg |= IXGBE_MII_2_5GBASE_T_ADVERTISE; } /* Set or unset auto-negotiation 1G advertisement */ autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE; if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL) && (speed & IXGBE_LINK_SPEED_1GB_FULL)) autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE; hw->phy.ops.write_reg(hw, IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG, IXGBE_MDIO_AUTO_NEG_DEV_TYPE, autoneg_reg); /* Set or unset auto-negotiation 100M advertisement */ hw->phy.ops.read_reg(hw, IXGBE_MII_AUTONEG_ADVERTISE_REG, IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &autoneg_reg); autoneg_reg &= ~(IXGBE_MII_100BASE_T_ADVERTISE | IXGBE_MII_100BASE_T_ADVERTISE_HALF); if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL) && (speed & IXGBE_LINK_SPEED_100_FULL)) autoneg_reg |= IXGBE_MII_100BASE_T_ADVERTISE; hw->phy.ops.write_reg(hw, IXGBE_MII_AUTONEG_ADVERTISE_REG, IXGBE_MDIO_AUTO_NEG_DEV_TYPE, autoneg_reg); ixgbe_restart_auto_neg(hw); return status; } /** * ixgbe_setup_phy_link_speed_generic - Sets the auto advertised capabilities * @hw: pointer to hardware structure * @speed: new link speed * @autoneg_wait_to_complete: unused **/ s32 ixgbe_setup_phy_link_speed_generic(struct ixgbe_hw *hw, ixgbe_link_speed speed, bool autoneg_wait_to_complete) { UNREFERENCED_1PARAMETER(autoneg_wait_to_complete); DEBUGFUNC("ixgbe_setup_phy_link_speed_generic"); /* * Clear autoneg_advertised and set new values based on input link * speed. */ hw->phy.autoneg_advertised = 0; if (speed & IXGBE_LINK_SPEED_10GB_FULL) hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL; if (speed & IXGBE_LINK_SPEED_5GB_FULL) hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_5GB_FULL; if (speed & IXGBE_LINK_SPEED_2_5GB_FULL) hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_2_5GB_FULL; if (speed & IXGBE_LINK_SPEED_1GB_FULL) hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL; if (speed & IXGBE_LINK_SPEED_100_FULL) hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_100_FULL; if (speed & IXGBE_LINK_SPEED_10_FULL) hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10_FULL; /* Setup link based on the new speed settings */ ixgbe_setup_phy_link(hw); return IXGBE_SUCCESS; } /** * ixgbe_get_copper_speeds_supported - Get copper link speeds from phy * @hw: pointer to hardware structure * * Determines the supported link capabilities by reading the PHY auto * negotiation register. **/ static s32 ixgbe_get_copper_speeds_supported(struct ixgbe_hw *hw) { s32 status; u16 speed_ability; status = hw->phy.ops.read_reg(hw, IXGBE_MDIO_PHY_SPEED_ABILITY, IXGBE_MDIO_PMA_PMD_DEV_TYPE, &speed_ability); if (status) return status; if (speed_ability & IXGBE_MDIO_PHY_SPEED_10G) hw->phy.speeds_supported |= IXGBE_LINK_SPEED_10GB_FULL; if (speed_ability & IXGBE_MDIO_PHY_SPEED_1G) hw->phy.speeds_supported |= IXGBE_LINK_SPEED_1GB_FULL; if (speed_ability & IXGBE_MDIO_PHY_SPEED_100M) hw->phy.speeds_supported |= IXGBE_LINK_SPEED_100_FULL; switch (hw->mac.type) { case ixgbe_mac_X550EM_x: case ixgbe_mac_X550EM_a: hw->phy.speeds_supported &= ~IXGBE_LINK_SPEED_100_FULL; break; default: break; } return status; } /** * ixgbe_get_copper_link_capabilities_generic - Determines link capabilities * @hw: pointer to hardware structure * @speed: pointer to link speed * @autoneg: boolean auto-negotiation value **/ s32 ixgbe_get_copper_link_capabilities_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed, bool *autoneg) { s32 status = IXGBE_SUCCESS; DEBUGFUNC("ixgbe_get_copper_link_capabilities_generic"); *autoneg = true; if (!hw->phy.speeds_supported) status = ixgbe_get_copper_speeds_supported(hw); *speed = hw->phy.speeds_supported; return status; } /** * ixgbe_check_phy_link_tnx - Determine link and speed status * @hw: pointer to hardware structure * @speed: current link speed * @link_up: true is link is up, false otherwise * * Reads the VS1 register to determine if link is up and the current speed for * the PHY. **/ s32 ixgbe_check_phy_link_tnx(struct ixgbe_hw *hw, ixgbe_link_speed *speed, bool *link_up) { s32 status = IXGBE_SUCCESS; u32 time_out; u32 max_time_out = 10; u16 phy_link = 0; u16 phy_speed = 0; u16 phy_data = 0; DEBUGFUNC("ixgbe_check_phy_link_tnx"); /* Initialize speed and link to default case */ *link_up = false; *speed = IXGBE_LINK_SPEED_10GB_FULL; /* * Check current speed and link status of the PHY register. * This is a vendor specific register and may have to * be changed for other copper PHYs. */ for (time_out = 0; time_out < max_time_out; time_out++) { usec_delay(10); status = hw->phy.ops.read_reg(hw, IXGBE_MDIO_VENDOR_SPECIFIC_1_STATUS, IXGBE_MDIO_VENDOR_SPECIFIC_1_DEV_TYPE, &phy_data); phy_link = phy_data & IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS; phy_speed = phy_data & IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS; if (phy_link == IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS) { *link_up = true; if (phy_speed == IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS) *speed = IXGBE_LINK_SPEED_1GB_FULL; break; } } return status; } /** * ixgbe_setup_phy_link_tnx - Set and restart auto-neg * @hw: pointer to hardware structure * * Restart auto-negotiation and PHY and waits for completion. **/ s32 ixgbe_setup_phy_link_tnx(struct ixgbe_hw *hw) { s32 status = IXGBE_SUCCESS; u16 autoneg_reg = IXGBE_MII_AUTONEG_REG; bool autoneg = false; ixgbe_link_speed speed; DEBUGFUNC("ixgbe_setup_phy_link_tnx"); ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg); if (speed & IXGBE_LINK_SPEED_10GB_FULL) { /* Set or unset auto-negotiation 10G advertisement */ hw->phy.ops.read_reg(hw, IXGBE_MII_10GBASE_T_AUTONEG_CTRL_REG, IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &autoneg_reg); autoneg_reg &= ~IXGBE_MII_10GBASE_T_ADVERTISE; if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL) autoneg_reg |= IXGBE_MII_10GBASE_T_ADVERTISE; hw->phy.ops.write_reg(hw, IXGBE_MII_10GBASE_T_AUTONEG_CTRL_REG, IXGBE_MDIO_AUTO_NEG_DEV_TYPE, autoneg_reg); } if (speed & IXGBE_LINK_SPEED_1GB_FULL) { /* Set or unset auto-negotiation 1G advertisement */ hw->phy.ops.read_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG, IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &autoneg_reg); autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX; if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL) autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX; hw->phy.ops.write_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG, IXGBE_MDIO_AUTO_NEG_DEV_TYPE, autoneg_reg); } if (speed & IXGBE_LINK_SPEED_100_FULL) { /* Set or unset auto-negotiation 100M advertisement */ hw->phy.ops.read_reg(hw, IXGBE_MII_AUTONEG_ADVERTISE_REG, IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &autoneg_reg); autoneg_reg &= ~IXGBE_MII_100BASE_T_ADVERTISE; if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL) autoneg_reg |= IXGBE_MII_100BASE_T_ADVERTISE; hw->phy.ops.write_reg(hw, IXGBE_MII_AUTONEG_ADVERTISE_REG, IXGBE_MDIO_AUTO_NEG_DEV_TYPE, autoneg_reg); } ixgbe_restart_auto_neg(hw); return status; } /** * ixgbe_get_phy_firmware_version_tnx - Gets the PHY Firmware Version * @hw: pointer to hardware structure * @firmware_version: pointer to the PHY Firmware Version **/ s32 ixgbe_get_phy_firmware_version_tnx(struct ixgbe_hw *hw, u16 *firmware_version) { s32 status; DEBUGFUNC("ixgbe_get_phy_firmware_version_tnx"); status = hw->phy.ops.read_reg(hw, TNX_FW_REV, IXGBE_MDIO_VENDOR_SPECIFIC_1_DEV_TYPE, firmware_version); return status; } /** * ixgbe_get_phy_firmware_version_generic - Gets the PHY Firmware Version * @hw: pointer to hardware structure * @firmware_version: pointer to the PHY Firmware Version **/ s32 ixgbe_get_phy_firmware_version_generic(struct ixgbe_hw *hw, u16 *firmware_version) { s32 status; DEBUGFUNC("ixgbe_get_phy_firmware_version_generic"); status = hw->phy.ops.read_reg(hw, AQ_FW_REV, IXGBE_MDIO_VENDOR_SPECIFIC_1_DEV_TYPE, firmware_version); return status; } /** * ixgbe_reset_phy_nl - Performs a PHY reset * @hw: pointer to hardware structure **/ s32 ixgbe_reset_phy_nl(struct ixgbe_hw *hw) { u16 phy_offset, control, eword, edata, block_crc; bool end_data = false; u16 list_offset, data_offset; u16 phy_data = 0; s32 ret_val = IXGBE_SUCCESS; u32 i; DEBUGFUNC("ixgbe_reset_phy_nl"); /* Blocked by MNG FW so bail */ if (ixgbe_check_reset_blocked(hw)) goto out; hw->phy.ops.read_reg(hw, IXGBE_MDIO_PHY_XS_CONTROL, IXGBE_MDIO_PHY_XS_DEV_TYPE, &phy_data); /* reset the PHY and poll for completion */ hw->phy.ops.write_reg(hw, IXGBE_MDIO_PHY_XS_CONTROL, IXGBE_MDIO_PHY_XS_DEV_TYPE, (phy_data | IXGBE_MDIO_PHY_XS_RESET)); for (i = 0; i < 100; i++) { hw->phy.ops.read_reg(hw, IXGBE_MDIO_PHY_XS_CONTROL, IXGBE_MDIO_PHY_XS_DEV_TYPE, &phy_data); if ((phy_data & IXGBE_MDIO_PHY_XS_RESET) == 0) break; msec_delay(10); } if ((phy_data & IXGBE_MDIO_PHY_XS_RESET) != 0) { DEBUGOUT("PHY reset did not complete.\n"); ret_val = IXGBE_ERR_PHY; goto out; } /* Get init offsets */ ret_val = ixgbe_get_sfp_init_sequence_offsets(hw, &list_offset, &data_offset); if (ret_val != IXGBE_SUCCESS) goto out; ret_val = hw->eeprom.ops.read(hw, data_offset, &block_crc); data_offset++; while (!end_data) { /* * Read control word from PHY init contents offset */ ret_val = hw->eeprom.ops.read(hw, data_offset, &eword); if (ret_val) goto err_eeprom; control = (eword & IXGBE_CONTROL_MASK_NL) >> IXGBE_CONTROL_SHIFT_NL; edata = eword & IXGBE_DATA_MASK_NL; switch (control) { case IXGBE_DELAY_NL: data_offset++; DEBUGOUT1("DELAY: %d MS\n", edata); msec_delay(edata); break; case IXGBE_DATA_NL: DEBUGOUT("DATA:\n"); data_offset++; ret_val = hw->eeprom.ops.read(hw, data_offset, &phy_offset); if (ret_val) goto err_eeprom; data_offset++; for (i = 0; i < edata; i++) { ret_val = hw->eeprom.ops.read(hw, data_offset, &eword); if (ret_val) goto err_eeprom; hw->phy.ops.write_reg(hw, phy_offset, IXGBE_TWINAX_DEV, eword); DEBUGOUT2("Wrote %4.4x to %4.4x\n", eword, phy_offset); data_offset++; phy_offset++; } break; case IXGBE_CONTROL_NL: data_offset++; DEBUGOUT("CONTROL:\n"); if (edata == IXGBE_CONTROL_EOL_NL) { DEBUGOUT("EOL\n"); end_data = true; } else if (edata == IXGBE_CONTROL_SOL_NL) { DEBUGOUT("SOL\n"); } else { DEBUGOUT("Bad control value\n"); ret_val = IXGBE_ERR_PHY; goto out; } break; default: DEBUGOUT("Bad control type\n"); ret_val = IXGBE_ERR_PHY; goto out; } } out: return ret_val; err_eeprom: ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE, "eeprom read at offset %d failed", data_offset); return IXGBE_ERR_PHY; } /** * ixgbe_identify_module_generic - Identifies module type * @hw: pointer to hardware structure * * Determines HW type and calls appropriate function. **/ s32 ixgbe_identify_module_generic(struct ixgbe_hw *hw) { s32 status = IXGBE_ERR_SFP_NOT_PRESENT; DEBUGFUNC("ixgbe_identify_module_generic"); switch (hw->mac.ops.get_media_type(hw)) { case ixgbe_media_type_fiber: status = ixgbe_identify_sfp_module_generic(hw); break; case ixgbe_media_type_fiber_qsfp: status = ixgbe_identify_qsfp_module_generic(hw); break; default: hw->phy.sfp_type = ixgbe_sfp_type_not_present; status = IXGBE_ERR_SFP_NOT_PRESENT; break; } return status; } /** * ixgbe_identify_sfp_module_generic - Identifies SFP modules * @hw: pointer to hardware structure * * Searches for and identifies the SFP module and assigns appropriate PHY type. **/ s32 ixgbe_identify_sfp_module_generic(struct ixgbe_hw *hw) { s32 status = IXGBE_ERR_PHY_ADDR_INVALID; u32 vendor_oui = 0; enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type; u8 identifier = 0; u8 comp_codes_1g = 0; u8 comp_codes_10g = 0; u8 oui_bytes[3] = {0, 0, 0}; u8 cable_tech = 0; u8 cable_spec = 0; u16 enforce_sfp = 0; DEBUGFUNC("ixgbe_identify_sfp_module_generic"); if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber) { hw->phy.sfp_type = ixgbe_sfp_type_not_present; status = IXGBE_ERR_SFP_NOT_PRESENT; goto out; } /* LAN ID is needed for I2C access */ hw->mac.ops.set_lan_id(hw); status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_IDENTIFIER, &identifier); if (status != IXGBE_SUCCESS) goto err_read_i2c_eeprom; if (identifier != IXGBE_SFF_IDENTIFIER_SFP) { hw->phy.type = ixgbe_phy_sfp_unsupported; status = IXGBE_ERR_SFP_NOT_SUPPORTED; } else { status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_1GBE_COMP_CODES, &comp_codes_1g); if (status != IXGBE_SUCCESS) goto err_read_i2c_eeprom; status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_10GBE_COMP_CODES, &comp_codes_10g); if (status != IXGBE_SUCCESS) goto err_read_i2c_eeprom; status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_CABLE_TECHNOLOGY, &cable_tech); if (status != IXGBE_SUCCESS) goto err_read_i2c_eeprom; /* ID Module * ========= * 0 SFP_DA_CU * 1 SFP_SR * 2 SFP_LR * 3 SFP_DA_CORE0 - 82599-specific * 4 SFP_DA_CORE1 - 82599-specific * 5 SFP_SR/LR_CORE0 - 82599-specific * 6 SFP_SR/LR_CORE1 - 82599-specific * 7 SFP_act_lmt_DA_CORE0 - 82599-specific * 8 SFP_act_lmt_DA_CORE1 - 82599-specific * 9 SFP_1g_cu_CORE0 - 82599-specific * 10 SFP_1g_cu_CORE1 - 82599-specific * 11 SFP_1g_sx_CORE0 - 82599-specific * 12 SFP_1g_sx_CORE1 - 82599-specific */ if (hw->mac.type == ixgbe_mac_82598EB) { if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE) hw->phy.sfp_type = ixgbe_sfp_type_da_cu; else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE) hw->phy.sfp_type = ixgbe_sfp_type_sr; else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE) hw->phy.sfp_type = ixgbe_sfp_type_lr; else hw->phy.sfp_type = ixgbe_sfp_type_unknown; } else { if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE) { if (hw->bus.lan_id == 0) hw->phy.sfp_type = ixgbe_sfp_type_da_cu_core0; else hw->phy.sfp_type = ixgbe_sfp_type_da_cu_core1; } else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE) { hw->phy.ops.read_i2c_eeprom( hw, IXGBE_SFF_CABLE_SPEC_COMP, &cable_spec); if (cable_spec & IXGBE_SFF_DA_SPEC_ACTIVE_LIMITING) { if (hw->bus.lan_id == 0) hw->phy.sfp_type = ixgbe_sfp_type_da_act_lmt_core0; else hw->phy.sfp_type = ixgbe_sfp_type_da_act_lmt_core1; } else { hw->phy.sfp_type = ixgbe_sfp_type_unknown; } } else if (comp_codes_10g & (IXGBE_SFF_10GBASESR_CAPABLE | IXGBE_SFF_10GBASELR_CAPABLE)) { if (hw->bus.lan_id == 0) hw->phy.sfp_type = ixgbe_sfp_type_srlr_core0; else hw->phy.sfp_type = ixgbe_sfp_type_srlr_core1; } else if (comp_codes_1g & IXGBE_SFF_1GBASET_CAPABLE) { if (hw->bus.lan_id == 0) hw->phy.sfp_type = ixgbe_sfp_type_1g_cu_core0; else hw->phy.sfp_type = ixgbe_sfp_type_1g_cu_core1; } else if (comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) { if (hw->bus.lan_id == 0) hw->phy.sfp_type = ixgbe_sfp_type_1g_sx_core0; else hw->phy.sfp_type = ixgbe_sfp_type_1g_sx_core1; } else if (comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) { if (hw->bus.lan_id == 0) hw->phy.sfp_type = ixgbe_sfp_type_1g_lx_core0; else hw->phy.sfp_type = ixgbe_sfp_type_1g_lx_core1; } else if (comp_codes_1g & IXGBE_SFF_1GBASELHA_CAPABLE) { if (hw->bus.lan_id == 0) hw->phy.sfp_type = ixgbe_sfp_type_1g_lha_core0; else hw->phy.sfp_type = ixgbe_sfp_type_1g_lha_core1; } else { hw->phy.sfp_type = ixgbe_sfp_type_unknown; } } if (hw->phy.sfp_type != stored_sfp_type) hw->phy.sfp_setup_needed = true; /* Determine if the SFP+ PHY is dual speed or not. */ hw->phy.multispeed_fiber = false; if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) && (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) || ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) && (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE))) hw->phy.multispeed_fiber = true; /* Determine PHY vendor */ if (hw->phy.type != ixgbe_phy_nl) { hw->phy.id = identifier; status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_VENDOR_OUI_BYTE0, &oui_bytes[0]); if (status != IXGBE_SUCCESS) goto err_read_i2c_eeprom; status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_VENDOR_OUI_BYTE1, &oui_bytes[1]); if (status != IXGBE_SUCCESS) goto err_read_i2c_eeprom; status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_VENDOR_OUI_BYTE2, &oui_bytes[2]); if (status != IXGBE_SUCCESS) goto err_read_i2c_eeprom; vendor_oui = ((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) | (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) | (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT)); switch (vendor_oui) { case IXGBE_SFF_VENDOR_OUI_TYCO: if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE) hw->phy.type = ixgbe_phy_sfp_passive_tyco; break; case IXGBE_SFF_VENDOR_OUI_FTL: if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE) hw->phy.type = ixgbe_phy_sfp_ftl_active; else hw->phy.type = ixgbe_phy_sfp_ftl; break; case IXGBE_SFF_VENDOR_OUI_AVAGO: hw->phy.type = ixgbe_phy_sfp_avago; break; case IXGBE_SFF_VENDOR_OUI_INTEL: hw->phy.type = ixgbe_phy_sfp_intel; break; default: if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE) hw->phy.type = ixgbe_phy_sfp_passive_unknown; else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE) hw->phy.type = ixgbe_phy_sfp_active_unknown; else hw->phy.type = ixgbe_phy_sfp_unknown; break; } } /* Allow any DA cable vendor */ if (cable_tech & (IXGBE_SFF_DA_PASSIVE_CABLE | IXGBE_SFF_DA_ACTIVE_CABLE)) { status = IXGBE_SUCCESS; goto out; } /* Verify supported 1G SFP modules */ if (comp_codes_10g == 0 && !(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 || hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0 || hw->phy.sfp_type == ixgbe_sfp_type_1g_lha_core0 || hw->phy.sfp_type == ixgbe_sfp_type_1g_lha_core1 || hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core0 || hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core1 || hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core0 || hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core1)) { hw->phy.type = ixgbe_phy_sfp_unsupported; status = IXGBE_ERR_SFP_NOT_SUPPORTED; goto out; } /* Anything else 82598-based is supported */ if (hw->mac.type == ixgbe_mac_82598EB) { status = IXGBE_SUCCESS; goto out; } ixgbe_get_device_caps(hw, &enforce_sfp); if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP) && !(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0 || hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 || hw->phy.sfp_type == ixgbe_sfp_type_1g_lha_core0 || hw->phy.sfp_type == ixgbe_sfp_type_1g_lha_core1 || hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core0 || hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core1 || hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core0 || hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core1)) { /* Make sure we're a supported PHY type */ if (hw->phy.type == ixgbe_phy_sfp_intel) { status = IXGBE_SUCCESS; } else { if (hw->allow_unsupported_sfp == true) { EWARN(hw, "WARNING: Intel (R) Network Connections are quality tested using Intel (R) Ethernet Optics. " "Using untested modules is not supported and may cause unstable operation or damage to the module or the adapter. " "Intel Corporation is not responsible for any harm caused by using untested modules.\n"); status = IXGBE_SUCCESS; } else { DEBUGOUT("SFP+ module not supported\n"); hw->phy.type = ixgbe_phy_sfp_unsupported; status = IXGBE_ERR_SFP_NOT_SUPPORTED; } } } else { status = IXGBE_SUCCESS; } } out: return status; err_read_i2c_eeprom: hw->phy.sfp_type = ixgbe_sfp_type_not_present; if (hw->phy.type != ixgbe_phy_nl) { hw->phy.id = 0; hw->phy.type = ixgbe_phy_unknown; } return IXGBE_ERR_SFP_NOT_PRESENT; } /** * ixgbe_get_supported_phy_sfp_layer_generic - Returns physical layer type * @hw: pointer to hardware structure * * Determines physical layer capabilities of the current SFP. */ u64 ixgbe_get_supported_phy_sfp_layer_generic(struct ixgbe_hw *hw) { u64 physical_layer = IXGBE_PHYSICAL_LAYER_UNKNOWN; u8 comp_codes_10g = 0; u8 comp_codes_1g = 0; DEBUGFUNC("ixgbe_get_supported_phy_sfp_layer_generic"); hw->phy.ops.identify_sfp(hw); if (hw->phy.sfp_type == ixgbe_sfp_type_not_present) return physical_layer; switch (hw->phy.type) { case ixgbe_phy_sfp_passive_tyco: case ixgbe_phy_sfp_passive_unknown: case ixgbe_phy_qsfp_passive_unknown: physical_layer = IXGBE_PHYSICAL_LAYER_SFP_PLUS_CU; break; case ixgbe_phy_sfp_ftl_active: case ixgbe_phy_sfp_active_unknown: case ixgbe_phy_qsfp_active_unknown: physical_layer = IXGBE_PHYSICAL_LAYER_SFP_ACTIVE_DA; break; case ixgbe_phy_sfp_avago: case ixgbe_phy_sfp_ftl: case ixgbe_phy_sfp_intel: case ixgbe_phy_sfp_unknown: hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_1GBE_COMP_CODES, &comp_codes_1g); hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_10GBE_COMP_CODES, &comp_codes_10g); if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE) physical_layer = IXGBE_PHYSICAL_LAYER_10GBASE_SR; else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE) physical_layer = IXGBE_PHYSICAL_LAYER_10GBASE_LR; else if (comp_codes_1g & IXGBE_SFF_1GBASET_CAPABLE) physical_layer = IXGBE_PHYSICAL_LAYER_1000BASE_T; else if (comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) physical_layer = IXGBE_PHYSICAL_LAYER_1000BASE_SX; break; case ixgbe_phy_qsfp_intel: case ixgbe_phy_qsfp_unknown: hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_QSFP_10GBE_COMP, &comp_codes_10g); if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE) physical_layer = IXGBE_PHYSICAL_LAYER_10GBASE_SR; else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE) physical_layer = IXGBE_PHYSICAL_LAYER_10GBASE_LR; break; default: break; } return physical_layer; } /** * ixgbe_identify_qsfp_module_generic - Identifies QSFP modules * @hw: pointer to hardware structure * * Searches for and identifies the QSFP module and assigns appropriate PHY type **/ s32 ixgbe_identify_qsfp_module_generic(struct ixgbe_hw *hw) { s32 status = IXGBE_ERR_PHY_ADDR_INVALID; u32 vendor_oui = 0; enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type; u8 identifier = 0; u8 comp_codes_1g = 0; u8 comp_codes_10g = 0; u8 oui_bytes[3] = {0, 0, 0}; u16 enforce_sfp = 0; u8 connector = 0; u8 cable_length = 0; u8 device_tech = 0; bool active_cable = false; DEBUGFUNC("ixgbe_identify_qsfp_module_generic"); if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber_qsfp) { hw->phy.sfp_type = ixgbe_sfp_type_not_present; status = IXGBE_ERR_SFP_NOT_PRESENT; goto out; } /* LAN ID is needed for I2C access */ hw->mac.ops.set_lan_id(hw); status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_IDENTIFIER, &identifier); if (status != IXGBE_SUCCESS) goto err_read_i2c_eeprom; if (identifier != IXGBE_SFF_IDENTIFIER_QSFP_PLUS) { hw->phy.type = ixgbe_phy_sfp_unsupported; status = IXGBE_ERR_SFP_NOT_SUPPORTED; goto out; } hw->phy.id = identifier; status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_QSFP_10GBE_COMP, &comp_codes_10g); if (status != IXGBE_SUCCESS) goto err_read_i2c_eeprom; status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_QSFP_1GBE_COMP, &comp_codes_1g); if (status != IXGBE_SUCCESS) goto err_read_i2c_eeprom; if (comp_codes_10g & IXGBE_SFF_QSFP_DA_PASSIVE_CABLE) { hw->phy.type = ixgbe_phy_qsfp_passive_unknown; if (hw->bus.lan_id == 0) hw->phy.sfp_type = ixgbe_sfp_type_da_cu_core0; else hw->phy.sfp_type = ixgbe_sfp_type_da_cu_core1; } else if (comp_codes_10g & (IXGBE_SFF_10GBASESR_CAPABLE | IXGBE_SFF_10GBASELR_CAPABLE)) { if (hw->bus.lan_id == 0) hw->phy.sfp_type = ixgbe_sfp_type_srlr_core0; else hw->phy.sfp_type = ixgbe_sfp_type_srlr_core1; } else { if (comp_codes_10g & IXGBE_SFF_QSFP_DA_ACTIVE_CABLE) active_cable = true; if (!active_cable) { /* check for active DA cables that pre-date * SFF-8436 v3.6 */ hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_QSFP_CONNECTOR, &connector); hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_QSFP_CABLE_LENGTH, &cable_length); hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_QSFP_DEVICE_TECH, &device_tech); if ((connector == IXGBE_SFF_QSFP_CONNECTOR_NOT_SEPARABLE) && (cable_length > 0) && ((device_tech >> 4) == IXGBE_SFF_QSFP_TRANSMITER_850NM_VCSEL)) active_cable = true; } if (active_cable) { hw->phy.type = ixgbe_phy_qsfp_active_unknown; if (hw->bus.lan_id == 0) hw->phy.sfp_type = ixgbe_sfp_type_da_act_lmt_core0; else hw->phy.sfp_type = ixgbe_sfp_type_da_act_lmt_core1; } else { /* unsupported module type */ hw->phy.type = ixgbe_phy_sfp_unsupported; status = IXGBE_ERR_SFP_NOT_SUPPORTED; goto out; } } if (hw->phy.sfp_type != stored_sfp_type) hw->phy.sfp_setup_needed = true; /* Determine if the QSFP+ PHY is dual speed or not. */ hw->phy.multispeed_fiber = false; if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) && (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) || ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) && (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE))) hw->phy.multispeed_fiber = true; /* Determine PHY vendor for optical modules */ if (comp_codes_10g & (IXGBE_SFF_10GBASESR_CAPABLE | IXGBE_SFF_10GBASELR_CAPABLE)) { status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_QSFP_VENDOR_OUI_BYTE0, &oui_bytes[0]); if (status != IXGBE_SUCCESS) goto err_read_i2c_eeprom; status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_QSFP_VENDOR_OUI_BYTE1, &oui_bytes[1]); if (status != IXGBE_SUCCESS) goto err_read_i2c_eeprom; status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_QSFP_VENDOR_OUI_BYTE2, &oui_bytes[2]); if (status != IXGBE_SUCCESS) goto err_read_i2c_eeprom; vendor_oui = ((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) | (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) | (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT)); if (vendor_oui == IXGBE_SFF_VENDOR_OUI_INTEL) hw->phy.type = ixgbe_phy_qsfp_intel; else hw->phy.type = ixgbe_phy_qsfp_unknown; ixgbe_get_device_caps(hw, &enforce_sfp); if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP)) { /* Make sure we're a supported PHY type */ if (hw->phy.type == ixgbe_phy_qsfp_intel) { status = IXGBE_SUCCESS; } else { if (hw->allow_unsupported_sfp == true) { EWARN(hw, "WARNING: Intel (R) Network Connections are quality tested using Intel (R) Ethernet Optics. " "Using untested modules is not supported and may cause unstable operation or damage to the module or the adapter. " "Intel Corporation is not responsible for any harm caused by using untested modules.\n"); status = IXGBE_SUCCESS; } else { DEBUGOUT("QSFP module not supported\n"); hw->phy.type = ixgbe_phy_sfp_unsupported; status = IXGBE_ERR_SFP_NOT_SUPPORTED; } } } else { status = IXGBE_SUCCESS; } } out: return status; err_read_i2c_eeprom: hw->phy.sfp_type = ixgbe_sfp_type_not_present; hw->phy.id = 0; hw->phy.type = ixgbe_phy_unknown; return IXGBE_ERR_SFP_NOT_PRESENT; } /** * ixgbe_get_sfp_init_sequence_offsets - Provides offset of PHY init sequence * @hw: pointer to hardware structure * @list_offset: offset to the SFP ID list * @data_offset: offset to the SFP data block * * Checks the MAC's EEPROM to see if it supports a given SFP+ module type, if * so it returns the offsets to the phy init sequence block. **/ s32 ixgbe_get_sfp_init_sequence_offsets(struct ixgbe_hw *hw, u16 *list_offset, u16 *data_offset) { u16 sfp_id; u16 sfp_type = hw->phy.sfp_type; DEBUGFUNC("ixgbe_get_sfp_init_sequence_offsets"); if (hw->phy.sfp_type == ixgbe_sfp_type_unknown) return IXGBE_ERR_SFP_NOT_SUPPORTED; if (hw->phy.sfp_type == ixgbe_sfp_type_not_present) return IXGBE_ERR_SFP_NOT_PRESENT; if ((hw->device_id == IXGBE_DEV_ID_82598_SR_DUAL_PORT_EM) && (hw->phy.sfp_type == ixgbe_sfp_type_da_cu)) return IXGBE_ERR_SFP_NOT_SUPPORTED; /* * Limiting active cables and 1G Phys must be initialized as * SR modules */ if (sfp_type == ixgbe_sfp_type_da_act_lmt_core0 || sfp_type == ixgbe_sfp_type_1g_lx_core0 || sfp_type == ixgbe_sfp_type_1g_lha_core0 || sfp_type == ixgbe_sfp_type_1g_cu_core0 || sfp_type == ixgbe_sfp_type_1g_sx_core0) sfp_type = ixgbe_sfp_type_srlr_core0; else if (sfp_type == ixgbe_sfp_type_da_act_lmt_core1 || sfp_type == ixgbe_sfp_type_1g_lx_core1 || sfp_type == ixgbe_sfp_type_1g_lha_core1 || sfp_type == ixgbe_sfp_type_1g_cu_core1 || sfp_type == ixgbe_sfp_type_1g_sx_core1) sfp_type = ixgbe_sfp_type_srlr_core1; /* Read offset to PHY init contents */ if (hw->eeprom.ops.read(hw, IXGBE_PHY_INIT_OFFSET_NL, list_offset)) { ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE, "eeprom read at offset %d failed", IXGBE_PHY_INIT_OFFSET_NL); return IXGBE_ERR_SFP_NO_INIT_SEQ_PRESENT; } if ((!*list_offset) || (*list_offset == 0xFFFF)) return IXGBE_ERR_SFP_NO_INIT_SEQ_PRESENT; /* Shift offset to first ID word */ (*list_offset)++; /* * Find the matching SFP ID in the EEPROM * and program the init sequence */ if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id)) goto err_phy; while (sfp_id != IXGBE_PHY_INIT_END_NL) { if (sfp_id == sfp_type) { (*list_offset)++; if (hw->eeprom.ops.read(hw, *list_offset, data_offset)) goto err_phy; if ((!*data_offset) || (*data_offset == 0xFFFF)) { DEBUGOUT("SFP+ module not supported\n"); return IXGBE_ERR_SFP_NOT_SUPPORTED; } else { break; } } else { (*list_offset) += 2; if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id)) goto err_phy; } } if (sfp_id == IXGBE_PHY_INIT_END_NL) { DEBUGOUT("No matching SFP+ module found\n"); return IXGBE_ERR_SFP_NOT_SUPPORTED; } return IXGBE_SUCCESS; err_phy: ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE, "eeprom read at offset %d failed", *list_offset); return IXGBE_ERR_PHY; } /** * ixgbe_read_i2c_eeprom_generic - Reads 8 bit EEPROM word over I2C interface * @hw: pointer to hardware structure * @byte_offset: EEPROM byte offset to read * @eeprom_data: value read * * Performs byte read operation to SFP module's EEPROM over I2C interface. **/ s32 ixgbe_read_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset, u8 *eeprom_data) { DEBUGFUNC("ixgbe_read_i2c_eeprom_generic"); return hw->phy.ops.read_i2c_byte(hw, byte_offset, IXGBE_I2C_EEPROM_DEV_ADDR, eeprom_data); } /** * ixgbe_read_i2c_sff8472_generic - Reads 8 bit word over I2C interface * @hw: pointer to hardware structure * @byte_offset: byte offset at address 0xA2 * @sff8472_data: value read * * Performs byte read operation to SFP module's SFF-8472 data over I2C **/ STATIC s32 ixgbe_read_i2c_sff8472_generic(struct ixgbe_hw *hw, u8 byte_offset, u8 *sff8472_data) { return hw->phy.ops.read_i2c_byte(hw, byte_offset, IXGBE_I2C_EEPROM_DEV_ADDR2, sff8472_data); } /** * ixgbe_write_i2c_eeprom_generic - Writes 8 bit EEPROM word over I2C interface * @hw: pointer to hardware structure * @byte_offset: EEPROM byte offset to write * @eeprom_data: value to write * * Performs byte write operation to SFP module's EEPROM over I2C interface. **/ s32 ixgbe_write_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset, u8 eeprom_data) { DEBUGFUNC("ixgbe_write_i2c_eeprom_generic"); return hw->phy.ops.write_i2c_byte(hw, byte_offset, IXGBE_I2C_EEPROM_DEV_ADDR, eeprom_data); } /** * ixgbe_is_sfp_probe - Returns true if SFP is being detected * @hw: pointer to hardware structure * @offset: eeprom offset to be read * @addr: I2C address to be read */ STATIC bool ixgbe_is_sfp_probe(struct ixgbe_hw *hw, u8 offset, u8 addr) { if (addr == IXGBE_I2C_EEPROM_DEV_ADDR && offset == IXGBE_SFF_IDENTIFIER && hw->phy.sfp_type == ixgbe_sfp_type_not_present) return true; return false; } /** * ixgbe_read_i2c_byte_generic_int - Reads 8 bit word over I2C * @hw: pointer to hardware structure * @byte_offset: byte offset to read * @dev_addr: address to read from * @data: value read * @lock: true if to take and release semaphore * * Performs byte read operation to SFP module's EEPROM over I2C interface at * a specified device address. **/ STATIC s32 ixgbe_read_i2c_byte_generic_int(struct ixgbe_hw *hw, u8 byte_offset, u8 dev_addr, u8 *data, bool lock) { s32 status; u32 max_retry = 10; u32 retry = 0; u32 swfw_mask = hw->phy.phy_semaphore_mask; bool nack = 1; *data = 0; DEBUGFUNC("ixgbe_read_i2c_byte_generic"); if (hw->mac.type >= ixgbe_mac_X550) max_retry = 3; if (ixgbe_is_sfp_probe(hw, byte_offset, dev_addr)) max_retry = IXGBE_SFP_DETECT_RETRIES; do { if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)) return IXGBE_ERR_SWFW_SYNC; ixgbe_i2c_start(hw); /* Device Address and write indication */ status = ixgbe_clock_out_i2c_byte(hw, dev_addr); if (status != IXGBE_SUCCESS) goto fail; status = ixgbe_get_i2c_ack(hw); if (status != IXGBE_SUCCESS) goto fail; status = ixgbe_clock_out_i2c_byte(hw, byte_offset); if (status != IXGBE_SUCCESS) goto fail; status = ixgbe_get_i2c_ack(hw); if (status != IXGBE_SUCCESS) goto fail; ixgbe_i2c_start(hw); /* Device Address and read indication */ status = ixgbe_clock_out_i2c_byte(hw, (dev_addr | 0x1)); if (status != IXGBE_SUCCESS) goto fail; status = ixgbe_get_i2c_ack(hw); if (status != IXGBE_SUCCESS) goto fail; ixgbe_clock_in_i2c_byte(hw, data); status = ixgbe_clock_out_i2c_bit(hw, nack); if (status != IXGBE_SUCCESS) goto fail; ixgbe_i2c_stop(hw); if (lock) hw->mac.ops.release_swfw_sync(hw, swfw_mask); return IXGBE_SUCCESS; fail: ixgbe_i2c_bus_clear(hw); if (lock) { hw->mac.ops.release_swfw_sync(hw, swfw_mask); msec_delay(100); } if (retry < max_retry) DEBUGOUT("I2C byte read error - Retrying.\n"); else DEBUGOUT("I2C byte read error.\n"); retry++; } while (retry <= max_retry); return status; } /** * ixgbe_read_i2c_byte_generic - Reads 8 bit word over I2C * @hw: pointer to hardware structure * @byte_offset: byte offset to read * @dev_addr: address to read from * @data: value read * * Performs byte read operation to SFP module's EEPROM over I2C interface at * a specified device address. **/ s32 ixgbe_read_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset, u8 dev_addr, u8 *data) { return ixgbe_read_i2c_byte_generic_int(hw, byte_offset, dev_addr, data, true); } /** * ixgbe_read_i2c_byte_generic_unlocked - Reads 8 bit word over I2C * @hw: pointer to hardware structure * @byte_offset: byte offset to read * @dev_addr: address to read from * @data: value read * * Performs byte read operation to SFP module's EEPROM over I2C interface at * a specified device address. **/ s32 ixgbe_read_i2c_byte_generic_unlocked(struct ixgbe_hw *hw, u8 byte_offset, u8 dev_addr, u8 *data) { return ixgbe_read_i2c_byte_generic_int(hw, byte_offset, dev_addr, data, false); } /** * ixgbe_write_i2c_byte_generic_int - Writes 8 bit word over I2C * @hw: pointer to hardware structure * @byte_offset: byte offset to write * @dev_addr: address to write to * @data: value to write * @lock: true if to take and release semaphore * * Performs byte write operation to SFP module's EEPROM over I2C interface at * a specified device address. **/ STATIC s32 ixgbe_write_i2c_byte_generic_int(struct ixgbe_hw *hw, u8 byte_offset, u8 dev_addr, u8 data, bool lock) { s32 status; u32 max_retry = 1; u32 retry = 0; u32 swfw_mask = hw->phy.phy_semaphore_mask; DEBUGFUNC("ixgbe_write_i2c_byte_generic"); if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != IXGBE_SUCCESS) return IXGBE_ERR_SWFW_SYNC; do { ixgbe_i2c_start(hw); status = ixgbe_clock_out_i2c_byte(hw, dev_addr); if (status != IXGBE_SUCCESS) goto fail; status = ixgbe_get_i2c_ack(hw); if (status != IXGBE_SUCCESS) goto fail; status = ixgbe_clock_out_i2c_byte(hw, byte_offset); if (status != IXGBE_SUCCESS) goto fail; status = ixgbe_get_i2c_ack(hw); if (status != IXGBE_SUCCESS) goto fail; status = ixgbe_clock_out_i2c_byte(hw, data); if (status != IXGBE_SUCCESS) goto fail; status = ixgbe_get_i2c_ack(hw); if (status != IXGBE_SUCCESS) goto fail; ixgbe_i2c_stop(hw); if (lock) hw->mac.ops.release_swfw_sync(hw, swfw_mask); return IXGBE_SUCCESS; fail: ixgbe_i2c_bus_clear(hw); if (retry < max_retry) DEBUGOUT("I2C byte write error - Retrying.\n"); else DEBUGOUT("I2C byte write error.\n"); retry++; } while (retry <= max_retry); if (lock) hw->mac.ops.release_swfw_sync(hw, swfw_mask); return status; } /** * ixgbe_write_i2c_byte_generic - Writes 8 bit word over I2C * @hw: pointer to hardware structure * @byte_offset: byte offset to write * @dev_addr: address to write to * @data: value to write * * Performs byte write operation to SFP module's EEPROM over I2C interface at * a specified device address. **/ s32 ixgbe_write_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset, u8 dev_addr, u8 data) { return ixgbe_write_i2c_byte_generic_int(hw, byte_offset, dev_addr, data, true); } /** * ixgbe_write_i2c_byte_generic_unlocked - Writes 8 bit word over I2C * @hw: pointer to hardware structure * @byte_offset: byte offset to write * @dev_addr: address to write to * @data: value to write * * Performs byte write operation to SFP module's EEPROM over I2C interface at * a specified device address. **/ s32 ixgbe_write_i2c_byte_generic_unlocked(struct ixgbe_hw *hw, u8 byte_offset, u8 dev_addr, u8 data) { return ixgbe_write_i2c_byte_generic_int(hw, byte_offset, dev_addr, data, false); } /** * ixgbe_i2c_start - Sets I2C start condition * @hw: pointer to hardware structure * * Sets I2C start condition (High -> Low on SDA while SCL is High) * Set bit-bang mode on X550 hardware. **/ STATIC void ixgbe_i2c_start(struct ixgbe_hw *hw) { u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL_BY_MAC(hw)); DEBUGFUNC("ixgbe_i2c_start"); i2cctl |= IXGBE_I2C_BB_EN_BY_MAC(hw); /* Start condition must begin with data and clock high */ ixgbe_set_i2c_data(hw, &i2cctl, 1); ixgbe_raise_i2c_clk(hw, &i2cctl); /* Setup time for start condition (4.7us) */ usec_delay(IXGBE_I2C_T_SU_STA); ixgbe_set_i2c_data(hw, &i2cctl, 0); /* Hold time for start condition (4us) */ usec_delay(IXGBE_I2C_T_HD_STA); ixgbe_lower_i2c_clk(hw, &i2cctl); /* Minimum low period of clock is 4.7 us */ usec_delay(IXGBE_I2C_T_LOW); } /** * ixgbe_i2c_stop - Sets I2C stop condition * @hw: pointer to hardware structure * * Sets I2C stop condition (Low -> High on SDA while SCL is High) * Disables bit-bang mode and negates data output enable on X550 * hardware. **/ STATIC void ixgbe_i2c_stop(struct ixgbe_hw *hw) { u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL_BY_MAC(hw)); u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN_BY_MAC(hw); u32 clk_oe_bit = IXGBE_I2C_CLK_OE_N_EN_BY_MAC(hw); u32 bb_en_bit = IXGBE_I2C_BB_EN_BY_MAC(hw); DEBUGFUNC("ixgbe_i2c_stop"); /* Stop condition must begin with data low and clock high */ ixgbe_set_i2c_data(hw, &i2cctl, 0); ixgbe_raise_i2c_clk(hw, &i2cctl); /* Setup time for stop condition (4us) */ usec_delay(IXGBE_I2C_T_SU_STO); ixgbe_set_i2c_data(hw, &i2cctl, 1); /* bus free time between stop and start (4.7us)*/ usec_delay(IXGBE_I2C_T_BUF); if (bb_en_bit || data_oe_bit || clk_oe_bit) { i2cctl &= ~bb_en_bit; i2cctl |= data_oe_bit | clk_oe_bit; IXGBE_WRITE_REG(hw, IXGBE_I2CCTL_BY_MAC(hw), i2cctl); IXGBE_WRITE_FLUSH(hw); } } /** * ixgbe_clock_in_i2c_byte - Clocks in one byte via I2C * @hw: pointer to hardware structure * @data: data byte to clock in * * Clocks in one byte data via I2C data/clock **/ STATIC void ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data) { s32 i; bool bit = 0; DEBUGFUNC("ixgbe_clock_in_i2c_byte"); *data = 0; for (i = 7; i >= 0; i--) { ixgbe_clock_in_i2c_bit(hw, &bit); *data |= bit << i; } } /** * ixgbe_clock_out_i2c_byte - Clocks out one byte via I2C * @hw: pointer to hardware structure * @data: data byte clocked out * * Clocks out one byte data via I2C data/clock **/ STATIC s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data) { s32 status = IXGBE_SUCCESS; s32 i; u32 i2cctl; bool bit; DEBUGFUNC("ixgbe_clock_out_i2c_byte"); for (i = 7; i >= 0; i--) { bit = (data >> i) & 0x1; status = ixgbe_clock_out_i2c_bit(hw, bit); if (status != IXGBE_SUCCESS) break; } /* Release SDA line (set high) */ i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL_BY_MAC(hw)); i2cctl |= IXGBE_I2C_DATA_OUT_BY_MAC(hw); i2cctl |= IXGBE_I2C_DATA_OE_N_EN_BY_MAC(hw); IXGBE_WRITE_REG(hw, IXGBE_I2CCTL_BY_MAC(hw), i2cctl); IXGBE_WRITE_FLUSH(hw); return status; } /** * ixgbe_get_i2c_ack - Polls for I2C ACK * @hw: pointer to hardware structure * * Clocks in/out one bit via I2C data/clock **/ STATIC s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw) { u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN_BY_MAC(hw); s32 status = IXGBE_SUCCESS; u32 i = 0; u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL_BY_MAC(hw)); u32 timeout = 10; bool ack = 1; DEBUGFUNC("ixgbe_get_i2c_ack"); if (data_oe_bit) { i2cctl |= IXGBE_I2C_DATA_OUT_BY_MAC(hw); i2cctl |= data_oe_bit; IXGBE_WRITE_REG(hw, IXGBE_I2CCTL_BY_MAC(hw), i2cctl); IXGBE_WRITE_FLUSH(hw); } ixgbe_raise_i2c_clk(hw, &i2cctl); /* Minimum high period of clock is 4us */ usec_delay(IXGBE_I2C_T_HIGH); /* Poll for ACK. Note that ACK in I2C spec is * transition from 1 to 0 */ for (i = 0; i < timeout; i++) { i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL_BY_MAC(hw)); ack = ixgbe_get_i2c_data(hw, &i2cctl); usec_delay(1); if (!ack) break; } if (ack) { DEBUGOUT("I2C ack was not received.\n"); status = IXGBE_ERR_I2C; } ixgbe_lower_i2c_clk(hw, &i2cctl); /* Minimum low period of clock is 4.7 us */ usec_delay(IXGBE_I2C_T_LOW); return status; } /** * ixgbe_clock_in_i2c_bit - Clocks in one bit via I2C data/clock * @hw: pointer to hardware structure * @data: read data value * * Clocks in one bit via I2C data/clock **/ STATIC void ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data) { u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL_BY_MAC(hw)); u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN_BY_MAC(hw); DEBUGFUNC("ixgbe_clock_in_i2c_bit"); if (data_oe_bit) { i2cctl |= IXGBE_I2C_DATA_OUT_BY_MAC(hw); i2cctl |= data_oe_bit; IXGBE_WRITE_REG(hw, IXGBE_I2CCTL_BY_MAC(hw), i2cctl); IXGBE_WRITE_FLUSH(hw); } ixgbe_raise_i2c_clk(hw, &i2cctl); /* Minimum high period of clock is 4us */ usec_delay(IXGBE_I2C_T_HIGH); i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL_BY_MAC(hw)); *data = ixgbe_get_i2c_data(hw, &i2cctl); ixgbe_lower_i2c_clk(hw, &i2cctl); /* Minimum low period of clock is 4.7 us */ usec_delay(IXGBE_I2C_T_LOW); } /** * ixgbe_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock * @hw: pointer to hardware structure * @data: data value to write * * Clocks out one bit via I2C data/clock **/ STATIC s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data) { s32 status; u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL_BY_MAC(hw)); DEBUGFUNC("ixgbe_clock_out_i2c_bit"); status = ixgbe_set_i2c_data(hw, &i2cctl, data); if (status == IXGBE_SUCCESS) { ixgbe_raise_i2c_clk(hw, &i2cctl); /* Minimum high period of clock is 4us */ usec_delay(IXGBE_I2C_T_HIGH); ixgbe_lower_i2c_clk(hw, &i2cctl); /* Minimum low period of clock is 4.7 us. * This also takes care of the data hold time. */ usec_delay(IXGBE_I2C_T_LOW); } else { status = IXGBE_ERR_I2C; ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE, "I2C data was not set to %X\n", data); } return status; } /** * ixgbe_raise_i2c_clk - Raises the I2C SCL clock * @hw: pointer to hardware structure * @i2cctl: Current value of I2CCTL register * * Raises the I2C clock line '0'->'1' * Negates the I2C clock output enable on X550 hardware. **/ STATIC void ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl) { u32 clk_oe_bit = IXGBE_I2C_CLK_OE_N_EN_BY_MAC(hw); u32 i = 0; u32 timeout = IXGBE_I2C_CLOCK_STRETCHING_TIMEOUT; u32 i2cctl_r = 0; DEBUGFUNC("ixgbe_raise_i2c_clk"); if (clk_oe_bit) { *i2cctl |= clk_oe_bit; IXGBE_WRITE_REG(hw, IXGBE_I2CCTL_BY_MAC(hw), *i2cctl); } for (i = 0; i < timeout; i++) { *i2cctl |= IXGBE_I2C_CLK_OUT_BY_MAC(hw); IXGBE_WRITE_REG(hw, IXGBE_I2CCTL_BY_MAC(hw), *i2cctl); IXGBE_WRITE_FLUSH(hw); /* SCL rise time (1000ns) */ usec_delay(IXGBE_I2C_T_RISE); i2cctl_r = IXGBE_READ_REG(hw, IXGBE_I2CCTL_BY_MAC(hw)); if (i2cctl_r & IXGBE_I2C_CLK_IN_BY_MAC(hw)) break; } } /** * ixgbe_lower_i2c_clk - Lowers the I2C SCL clock * @hw: pointer to hardware structure * @i2cctl: Current value of I2CCTL register * * Lowers the I2C clock line '1'->'0' * Asserts the I2C clock output enable on X550 hardware. **/ STATIC void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl) { DEBUGFUNC("ixgbe_lower_i2c_clk"); *i2cctl &= ~(IXGBE_I2C_CLK_OUT_BY_MAC(hw)); *i2cctl &= ~IXGBE_I2C_CLK_OE_N_EN_BY_MAC(hw); IXGBE_WRITE_REG(hw, IXGBE_I2CCTL_BY_MAC(hw), *i2cctl); IXGBE_WRITE_FLUSH(hw); /* SCL fall time (300ns) */ usec_delay(IXGBE_I2C_T_FALL); } /** * ixgbe_set_i2c_data - Sets the I2C data bit * @hw: pointer to hardware structure * @i2cctl: Current value of I2CCTL register * @data: I2C data value (0 or 1) to set * * Sets the I2C data bit * Asserts the I2C data output enable on X550 hardware. **/ STATIC s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data) { u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN_BY_MAC(hw); s32 status = IXGBE_SUCCESS; DEBUGFUNC("ixgbe_set_i2c_data"); if (data) *i2cctl |= IXGBE_I2C_DATA_OUT_BY_MAC(hw); else *i2cctl &= ~(IXGBE_I2C_DATA_OUT_BY_MAC(hw)); *i2cctl &= ~data_oe_bit; IXGBE_WRITE_REG(hw, IXGBE_I2CCTL_BY_MAC(hw), *i2cctl); IXGBE_WRITE_FLUSH(hw); /* Data rise/fall (1000ns/300ns) and set-up time (250ns) */ usec_delay(IXGBE_I2C_T_RISE + IXGBE_I2C_T_FALL + IXGBE_I2C_T_SU_DATA); if (!data) /* Can't verify data in this case */ return IXGBE_SUCCESS; if (data_oe_bit) { *i2cctl |= data_oe_bit; IXGBE_WRITE_REG(hw, IXGBE_I2CCTL_BY_MAC(hw), *i2cctl); IXGBE_WRITE_FLUSH(hw); } /* Verify data was set correctly */ *i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL_BY_MAC(hw)); if (data != ixgbe_get_i2c_data(hw, i2cctl)) { status = IXGBE_ERR_I2C; ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE, "Error - I2C data was not set to %X.\n", data); } return status; } /** * ixgbe_get_i2c_data - Reads the I2C SDA data bit * @hw: pointer to hardware structure * @i2cctl: Current value of I2CCTL register * * Returns the I2C data bit value * Negates the I2C data output enable on X550 hardware. **/ STATIC bool ixgbe_get_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl) { u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN_BY_MAC(hw); bool data; DEBUGFUNC("ixgbe_get_i2c_data"); if (data_oe_bit) { *i2cctl |= data_oe_bit; IXGBE_WRITE_REG(hw, IXGBE_I2CCTL_BY_MAC(hw), *i2cctl); IXGBE_WRITE_FLUSH(hw); usec_delay(IXGBE_I2C_T_FALL); } if (*i2cctl & IXGBE_I2C_DATA_IN_BY_MAC(hw)) data = 1; else data = 0; return data; } /** * ixgbe_i2c_bus_clear - Clears the I2C bus * @hw: pointer to hardware structure * * Clears the I2C bus by sending nine clock pulses. * Used when data line is stuck low. **/ void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw) { u32 i2cctl; u32 i; DEBUGFUNC("ixgbe_i2c_bus_clear"); ixgbe_i2c_start(hw); i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL_BY_MAC(hw)); ixgbe_set_i2c_data(hw, &i2cctl, 1); for (i = 0; i < 9; i++) { ixgbe_raise_i2c_clk(hw, &i2cctl); /* Min high period of clock is 4us */ usec_delay(IXGBE_I2C_T_HIGH); ixgbe_lower_i2c_clk(hw, &i2cctl); /* Min low period of clock is 4.7us*/ usec_delay(IXGBE_I2C_T_LOW); } ixgbe_i2c_start(hw); /* Put the i2c bus back to default state */ ixgbe_i2c_stop(hw); } /** * ixgbe_tn_check_overtemp - Checks if an overtemp occurred. * @hw: pointer to hardware structure * * Checks if the LASI temp alarm status was triggered due to overtemp **/ s32 ixgbe_tn_check_overtemp(struct ixgbe_hw *hw) { s32 status = IXGBE_SUCCESS; u16 phy_data = 0; DEBUGFUNC("ixgbe_tn_check_overtemp"); if (hw->device_id != IXGBE_DEV_ID_82599_T3_LOM) goto out; /* Check that the LASI temp alarm status was triggered */ hw->phy.ops.read_reg(hw, IXGBE_TN_LASI_STATUS_REG, IXGBE_MDIO_PMA_PMD_DEV_TYPE, &phy_data); if (!(phy_data & IXGBE_TN_LASI_STATUS_TEMP_ALARM)) goto out; status = IXGBE_ERR_OVERTEMP; ERROR_REPORT1(IXGBE_ERROR_CAUTION, "Device over temperature"); out: return status; } /** * ixgbe_set_copper_phy_power - Control power for copper phy * @hw: pointer to hardware structure * @on: true for on, false for off */ s32 ixgbe_set_copper_phy_power(struct ixgbe_hw *hw, bool on) { u32 status; u16 reg; if (!on && ixgbe_mng_present(hw)) return 0; status = hw->phy.ops.read_reg(hw, IXGBE_MDIO_VENDOR_SPECIFIC_1_CONTROL, IXGBE_MDIO_VENDOR_SPECIFIC_1_DEV_TYPE, ®); if (status) return status; if (on) { reg &= ~IXGBE_MDIO_PHY_SET_LOW_POWER_MODE; } else { if (ixgbe_check_reset_blocked(hw)) return 0; reg |= IXGBE_MDIO_PHY_SET_LOW_POWER_MODE; } status = hw->phy.ops.write_reg(hw, IXGBE_MDIO_VENDOR_SPECIFIC_1_CONTROL, IXGBE_MDIO_VENDOR_SPECIFIC_1_DEV_TYPE, reg); return status; }