/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2014 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(RTE_ARCH_X86) #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "eal_filesystem.h" #include "private.h" /** * @file * PCI probing under BSD * * This code is used to simulate a PCI probe by parsing information in * sysfs. Moreover, when a registered driver matches a device, the * kernel driver currently using it is unloaded and replaced by * nic_uio module, which is a very minimal userland driver for Intel * network card, only providing access to PCI BAR to applications, and * enabling bus master. */ extern struct rte_pci_bus rte_pci_bus; /* Map pci device */ int rte_pci_map_device(struct rte_pci_device *dev) { int ret = -1; /* try mapping the NIC resources */ switch (dev->kdrv) { case RTE_PCI_KDRV_NIC_UIO: /* map resources for devices that use uio */ ret = pci_uio_map_resource(dev); break; default: RTE_LOG(DEBUG, EAL, " Not managed by a supported kernel driver, skipped\n"); ret = 1; break; } return ret; } /* Unmap pci device */ void rte_pci_unmap_device(struct rte_pci_device *dev) { /* try unmapping the NIC resources */ switch (dev->kdrv) { case RTE_PCI_KDRV_NIC_UIO: /* unmap resources for devices that use uio */ pci_uio_unmap_resource(dev); break; default: RTE_LOG(DEBUG, EAL, " Not managed by a supported kernel driver, skipped\n"); break; } } void pci_uio_free_resource(struct rte_pci_device *dev, struct mapped_pci_resource *uio_res) { rte_free(uio_res); if (dev->intr_handle.fd) { close(dev->intr_handle.fd); dev->intr_handle.fd = -1; dev->intr_handle.type = RTE_INTR_HANDLE_UNKNOWN; } } int pci_uio_alloc_resource(struct rte_pci_device *dev, struct mapped_pci_resource **uio_res) { char devname[PATH_MAX]; /* contains the /dev/uioX */ struct rte_pci_addr *loc; loc = &dev->addr; snprintf(devname, sizeof(devname), "/dev/uio@pci:%u:%u:%u", dev->addr.bus, dev->addr.devid, dev->addr.function); if (access(devname, O_RDWR) < 0) { RTE_LOG(WARNING, EAL, " "PCI_PRI_FMT" not managed by UIO driver, " "skipping\n", loc->domain, loc->bus, loc->devid, loc->function); return 1; } /* save fd if in primary process */ dev->intr_handle.fd = open(devname, O_RDWR); if (dev->intr_handle.fd < 0) { RTE_LOG(ERR, EAL, "Cannot open %s: %s\n", devname, strerror(errno)); goto error; } dev->intr_handle.type = RTE_INTR_HANDLE_UIO; /* allocate the mapping details for secondary processes*/ *uio_res = rte_zmalloc("UIO_RES", sizeof(**uio_res), 0); if (*uio_res == NULL) { RTE_LOG(ERR, EAL, "%s(): cannot store uio mmap details\n", __func__); goto error; } strlcpy((*uio_res)->path, devname, sizeof((*uio_res)->path)); memcpy(&(*uio_res)->pci_addr, &dev->addr, sizeof((*uio_res)->pci_addr)); return 0; error: pci_uio_free_resource(dev, *uio_res); return -1; } int pci_uio_map_resource_by_index(struct rte_pci_device *dev, int res_idx, struct mapped_pci_resource *uio_res, int map_idx) { int fd; char *devname; void *mapaddr; uint64_t offset; uint64_t pagesz; struct pci_map *maps; maps = uio_res->maps; devname = uio_res->path; pagesz = sysconf(_SC_PAGESIZE); /* allocate memory to keep path */ maps[map_idx].path = rte_malloc(NULL, strlen(devname) + 1, 0); if (maps[map_idx].path == NULL) { RTE_LOG(ERR, EAL, "Cannot allocate memory for path: %s\n", strerror(errno)); return -1; } /* * open resource file, to mmap it */ fd = open(devname, O_RDWR); if (fd < 0) { RTE_LOG(ERR, EAL, "Cannot open %s: %s\n", devname, strerror(errno)); goto error; } /* if matching map is found, then use it */ offset = res_idx * pagesz; mapaddr = pci_map_resource(NULL, fd, (off_t)offset, (size_t)dev->mem_resource[res_idx].len, 0); close(fd); if (mapaddr == NULL) goto error; maps[map_idx].phaddr = dev->mem_resource[res_idx].phys_addr; maps[map_idx].size = dev->mem_resource[res_idx].len; maps[map_idx].addr = mapaddr; maps[map_idx].offset = offset; strcpy(maps[map_idx].path, devname); dev->mem_resource[res_idx].addr = mapaddr; return 0; error: rte_free(maps[map_idx].path); return -1; } static int pci_scan_one(int dev_pci_fd, struct pci_conf *conf) { struct rte_pci_device *dev; struct pci_bar_io bar; unsigned i, max; dev = malloc(sizeof(*dev)); if (dev == NULL) { return -1; } memset(dev, 0, sizeof(*dev)); dev->device.bus = &rte_pci_bus.bus; dev->addr.domain = conf->pc_sel.pc_domain; dev->addr.bus = conf->pc_sel.pc_bus; dev->addr.devid = conf->pc_sel.pc_dev; dev->addr.function = conf->pc_sel.pc_func; /* get vendor id */ dev->id.vendor_id = conf->pc_vendor; /* get device id */ dev->id.device_id = conf->pc_device; /* get subsystem_vendor id */ dev->id.subsystem_vendor_id = conf->pc_subvendor; /* get subsystem_device id */ dev->id.subsystem_device_id = conf->pc_subdevice; /* get class id */ dev->id.class_id = (conf->pc_class << 16) | (conf->pc_subclass << 8) | (conf->pc_progif); /* TODO: get max_vfs */ dev->max_vfs = 0; /* FreeBSD has no NUMA support (yet) */ dev->device.numa_node = 0; pci_name_set(dev); /* FreeBSD has only one pass through driver */ dev->kdrv = RTE_PCI_KDRV_NIC_UIO; /* parse resources */ switch (conf->pc_hdr & PCIM_HDRTYPE) { case PCIM_HDRTYPE_NORMAL: max = PCIR_MAX_BAR_0; break; case PCIM_HDRTYPE_BRIDGE: max = PCIR_MAX_BAR_1; break; case PCIM_HDRTYPE_CARDBUS: max = PCIR_MAX_BAR_2; break; default: goto skipdev; } for (i = 0; i <= max; i++) { bar.pbi_sel = conf->pc_sel; bar.pbi_reg = PCIR_BAR(i); if (ioctl(dev_pci_fd, PCIOCGETBAR, &bar) < 0) continue; dev->mem_resource[i].len = bar.pbi_length; if (PCI_BAR_IO(bar.pbi_base)) { dev->mem_resource[i].addr = (void *)(bar.pbi_base & ~((uint64_t)0xf)); continue; } dev->mem_resource[i].phys_addr = bar.pbi_base & ~((uint64_t)0xf); } /* device is valid, add in list (sorted) */ if (TAILQ_EMPTY(&rte_pci_bus.device_list)) { rte_pci_add_device(dev); } else { struct rte_pci_device *dev2 = NULL; int ret; TAILQ_FOREACH(dev2, &rte_pci_bus.device_list, next) { ret = rte_pci_addr_cmp(&dev->addr, &dev2->addr); if (ret > 0) continue; else if (ret < 0) { rte_pci_insert_device(dev2, dev); } else { /* already registered */ dev2->kdrv = dev->kdrv; dev2->max_vfs = dev->max_vfs; pci_name_set(dev2); memmove(dev2->mem_resource, dev->mem_resource, sizeof(dev->mem_resource)); free(dev); } return 0; } rte_pci_add_device(dev); } return 0; skipdev: free(dev); return 0; } /* * Scan the content of the PCI bus, and add the devices in the devices * list. Call pci_scan_one() for each pci entry found. */ int rte_pci_scan(void) { int fd; unsigned dev_count = 0; struct pci_conf matches[16]; struct pci_conf_io conf_io = { .pat_buf_len = 0, .num_patterns = 0, .patterns = NULL, .match_buf_len = sizeof(matches), .matches = &matches[0], }; struct rte_pci_addr pci_addr; /* for debug purposes, PCI can be disabled */ if (!rte_eal_has_pci()) return 0; fd = open("/dev/pci", O_RDONLY); if (fd < 0) { RTE_LOG(ERR, EAL, "%s(): error opening /dev/pci\n", __func__); goto error; } do { unsigned i; if (ioctl(fd, PCIOCGETCONF, &conf_io) < 0) { RTE_LOG(ERR, EAL, "%s(): error with ioctl on /dev/pci: %s\n", __func__, strerror(errno)); goto error; } for (i = 0; i < conf_io.num_matches; i++) { pci_addr.domain = matches[i].pc_sel.pc_domain; pci_addr.bus = matches[i].pc_sel.pc_bus; pci_addr.devid = matches[i].pc_sel.pc_dev; pci_addr.function = matches[i].pc_sel.pc_func; if (rte_pci_ignore_device(&pci_addr)) continue; if (pci_scan_one(fd, &matches[i]) < 0) goto error; } dev_count += conf_io.num_matches; } while(conf_io.status == PCI_GETCONF_MORE_DEVS); close(fd); RTE_LOG(DEBUG, EAL, "PCI scan found %u devices\n", dev_count); return 0; error: if (fd >= 0) close(fd); return -1; } bool pci_device_iommu_support_va(__rte_unused const struct rte_pci_device *dev) { return false; } enum rte_iova_mode pci_device_iova_mode(const struct rte_pci_driver *pdrv __rte_unused, const struct rte_pci_device *pdev) { if (pdev->kdrv != RTE_PCI_KDRV_NIC_UIO) RTE_LOG(DEBUG, EAL, "Unsupported kernel driver? Defaulting to IOVA as 'PA'\n"); return RTE_IOVA_PA; } /* Read PCI config space. */ int rte_pci_read_config(const struct rte_pci_device *dev, void *buf, size_t len, off_t offset) { int fd = -1; int size; /* Copy Linux implementation's behaviour */ const int return_len = len; struct pci_io pi = { .pi_sel = { .pc_domain = dev->addr.domain, .pc_bus = dev->addr.bus, .pc_dev = dev->addr.devid, .pc_func = dev->addr.function, }, .pi_reg = offset, }; fd = open("/dev/pci", O_RDWR); if (fd < 0) { RTE_LOG(ERR, EAL, "%s(): error opening /dev/pci\n", __func__); goto error; } while (len > 0) { size = (len >= 4) ? 4 : ((len >= 2) ? 2 : 1); pi.pi_width = size; if (ioctl(fd, PCIOCREAD, &pi) < 0) goto error; memcpy(buf, &pi.pi_data, size); buf = (char *)buf + size; pi.pi_reg += size; len -= size; } close(fd); return return_len; error: if (fd >= 0) close(fd); return -1; } /* Write PCI config space. */ int rte_pci_write_config(const struct rte_pci_device *dev, const void *buf, size_t len, off_t offset) { int fd = -1; struct pci_io pi = { .pi_sel = { .pc_domain = dev->addr.domain, .pc_bus = dev->addr.bus, .pc_dev = dev->addr.devid, .pc_func = dev->addr.function, }, .pi_reg = offset, .pi_data = *(const uint32_t *)buf, .pi_width = len, }; if (len == 3 || len > sizeof(pi.pi_data)) { RTE_LOG(ERR, EAL, "%s(): invalid pci read length\n", __func__); goto error; } memcpy(&pi.pi_data, buf, len); fd = open("/dev/pci", O_RDWR); if (fd < 0) { RTE_LOG(ERR, EAL, "%s(): error opening /dev/pci\n", __func__); goto error; } if (ioctl(fd, PCIOCWRITE, &pi) < 0) goto error; close(fd); return 0; error: if (fd >= 0) close(fd); return -1; } int rte_pci_ioport_map(struct rte_pci_device *dev, int bar, struct rte_pci_ioport *p) { int ret; switch (dev->kdrv) { #if defined(RTE_ARCH_X86) case RTE_PCI_KDRV_NIC_UIO: if (rte_eal_iopl_init() != 0) { RTE_LOG(ERR, EAL, "%s(): insufficient ioport permissions for PCI device %s\n", __func__, dev->name); return -1; } if ((uintptr_t) dev->mem_resource[bar].addr <= UINT16_MAX) { p->base = (uintptr_t)dev->mem_resource[bar].addr; ret = 0; } else ret = -1; break; #endif default: ret = -1; break; } if (!ret) p->dev = dev; return ret; } static void pci_uio_ioport_read(struct rte_pci_ioport *p, void *data, size_t len, off_t offset) { #if defined(RTE_ARCH_X86) uint8_t *d; int size; unsigned short reg = p->base + offset; for (d = data; len > 0; d += size, reg += size, len -= size) { if (len >= 4) { size = 4; *(uint32_t *)d = inl(reg); } else if (len >= 2) { size = 2; *(uint16_t *)d = inw(reg); } else { size = 1; *d = inb(reg); } } #else RTE_SET_USED(p); RTE_SET_USED(data); RTE_SET_USED(len); RTE_SET_USED(offset); #endif } void rte_pci_ioport_read(struct rte_pci_ioport *p, void *data, size_t len, off_t offset) { switch (p->dev->kdrv) { case RTE_PCI_KDRV_NIC_UIO: pci_uio_ioport_read(p, data, len, offset); break; default: break; } } static void pci_uio_ioport_write(struct rte_pci_ioport *p, const void *data, size_t len, off_t offset) { #if defined(RTE_ARCH_X86) const uint8_t *s; int size; unsigned short reg = p->base + offset; for (s = data; len > 0; s += size, reg += size, len -= size) { if (len >= 4) { size = 4; outl(reg, *(const uint32_t *)s); } else if (len >= 2) { size = 2; outw(reg, *(const uint16_t *)s); } else { size = 1; outb(reg, *s); } } #else RTE_SET_USED(p); RTE_SET_USED(data); RTE_SET_USED(len); RTE_SET_USED(offset); #endif } void rte_pci_ioport_write(struct rte_pci_ioport *p, const void *data, size_t len, off_t offset) { switch (p->dev->kdrv) { case RTE_PCI_KDRV_NIC_UIO: pci_uio_ioport_write(p, data, len, offset); break; default: break; } } int rte_pci_ioport_unmap(struct rte_pci_ioport *p) { int ret; switch (p->dev->kdrv) { #if defined(RTE_ARCH_X86) case RTE_PCI_KDRV_NIC_UIO: ret = 0; break; #endif default: ret = -1; break; } return ret; }