/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2014 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "eal_internal_cfg.h" #include "eal_memalloc.h" #include "malloc_elem.h" #include "malloc_heap.h" /* * If debugging is enabled, freed memory is set to poison value * to catch buggy programs. Otherwise, freed memory is set to zero * to avoid having to zero in zmalloc */ #ifdef RTE_MALLOC_DEBUG #define MALLOC_POISON 0x6b #else #define MALLOC_POISON 0 #endif size_t malloc_elem_find_max_iova_contig(struct malloc_elem *elem, size_t align) { void *cur_page, *contig_seg_start, *page_end, *cur_seg_end; void *data_start, *data_end; rte_iova_t expected_iova; struct rte_memseg *ms; size_t page_sz, cur, max; page_sz = (size_t)elem->msl->page_sz; data_start = RTE_PTR_ADD(elem, MALLOC_ELEM_HEADER_LEN); data_end = RTE_PTR_ADD(elem, elem->size - MALLOC_ELEM_TRAILER_LEN); /* segment must start after header and with specified alignment */ contig_seg_start = RTE_PTR_ALIGN_CEIL(data_start, align); /* return if aligned address is already out of malloc element */ if (contig_seg_start > data_end) return 0; /* if we're in IOVA as VA mode, or if we're in legacy mode with * hugepages, all elements are IOVA-contiguous. however, we can only * make these assumptions about internal memory - externally allocated * segments have to be checked. */ if (!elem->msl->external && (rte_eal_iova_mode() == RTE_IOVA_VA || (internal_config.legacy_mem && rte_eal_has_hugepages()))) return RTE_PTR_DIFF(data_end, contig_seg_start); cur_page = RTE_PTR_ALIGN_FLOOR(contig_seg_start, page_sz); ms = rte_mem_virt2memseg(cur_page, elem->msl); /* do first iteration outside the loop */ page_end = RTE_PTR_ADD(cur_page, page_sz); cur_seg_end = RTE_MIN(page_end, data_end); cur = RTE_PTR_DIFF(cur_seg_end, contig_seg_start) - MALLOC_ELEM_TRAILER_LEN; max = cur; expected_iova = ms->iova + page_sz; /* memsegs are contiguous in memory */ ms++; cur_page = RTE_PTR_ADD(cur_page, page_sz); while (cur_page < data_end) { page_end = RTE_PTR_ADD(cur_page, page_sz); cur_seg_end = RTE_MIN(page_end, data_end); /* reset start of contiguous segment if unexpected iova */ if (ms->iova != expected_iova) { /* next contiguous segment must start at specified * alignment. */ contig_seg_start = RTE_PTR_ALIGN(cur_page, align); /* new segment start may be on a different page, so find * the page and skip to next iteration to make sure * we're not blowing past data end. */ ms = rte_mem_virt2memseg(contig_seg_start, elem->msl); cur_page = ms->addr; /* don't trigger another recalculation */ expected_iova = ms->iova; continue; } /* cur_seg_end ends on a page boundary or on data end. if we're * looking at data end, then malloc trailer is already included * in the calculations. if we're looking at page end, then we * know there's more data past this page and thus there's space * for malloc element trailer, so don't count it here. */ cur = RTE_PTR_DIFF(cur_seg_end, contig_seg_start); /* update max if cur value is bigger */ if (cur > max) max = cur; /* move to next page */ cur_page = page_end; expected_iova = ms->iova + page_sz; /* memsegs are contiguous in memory */ ms++; } return max; } /* * Initialize a general malloc_elem header structure */ void malloc_elem_init(struct malloc_elem *elem, struct malloc_heap *heap, struct rte_memseg_list *msl, size_t size, struct malloc_elem *orig_elem, size_t orig_size) { elem->heap = heap; elem->msl = msl; elem->prev = NULL; elem->next = NULL; memset(&elem->free_list, 0, sizeof(elem->free_list)); elem->state = ELEM_FREE; elem->size = size; elem->pad = 0; elem->orig_elem = orig_elem; elem->orig_size = orig_size; set_header(elem); set_trailer(elem); } void malloc_elem_insert(struct malloc_elem *elem) { struct malloc_elem *prev_elem, *next_elem; struct malloc_heap *heap = elem->heap; /* first and last elements must be both NULL or both non-NULL */ if ((heap->first == NULL) != (heap->last == NULL)) { RTE_LOG(ERR, EAL, "Heap is probably corrupt\n"); return; } if (heap->first == NULL && heap->last == NULL) { /* if empty heap */ heap->first = elem; heap->last = elem; prev_elem = NULL; next_elem = NULL; } else if (elem < heap->first) { /* if lower than start */ prev_elem = NULL; next_elem = heap->first; heap->first = elem; } else if (elem > heap->last) { /* if higher than end */ prev_elem = heap->last; next_elem = NULL; heap->last = elem; } else { /* the new memory is somewhere inbetween start and end */ uint64_t dist_from_start, dist_from_end; dist_from_end = RTE_PTR_DIFF(heap->last, elem); dist_from_start = RTE_PTR_DIFF(elem, heap->first); /* check which is closer, and find closest list entries */ if (dist_from_start < dist_from_end) { prev_elem = heap->first; while (prev_elem->next < elem) prev_elem = prev_elem->next; next_elem = prev_elem->next; } else { next_elem = heap->last; while (next_elem->prev > elem) next_elem = next_elem->prev; prev_elem = next_elem->prev; } } /* insert new element */ elem->prev = prev_elem; elem->next = next_elem; if (prev_elem) prev_elem->next = elem; if (next_elem) next_elem->prev = elem; } /* * Attempt to find enough physically contiguous memory in this block to store * our data. Assume that element has at least enough space to fit in the data, * so we just check the page addresses. */ static bool elem_check_phys_contig(const struct rte_memseg_list *msl, void *start, size_t size) { return eal_memalloc_is_contig(msl, start, size); } /* * calculate the starting point of where data of the requested size * and alignment would fit in the current element. If the data doesn't * fit, return NULL. */ static void * elem_start_pt(struct malloc_elem *elem, size_t size, unsigned align, size_t bound, bool contig) { size_t elem_size = elem->size; /* * we're allocating from the end, so adjust the size of element by * alignment size. */ while (elem_size >= size) { const size_t bmask = ~(bound - 1); uintptr_t end_pt = (uintptr_t)elem + elem_size - MALLOC_ELEM_TRAILER_LEN; uintptr_t new_data_start = RTE_ALIGN_FLOOR((end_pt - size), align); uintptr_t new_elem_start; /* check boundary */ if ((new_data_start & bmask) != ((end_pt - 1) & bmask)) { end_pt = RTE_ALIGN_FLOOR(end_pt, bound); new_data_start = RTE_ALIGN_FLOOR((end_pt - size), align); end_pt = new_data_start + size; if (((end_pt - 1) & bmask) != (new_data_start & bmask)) return NULL; } new_elem_start = new_data_start - MALLOC_ELEM_HEADER_LEN; /* if the new start point is before the exist start, * it won't fit */ if (new_elem_start < (uintptr_t)elem) return NULL; if (contig) { size_t new_data_size = end_pt - new_data_start; /* * if physical contiguousness was requested and we * couldn't fit all data into one physically contiguous * block, try again with lower addresses. */ if (!elem_check_phys_contig(elem->msl, (void *)new_data_start, new_data_size)) { elem_size -= align; continue; } } return (void *)new_elem_start; } return NULL; } /* * use elem_start_pt to determine if we get meet the size and * alignment request from the current element */ int malloc_elem_can_hold(struct malloc_elem *elem, size_t size, unsigned align, size_t bound, bool contig) { return elem_start_pt(elem, size, align, bound, contig) != NULL; } /* * split an existing element into two smaller elements at the given * split_pt parameter. */ static void split_elem(struct malloc_elem *elem, struct malloc_elem *split_pt) { struct malloc_elem *next_elem = elem->next; const size_t old_elem_size = (uintptr_t)split_pt - (uintptr_t)elem; const size_t new_elem_size = elem->size - old_elem_size; malloc_elem_init(split_pt, elem->heap, elem->msl, new_elem_size, elem->orig_elem, elem->orig_size); split_pt->prev = elem; split_pt->next = next_elem; if (next_elem) next_elem->prev = split_pt; else elem->heap->last = split_pt; elem->next = split_pt; elem->size = old_elem_size; set_trailer(elem); if (elem->pad) { /* Update inner padding inner element size. */ elem = RTE_PTR_ADD(elem, elem->pad); elem->size = old_elem_size - elem->pad; } } /* * our malloc heap is a doubly linked list, so doubly remove our element. */ static void __rte_unused remove_elem(struct malloc_elem *elem) { struct malloc_elem *next, *prev; next = elem->next; prev = elem->prev; if (next) next->prev = prev; else elem->heap->last = prev; if (prev) prev->next = next; else elem->heap->first = next; elem->prev = NULL; elem->next = NULL; } static int next_elem_is_adjacent(struct malloc_elem *elem) { return elem->next == RTE_PTR_ADD(elem, elem->size) && elem->next->msl == elem->msl && (!internal_config.match_allocations || elem->orig_elem == elem->next->orig_elem); } static int prev_elem_is_adjacent(struct malloc_elem *elem) { return elem == RTE_PTR_ADD(elem->prev, elem->prev->size) && elem->prev->msl == elem->msl && (!internal_config.match_allocations || elem->orig_elem == elem->prev->orig_elem); } /* * Given an element size, compute its freelist index. * We free an element into the freelist containing similarly-sized elements. * We try to allocate elements starting with the freelist containing * similarly-sized elements, and if necessary, we search freelists * containing larger elements. * * Example element size ranges for a heap with five free lists: * heap->free_head[0] - (0 , 2^8] * heap->free_head[1] - (2^8 , 2^10] * heap->free_head[2] - (2^10 ,2^12] * heap->free_head[3] - (2^12, 2^14] * heap->free_head[4] - (2^14, MAX_SIZE] */ size_t malloc_elem_free_list_index(size_t size) { #define MALLOC_MINSIZE_LOG2 8 #define MALLOC_LOG2_INCREMENT 2 size_t log2; size_t index; if (size <= (1UL << MALLOC_MINSIZE_LOG2)) return 0; /* Find next power of 2 >= size. */ log2 = sizeof(size) * 8 - __builtin_clzl(size-1); /* Compute freelist index, based on log2(size). */ index = (log2 - MALLOC_MINSIZE_LOG2 + MALLOC_LOG2_INCREMENT - 1) / MALLOC_LOG2_INCREMENT; return index <= RTE_HEAP_NUM_FREELISTS-1? index: RTE_HEAP_NUM_FREELISTS-1; } /* * Add the specified element to its heap's free list. */ void malloc_elem_free_list_insert(struct malloc_elem *elem) { size_t idx; idx = malloc_elem_free_list_index(elem->size - MALLOC_ELEM_HEADER_LEN); elem->state = ELEM_FREE; LIST_INSERT_HEAD(&elem->heap->free_head[idx], elem, free_list); } /* * Remove the specified element from its heap's free list. */ void malloc_elem_free_list_remove(struct malloc_elem *elem) { LIST_REMOVE(elem, free_list); } /* * reserve a block of data in an existing malloc_elem. If the malloc_elem * is much larger than the data block requested, we split the element in two. * This function is only called from malloc_heap_alloc so parameter checking * is not done here, as it's done there previously. */ struct malloc_elem * malloc_elem_alloc(struct malloc_elem *elem, size_t size, unsigned align, size_t bound, bool contig) { struct malloc_elem *new_elem = elem_start_pt(elem, size, align, bound, contig); const size_t old_elem_size = (uintptr_t)new_elem - (uintptr_t)elem; const size_t trailer_size = elem->size - old_elem_size - size - MALLOC_ELEM_OVERHEAD; malloc_elem_free_list_remove(elem); if (trailer_size > MALLOC_ELEM_OVERHEAD + MIN_DATA_SIZE) { /* split it, too much free space after elem */ struct malloc_elem *new_free_elem = RTE_PTR_ADD(new_elem, size + MALLOC_ELEM_OVERHEAD); split_elem(elem, new_free_elem); malloc_elem_free_list_insert(new_free_elem); if (elem == elem->heap->last) elem->heap->last = new_free_elem; } if (old_elem_size < MALLOC_ELEM_OVERHEAD + MIN_DATA_SIZE) { /* don't split it, pad the element instead */ elem->state = ELEM_BUSY; elem->pad = old_elem_size; /* put a dummy header in padding, to point to real element header */ if (elem->pad > 0) { /* pad will be at least 64-bytes, as everything * is cache-line aligned */ new_elem->pad = elem->pad; new_elem->state = ELEM_PAD; new_elem->size = elem->size - elem->pad; set_header(new_elem); } return new_elem; } /* we are going to split the element in two. The original element * remains free, and the new element is the one allocated. * Re-insert original element, in case its new size makes it * belong on a different list. */ split_elem(elem, new_elem); new_elem->state = ELEM_BUSY; malloc_elem_free_list_insert(elem); return new_elem; } /* * join two struct malloc_elem together. elem1 and elem2 must * be contiguous in memory. */ static inline void join_elem(struct malloc_elem *elem1, struct malloc_elem *elem2) { struct malloc_elem *next = elem2->next; elem1->size += elem2->size; if (next) next->prev = elem1; else elem1->heap->last = elem1; elem1->next = next; if (elem1->pad) { struct malloc_elem *inner = RTE_PTR_ADD(elem1, elem1->pad); inner->size = elem1->size - elem1->pad; } } struct malloc_elem * malloc_elem_join_adjacent_free(struct malloc_elem *elem) { /* * check if next element exists, is adjacent and is free, if so join * with it, need to remove from free list. */ if (elem->next != NULL && elem->next->state == ELEM_FREE && next_elem_is_adjacent(elem)) { void *erase; size_t erase_len; /* we will want to erase the trailer and header */ erase = RTE_PTR_SUB(elem->next, MALLOC_ELEM_TRAILER_LEN); erase_len = MALLOC_ELEM_OVERHEAD + elem->next->pad; /* remove from free list, join to this one */ malloc_elem_free_list_remove(elem->next); join_elem(elem, elem->next); /* erase header, trailer and pad */ memset(erase, MALLOC_POISON, erase_len); } /* * check if prev element exists, is adjacent and is free, if so join * with it, need to remove from free list. */ if (elem->prev != NULL && elem->prev->state == ELEM_FREE && prev_elem_is_adjacent(elem)) { struct malloc_elem *new_elem; void *erase; size_t erase_len; /* we will want to erase trailer and header */ erase = RTE_PTR_SUB(elem, MALLOC_ELEM_TRAILER_LEN); erase_len = MALLOC_ELEM_OVERHEAD + elem->pad; /* remove from free list, join to this one */ malloc_elem_free_list_remove(elem->prev); new_elem = elem->prev; join_elem(new_elem, elem); /* erase header, trailer and pad */ memset(erase, MALLOC_POISON, erase_len); elem = new_elem; } return elem; } /* * free a malloc_elem block by adding it to the free list. If the * blocks either immediately before or immediately after newly freed block * are also free, the blocks are merged together. */ struct malloc_elem * malloc_elem_free(struct malloc_elem *elem) { void *ptr; size_t data_len; ptr = RTE_PTR_ADD(elem, MALLOC_ELEM_HEADER_LEN); data_len = elem->size - MALLOC_ELEM_OVERHEAD; elem = malloc_elem_join_adjacent_free(elem); malloc_elem_free_list_insert(elem); elem->pad = 0; /* decrease heap's count of allocated elements */ elem->heap->alloc_count--; /* poison memory */ memset(ptr, MALLOC_POISON, data_len); return elem; } /* assume all checks were already done */ void malloc_elem_hide_region(struct malloc_elem *elem, void *start, size_t len) { struct malloc_elem *hide_start, *hide_end, *prev, *next; size_t len_before, len_after; hide_start = start; hide_end = RTE_PTR_ADD(start, len); prev = elem->prev; next = elem->next; /* we cannot do anything with non-adjacent elements */ if (next && next_elem_is_adjacent(elem)) { len_after = RTE_PTR_DIFF(next, hide_end); if (len_after >= MALLOC_ELEM_OVERHEAD + MIN_DATA_SIZE) { /* split after */ split_elem(elem, hide_end); malloc_elem_free_list_insert(hide_end); } else if (len_after > 0) { RTE_LOG(ERR, EAL, "Unaligned element, heap is probably corrupt\n"); return; } } /* we cannot do anything with non-adjacent elements */ if (prev && prev_elem_is_adjacent(elem)) { len_before = RTE_PTR_DIFF(hide_start, elem); if (len_before >= MALLOC_ELEM_OVERHEAD + MIN_DATA_SIZE) { /* split before */ split_elem(elem, hide_start); prev = elem; elem = hide_start; malloc_elem_free_list_insert(prev); } else if (len_before > 0) { RTE_LOG(ERR, EAL, "Unaligned element, heap is probably corrupt\n"); return; } } remove_elem(elem); } /* * attempt to resize a malloc_elem by expanding into any free space * immediately after it in memory. */ int malloc_elem_resize(struct malloc_elem *elem, size_t size) { const size_t new_size = size + elem->pad + MALLOC_ELEM_OVERHEAD; /* if we request a smaller size, then always return ok */ if (elem->size >= new_size) return 0; /* check if there is a next element, it's free and adjacent */ if (!elem->next || elem->next->state != ELEM_FREE || !next_elem_is_adjacent(elem)) return -1; if (elem->size + elem->next->size < new_size) return -1; /* we now know the element fits, so remove from free list, * join the two */ malloc_elem_free_list_remove(elem->next); join_elem(elem, elem->next); if (elem->size - new_size >= MIN_DATA_SIZE + MALLOC_ELEM_OVERHEAD) { /* now we have a big block together. Lets cut it down a bit, by splitting */ struct malloc_elem *split_pt = RTE_PTR_ADD(elem, new_size); split_pt = RTE_PTR_ALIGN_CEIL(split_pt, RTE_CACHE_LINE_SIZE); split_elem(elem, split_pt); malloc_elem_free_list_insert(split_pt); } return 0; } static inline const char * elem_state_to_str(enum elem_state state) { switch (state) { case ELEM_PAD: return "PAD"; case ELEM_BUSY: return "BUSY"; case ELEM_FREE: return "FREE"; } return "ERROR"; } void malloc_elem_dump(const struct malloc_elem *elem, FILE *f) { fprintf(f, "Malloc element at %p (%s)\n", elem, elem_state_to_str(elem->state)); fprintf(f, " len: 0x%zx pad: 0x%" PRIx32 "\n", elem->size, elem->pad); fprintf(f, " prev: %p next: %p\n", elem->prev, elem->next); }