/* SPDX-License-Identifier: BSD-3-Clause * Copyright 2015 6WIND S.A. * Copyright 2015-2019 Mellanox Technologies, Ltd */ #include #include #include #include /* Verbs header. */ /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */ #ifdef PEDANTIC #pragma GCC diagnostic ignored "-Wpedantic" #endif #include #include #ifdef PEDANTIC #pragma GCC diagnostic error "-Wpedantic" #endif #include #include #include #include #include #include #include #include #include "mlx5.h" #include "mlx5_utils.h" #include "mlx5_rxtx.h" #include "mlx5_autoconf.h" #include "mlx5_defs.h" #include "mlx5_prm.h" /* TX burst subroutines return codes. */ enum mlx5_txcmp_code { MLX5_TXCMP_CODE_EXIT = 0, MLX5_TXCMP_CODE_ERROR, MLX5_TXCMP_CODE_SINGLE, MLX5_TXCMP_CODE_MULTI, MLX5_TXCMP_CODE_TSO, MLX5_TXCMP_CODE_EMPW, }; /* * These defines are used to configure Tx burst routine option set * supported at compile time. The not specified options are optimized out * out due to if conditions can be explicitly calculated at compile time. * The offloads with bigger runtime check (require more CPU cycles to * skip) overhead should have the bigger index - this is needed to * select the better matching routine function if no exact match and * some offloads are not actually requested. */ #define MLX5_TXOFF_CONFIG_MULTI (1u << 0) /* Multi-segment packets.*/ #define MLX5_TXOFF_CONFIG_TSO (1u << 1) /* TCP send offload supported.*/ #define MLX5_TXOFF_CONFIG_SWP (1u << 2) /* Tunnels/SW Parser offloads.*/ #define MLX5_TXOFF_CONFIG_CSUM (1u << 3) /* Check Sums offloaded. */ #define MLX5_TXOFF_CONFIG_INLINE (1u << 4) /* Data inlining supported. */ #define MLX5_TXOFF_CONFIG_VLAN (1u << 5) /* VLAN insertion supported.*/ #define MLX5_TXOFF_CONFIG_METADATA (1u << 6) /* Flow metadata. */ #define MLX5_TXOFF_CONFIG_EMPW (1u << 8) /* Enhanced MPW supported.*/ #define MLX5_TXOFF_CONFIG_MPW (1u << 9) /* Legacy MPW supported.*/ /* The most common offloads groups. */ #define MLX5_TXOFF_CONFIG_NONE 0 #define MLX5_TXOFF_CONFIG_FULL (MLX5_TXOFF_CONFIG_MULTI | \ MLX5_TXOFF_CONFIG_TSO | \ MLX5_TXOFF_CONFIG_SWP | \ MLX5_TXOFF_CONFIG_CSUM | \ MLX5_TXOFF_CONFIG_INLINE | \ MLX5_TXOFF_CONFIG_VLAN | \ MLX5_TXOFF_CONFIG_METADATA) #define MLX5_TXOFF_CONFIG(mask) (olx & MLX5_TXOFF_CONFIG_##mask) #define MLX5_TXOFF_DECL(func, olx) \ static uint16_t mlx5_tx_burst_##func(void *txq, \ struct rte_mbuf **pkts, \ uint16_t pkts_n) \ { \ return mlx5_tx_burst_tmpl((struct mlx5_txq_data *)txq, \ pkts, pkts_n, (olx)); \ } #define MLX5_TXOFF_INFO(func, olx) {mlx5_tx_burst_##func, olx}, static __rte_always_inline uint32_t rxq_cq_to_pkt_type(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe); static __rte_always_inline int mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe, uint16_t cqe_cnt, volatile struct mlx5_mini_cqe8 **mcqe); static __rte_always_inline uint32_t rxq_cq_to_ol_flags(volatile struct mlx5_cqe *cqe); static __rte_always_inline void rxq_cq_to_mbuf(struct mlx5_rxq_data *rxq, struct rte_mbuf *pkt, volatile struct mlx5_cqe *cqe, uint32_t rss_hash_res); static __rte_always_inline void mprq_buf_replace(struct mlx5_rxq_data *rxq, uint16_t rq_idx, const unsigned int strd_n); static int mlx5_queue_state_modify(struct rte_eth_dev *dev, struct mlx5_mp_arg_queue_state_modify *sm); static inline void mlx5_lro_update_tcp_hdr(struct rte_tcp_hdr *restrict tcp, volatile struct mlx5_cqe *restrict cqe, uint32_t phcsum); static inline void mlx5_lro_update_hdr(uint8_t *restrict padd, volatile struct mlx5_cqe *restrict cqe, uint32_t len); uint32_t mlx5_ptype_table[] __rte_cache_aligned = { [0xff] = RTE_PTYPE_ALL_MASK, /* Last entry for errored packet. */ }; uint8_t mlx5_cksum_table[1 << 10] __rte_cache_aligned; uint8_t mlx5_swp_types_table[1 << 10] __rte_cache_aligned; /** * Build a table to translate Rx completion flags to packet type. * * @note: fix mlx5_dev_supported_ptypes_get() if any change here. */ void mlx5_set_ptype_table(void) { unsigned int i; uint32_t (*p)[RTE_DIM(mlx5_ptype_table)] = &mlx5_ptype_table; /* Last entry must not be overwritten, reserved for errored packet. */ for (i = 0; i < RTE_DIM(mlx5_ptype_table) - 1; ++i) (*p)[i] = RTE_PTYPE_UNKNOWN; /* * The index to the array should have: * bit[1:0] = l3_hdr_type * bit[4:2] = l4_hdr_type * bit[5] = ip_frag * bit[6] = tunneled * bit[7] = outer_l3_type */ /* L2 */ (*p)[0x00] = RTE_PTYPE_L2_ETHER; /* L3 */ (*p)[0x01] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_NONFRAG; (*p)[0x02] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_NONFRAG; /* Fragmented */ (*p)[0x21] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_FRAG; (*p)[0x22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_FRAG; /* TCP */ (*p)[0x05] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_TCP; (*p)[0x06] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_TCP; (*p)[0x0d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_TCP; (*p)[0x0e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_TCP; (*p)[0x11] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_TCP; (*p)[0x12] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_TCP; /* UDP */ (*p)[0x09] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_UDP; (*p)[0x0a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP; /* Repeat with outer_l3_type being set. Just in case. */ (*p)[0x81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_NONFRAG; (*p)[0x82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_NONFRAG; (*p)[0xa1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_FRAG; (*p)[0xa2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_FRAG; (*p)[0x85] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_TCP; (*p)[0x86] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_TCP; (*p)[0x8d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_TCP; (*p)[0x8e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_TCP; (*p)[0x91] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_TCP; (*p)[0x92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_TCP; (*p)[0x89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_UDP; (*p)[0x8a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP; /* Tunneled - L3 */ (*p)[0x40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN; (*p)[0x41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_NONFRAG; (*p)[0x42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_NONFRAG; (*p)[0xc0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN; (*p)[0xc1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_NONFRAG; (*p)[0xc2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_NONFRAG; /* Tunneled - Fragmented */ (*p)[0x61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_FRAG; (*p)[0x62] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_FRAG; (*p)[0xe1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_FRAG; (*p)[0xe2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_FRAG; /* Tunneled - TCP */ (*p)[0x45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_TCP; (*p)[0x46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_TCP; (*p)[0x4d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_TCP; (*p)[0x4e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_TCP; (*p)[0x51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_TCP; (*p)[0x52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_TCP; (*p)[0xc5] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_TCP; (*p)[0xc6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_TCP; (*p)[0xcd] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_TCP; (*p)[0xce] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_TCP; (*p)[0xd1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_TCP; (*p)[0xd2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_TCP; /* Tunneled - UDP */ (*p)[0x49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_UDP; (*p)[0x4a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_UDP; (*p)[0xc9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_UDP; (*p)[0xca] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_UDP; } /** * Build a table to translate packet to checksum type of Verbs. */ void mlx5_set_cksum_table(void) { unsigned int i; uint8_t v; /* * The index should have: * bit[0] = PKT_TX_TCP_SEG * bit[2:3] = PKT_TX_UDP_CKSUM, PKT_TX_TCP_CKSUM * bit[4] = PKT_TX_IP_CKSUM * bit[8] = PKT_TX_OUTER_IP_CKSUM * bit[9] = tunnel */ for (i = 0; i < RTE_DIM(mlx5_cksum_table); ++i) { v = 0; if (i & (1 << 9)) { /* Tunneled packet. */ if (i & (1 << 8)) /* Outer IP. */ v |= MLX5_ETH_WQE_L3_CSUM; if (i & (1 << 4)) /* Inner IP. */ v |= MLX5_ETH_WQE_L3_INNER_CSUM; if (i & (3 << 2 | 1 << 0)) /* L4 or TSO. */ v |= MLX5_ETH_WQE_L4_INNER_CSUM; } else { /* No tunnel. */ if (i & (1 << 4)) /* IP. */ v |= MLX5_ETH_WQE_L3_CSUM; if (i & (3 << 2 | 1 << 0)) /* L4 or TSO. */ v |= MLX5_ETH_WQE_L4_CSUM; } mlx5_cksum_table[i] = v; } } /** * Build a table to translate packet type of mbuf to SWP type of Verbs. */ void mlx5_set_swp_types_table(void) { unsigned int i; uint8_t v; /* * The index should have: * bit[0:1] = PKT_TX_L4_MASK * bit[4] = PKT_TX_IPV6 * bit[8] = PKT_TX_OUTER_IPV6 * bit[9] = PKT_TX_OUTER_UDP */ for (i = 0; i < RTE_DIM(mlx5_swp_types_table); ++i) { v = 0; if (i & (1 << 8)) v |= MLX5_ETH_WQE_L3_OUTER_IPV6; if (i & (1 << 9)) v |= MLX5_ETH_WQE_L4_OUTER_UDP; if (i & (1 << 4)) v |= MLX5_ETH_WQE_L3_INNER_IPV6; if ((i & 3) == (PKT_TX_UDP_CKSUM >> 52)) v |= MLX5_ETH_WQE_L4_INNER_UDP; mlx5_swp_types_table[i] = v; } } /** * Set Software Parser flags and offsets in Ethernet Segment of WQE. * Flags must be preliminary initialized to zero. * * @param loc * Pointer to burst routine local context. * @param swp_flags * Pointer to store Software Parser flags * @param olx * Configured Tx offloads mask. It is fully defined at * compile time and may be used for optimization. * * @return * Software Parser offsets packed in dword. * Software Parser flags are set by pointer. */ static __rte_always_inline uint32_t txq_mbuf_to_swp(struct mlx5_txq_local *restrict loc, uint8_t *swp_flags, unsigned int olx) { uint64_t ol, tunnel; unsigned int idx, off; uint32_t set; if (!MLX5_TXOFF_CONFIG(SWP)) return 0; ol = loc->mbuf->ol_flags; tunnel = ol & PKT_TX_TUNNEL_MASK; /* * Check whether Software Parser is required. * Only customized tunnels may ask for. */ if (likely(tunnel != PKT_TX_TUNNEL_UDP && tunnel != PKT_TX_TUNNEL_IP)) return 0; /* * The index should have: * bit[0:1] = PKT_TX_L4_MASK * bit[4] = PKT_TX_IPV6 * bit[8] = PKT_TX_OUTER_IPV6 * bit[9] = PKT_TX_OUTER_UDP */ idx = (ol & (PKT_TX_L4_MASK | PKT_TX_IPV6 | PKT_TX_OUTER_IPV6)) >> 52; idx |= (tunnel == PKT_TX_TUNNEL_UDP) ? (1 << 9) : 0; *swp_flags = mlx5_swp_types_table[idx]; /* * Set offsets for SW parser. Since ConnectX-5, SW parser just * complements HW parser. SW parser starts to engage only if HW parser * can't reach a header. For the older devices, HW parser will not kick * in if any of SWP offsets is set. Therefore, all of the L3 offsets * should be set regardless of HW offload. */ off = loc->mbuf->outer_l2_len; if (MLX5_TXOFF_CONFIG(VLAN) && ol & PKT_TX_VLAN_PKT) off += sizeof(struct rte_vlan_hdr); set = (off >> 1) << 8; /* Outer L3 offset. */ off += loc->mbuf->outer_l3_len; if (tunnel == PKT_TX_TUNNEL_UDP) set |= off >> 1; /* Outer L4 offset. */ if (ol & (PKT_TX_IPV4 | PKT_TX_IPV6)) { /* Inner IP. */ const uint64_t csum = ol & PKT_TX_L4_MASK; off += loc->mbuf->l2_len; set |= (off >> 1) << 24; /* Inner L3 offset. */ if (csum == PKT_TX_TCP_CKSUM || csum == PKT_TX_UDP_CKSUM || (MLX5_TXOFF_CONFIG(TSO) && ol & PKT_TX_TCP_SEG)) { off += loc->mbuf->l3_len; set |= (off >> 1) << 16; /* Inner L4 offset. */ } } set = rte_cpu_to_le_32(set); return set; } /** * Convert the Checksum offloads to Verbs. * * @param buf * Pointer to the mbuf. * * @return * Converted checksum flags. */ static __rte_always_inline uint8_t txq_ol_cksum_to_cs(struct rte_mbuf *buf) { uint32_t idx; uint8_t is_tunnel = !!(buf->ol_flags & PKT_TX_TUNNEL_MASK); const uint64_t ol_flags_mask = PKT_TX_TCP_SEG | PKT_TX_L4_MASK | PKT_TX_IP_CKSUM | PKT_TX_OUTER_IP_CKSUM; /* * The index should have: * bit[0] = PKT_TX_TCP_SEG * bit[2:3] = PKT_TX_UDP_CKSUM, PKT_TX_TCP_CKSUM * bit[4] = PKT_TX_IP_CKSUM * bit[8] = PKT_TX_OUTER_IP_CKSUM * bit[9] = tunnel */ idx = ((buf->ol_flags & ol_flags_mask) >> 50) | (!!is_tunnel << 9); return mlx5_cksum_table[idx]; } /** * Internal function to compute the number of used descriptors in an RX queue * * @param rxq * The Rx queue. * * @return * The number of used rx descriptor. */ static uint32_t rx_queue_count(struct mlx5_rxq_data *rxq) { struct rxq_zip *zip = &rxq->zip; volatile struct mlx5_cqe *cqe; const unsigned int cqe_n = (1 << rxq->cqe_n); const unsigned int cqe_cnt = cqe_n - 1; unsigned int cq_ci; unsigned int used; /* if we are processing a compressed cqe */ if (zip->ai) { used = zip->cqe_cnt - zip->ca; cq_ci = zip->cq_ci; } else { used = 0; cq_ci = rxq->cq_ci; } cqe = &(*rxq->cqes)[cq_ci & cqe_cnt]; while (check_cqe(cqe, cqe_n, cq_ci) != MLX5_CQE_STATUS_HW_OWN) { int8_t op_own; unsigned int n; op_own = cqe->op_own; if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED) n = rte_be_to_cpu_32(cqe->byte_cnt); else n = 1; cq_ci += n; used += n; cqe = &(*rxq->cqes)[cq_ci & cqe_cnt]; } used = RTE_MIN(used, (1U << rxq->elts_n) - 1); return used; } /** * DPDK callback to check the status of a rx descriptor. * * @param rx_queue * The Rx queue. * @param[in] offset * The index of the descriptor in the ring. * * @return * The status of the tx descriptor. */ int mlx5_rx_descriptor_status(void *rx_queue, uint16_t offset) { struct mlx5_rxq_data *rxq = rx_queue; struct mlx5_rxq_ctrl *rxq_ctrl = container_of(rxq, struct mlx5_rxq_ctrl, rxq); struct rte_eth_dev *dev = ETH_DEV(rxq_ctrl->priv); if (dev->rx_pkt_burst != mlx5_rx_burst) { rte_errno = ENOTSUP; return -rte_errno; } if (offset >= (1 << rxq->elts_n)) { rte_errno = EINVAL; return -rte_errno; } if (offset < rx_queue_count(rxq)) return RTE_ETH_RX_DESC_DONE; return RTE_ETH_RX_DESC_AVAIL; } /** * DPDK callback to get the number of used descriptors in a RX queue * * @param dev * Pointer to the device structure. * * @param rx_queue_id * The Rx queue. * * @return * The number of used rx descriptor. * -EINVAL if the queue is invalid */ uint32_t mlx5_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id) { struct mlx5_priv *priv = dev->data->dev_private; struct mlx5_rxq_data *rxq; if (dev->rx_pkt_burst != mlx5_rx_burst) { rte_errno = ENOTSUP; return -rte_errno; } rxq = (*priv->rxqs)[rx_queue_id]; if (!rxq) { rte_errno = EINVAL; return -rte_errno; } return rx_queue_count(rxq); } #define MLX5_SYSTEM_LOG_DIR "/var/log" /** * Dump debug information to log file. * * @param fname * The file name. * @param hex_title * If not NULL this string is printed as a header to the output * and the output will be in hexadecimal view. * @param buf * This is the buffer address to print out. * @param len * The number of bytes to dump out. */ void mlx5_dump_debug_information(const char *fname, const char *hex_title, const void *buf, unsigned int hex_len) { FILE *fd; MKSTR(path, "%s/%s", MLX5_SYSTEM_LOG_DIR, fname); fd = fopen(path, "a+"); if (!fd) { DRV_LOG(WARNING, "cannot open %s for debug dump", path); MKSTR(path2, "./%s", fname); fd = fopen(path2, "a+"); if (!fd) { DRV_LOG(ERR, "cannot open %s for debug dump", path2); return; } DRV_LOG(INFO, "New debug dump in file %s", path2); } else { DRV_LOG(INFO, "New debug dump in file %s", path); } if (hex_title) rte_hexdump(fd, hex_title, buf, hex_len); else fprintf(fd, "%s", (const char *)buf); fprintf(fd, "\n\n\n"); fclose(fd); } /** * Move QP from error state to running state and initialize indexes. * * @param txq_ctrl * Pointer to TX queue control structure. * * @return * 0 on success, else -1. */ static int tx_recover_qp(struct mlx5_txq_ctrl *txq_ctrl) { struct mlx5_mp_arg_queue_state_modify sm = { .is_wq = 0, .queue_id = txq_ctrl->txq.idx, }; if (mlx5_queue_state_modify(ETH_DEV(txq_ctrl->priv), &sm)) return -1; txq_ctrl->txq.wqe_ci = 0; txq_ctrl->txq.wqe_pi = 0; txq_ctrl->txq.elts_comp = 0; return 0; } /* Return 1 if the error CQE is signed otherwise, sign it and return 0. */ static int check_err_cqe_seen(volatile struct mlx5_err_cqe *err_cqe) { static const uint8_t magic[] = "seen"; int ret = 1; unsigned int i; for (i = 0; i < sizeof(magic); ++i) if (!ret || err_cqe->rsvd1[i] != magic[i]) { ret = 0; err_cqe->rsvd1[i] = magic[i]; } return ret; } /** * Handle error CQE. * * @param txq * Pointer to TX queue structure. * @param error_cqe * Pointer to the error CQE. * * @return * Negative value if queue recovery failed, otherwise * the error completion entry is handled successfully. */ static int mlx5_tx_error_cqe_handle(struct mlx5_txq_data *restrict txq, volatile struct mlx5_err_cqe *err_cqe) { if (err_cqe->syndrome != MLX5_CQE_SYNDROME_WR_FLUSH_ERR) { const uint16_t wqe_m = ((1 << txq->wqe_n) - 1); struct mlx5_txq_ctrl *txq_ctrl = container_of(txq, struct mlx5_txq_ctrl, txq); uint16_t new_wqe_pi = rte_be_to_cpu_16(err_cqe->wqe_counter); int seen = check_err_cqe_seen(err_cqe); if (!seen && txq_ctrl->dump_file_n < txq_ctrl->priv->config.max_dump_files_num) { MKSTR(err_str, "Unexpected CQE error syndrome " "0x%02x CQN = %u SQN = %u wqe_counter = %u " "wq_ci = %u cq_ci = %u", err_cqe->syndrome, txq->cqe_s, txq->qp_num_8s >> 8, rte_be_to_cpu_16(err_cqe->wqe_counter), txq->wqe_ci, txq->cq_ci); MKSTR(name, "dpdk_mlx5_port_%u_txq_%u_index_%u_%u", PORT_ID(txq_ctrl->priv), txq->idx, txq_ctrl->dump_file_n, (uint32_t)rte_rdtsc()); mlx5_dump_debug_information(name, NULL, err_str, 0); mlx5_dump_debug_information(name, "MLX5 Error CQ:", (const void *)((uintptr_t) txq->cqes), sizeof(*err_cqe) * (1 << txq->cqe_n)); mlx5_dump_debug_information(name, "MLX5 Error SQ:", (const void *)((uintptr_t) txq->wqes), MLX5_WQE_SIZE * (1 << txq->wqe_n)); txq_ctrl->dump_file_n++; } if (!seen) /* * Count errors in WQEs units. * Later it can be improved to count error packets, * for example, by SQ parsing to find how much packets * should be counted for each WQE. */ txq->stats.oerrors += ((txq->wqe_ci & wqe_m) - new_wqe_pi) & wqe_m; if (tx_recover_qp(txq_ctrl)) { /* Recovering failed - retry later on the same WQE. */ return -1; } /* Release all the remaining buffers. */ txq_free_elts(txq_ctrl); } return 0; } /** * Translate RX completion flags to packet type. * * @param[in] rxq * Pointer to RX queue structure. * @param[in] cqe * Pointer to CQE. * * @note: fix mlx5_dev_supported_ptypes_get() if any change here. * * @return * Packet type for struct rte_mbuf. */ static inline uint32_t rxq_cq_to_pkt_type(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe) { uint8_t idx; uint8_t pinfo = cqe->pkt_info; uint16_t ptype = cqe->hdr_type_etc; /* * The index to the array should have: * bit[1:0] = l3_hdr_type * bit[4:2] = l4_hdr_type * bit[5] = ip_frag * bit[6] = tunneled * bit[7] = outer_l3_type */ idx = ((pinfo & 0x3) << 6) | ((ptype & 0xfc00) >> 10); return mlx5_ptype_table[idx] | rxq->tunnel * !!(idx & (1 << 6)); } /** * Initialize Rx WQ and indexes. * * @param[in] rxq * Pointer to RX queue structure. */ void mlx5_rxq_initialize(struct mlx5_rxq_data *rxq) { const unsigned int wqe_n = 1 << rxq->elts_n; unsigned int i; for (i = 0; (i != wqe_n); ++i) { volatile struct mlx5_wqe_data_seg *scat; uintptr_t addr; uint32_t byte_count; if (mlx5_rxq_mprq_enabled(rxq)) { struct mlx5_mprq_buf *buf = (*rxq->mprq_bufs)[i]; scat = &((volatile struct mlx5_wqe_mprq *) rxq->wqes)[i].dseg; addr = (uintptr_t)mlx5_mprq_buf_addr(buf, 1 << rxq->strd_num_n); byte_count = (1 << rxq->strd_sz_n) * (1 << rxq->strd_num_n); } else { struct rte_mbuf *buf = (*rxq->elts)[i]; scat = &((volatile struct mlx5_wqe_data_seg *) rxq->wqes)[i]; addr = rte_pktmbuf_mtod(buf, uintptr_t); byte_count = DATA_LEN(buf); } /* scat->addr must be able to store a pointer. */ assert(sizeof(scat->addr) >= sizeof(uintptr_t)); *scat = (struct mlx5_wqe_data_seg){ .addr = rte_cpu_to_be_64(addr), .byte_count = rte_cpu_to_be_32(byte_count), .lkey = mlx5_rx_addr2mr(rxq, addr), }; } rxq->consumed_strd = 0; rxq->decompressed = 0; rxq->rq_pi = 0; rxq->zip = (struct rxq_zip){ .ai = 0, }; /* Update doorbell counter. */ rxq->rq_ci = wqe_n >> rxq->sges_n; rte_cio_wmb(); *rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci); } /** * Modify a Verbs/DevX queue state. * This must be called from the primary process. * * @param dev * Pointer to Ethernet device. * @param sm * State modify request parameters. * * @return * 0 in case of success else non-zero value and rte_errno is set. */ int mlx5_queue_state_modify_primary(struct rte_eth_dev *dev, const struct mlx5_mp_arg_queue_state_modify *sm) { int ret; struct mlx5_priv *priv = dev->data->dev_private; if (sm->is_wq) { struct mlx5_rxq_data *rxq = (*priv->rxqs)[sm->queue_id]; struct mlx5_rxq_ctrl *rxq_ctrl = container_of(rxq, struct mlx5_rxq_ctrl, rxq); if (rxq_ctrl->obj->type == MLX5_RXQ_OBJ_TYPE_IBV) { struct ibv_wq_attr mod = { .attr_mask = IBV_WQ_ATTR_STATE, .wq_state = sm->state, }; ret = mlx5_glue->modify_wq(rxq_ctrl->obj->wq, &mod); } else { /* rxq_ctrl->obj->type == MLX5_RXQ_OBJ_TYPE_DEVX_RQ. */ struct mlx5_devx_modify_rq_attr rq_attr; memset(&rq_attr, 0, sizeof(rq_attr)); if (sm->state == IBV_WQS_RESET) { rq_attr.rq_state = MLX5_RQC_STATE_ERR; rq_attr.state = MLX5_RQC_STATE_RST; } else if (sm->state == IBV_WQS_RDY) { rq_attr.rq_state = MLX5_RQC_STATE_RST; rq_attr.state = MLX5_RQC_STATE_RDY; } else if (sm->state == IBV_WQS_ERR) { rq_attr.rq_state = MLX5_RQC_STATE_RDY; rq_attr.state = MLX5_RQC_STATE_ERR; } ret = mlx5_devx_cmd_modify_rq(rxq_ctrl->obj->rq, &rq_attr); } if (ret) { DRV_LOG(ERR, "Cannot change Rx WQ state to %u - %s", sm->state, strerror(errno)); rte_errno = errno; return ret; } } else { struct mlx5_txq_data *txq = (*priv->txqs)[sm->queue_id]; struct mlx5_txq_ctrl *txq_ctrl = container_of(txq, struct mlx5_txq_ctrl, txq); struct ibv_qp_attr mod = { .qp_state = IBV_QPS_RESET, .port_num = (uint8_t)priv->ibv_port, }; struct ibv_qp *qp = txq_ctrl->obj->qp; ret = mlx5_glue->modify_qp(qp, &mod, IBV_QP_STATE); if (ret) { DRV_LOG(ERR, "Cannot change the Tx QP state to RESET " "%s", strerror(errno)); rte_errno = errno; return ret; } mod.qp_state = IBV_QPS_INIT; ret = mlx5_glue->modify_qp(qp, &mod, (IBV_QP_STATE | IBV_QP_PORT)); if (ret) { DRV_LOG(ERR, "Cannot change Tx QP state to INIT %s", strerror(errno)); rte_errno = errno; return ret; } mod.qp_state = IBV_QPS_RTR; ret = mlx5_glue->modify_qp(qp, &mod, IBV_QP_STATE); if (ret) { DRV_LOG(ERR, "Cannot change Tx QP state to RTR %s", strerror(errno)); rte_errno = errno; return ret; } mod.qp_state = IBV_QPS_RTS; ret = mlx5_glue->modify_qp(qp, &mod, IBV_QP_STATE); if (ret) { DRV_LOG(ERR, "Cannot change Tx QP state to RTS %s", strerror(errno)); rte_errno = errno; return ret; } } return 0; } /** * Modify a Verbs queue state. * * @param dev * Pointer to Ethernet device. * @param sm * State modify request parameters. * * @return * 0 in case of success else non-zero value. */ static int mlx5_queue_state_modify(struct rte_eth_dev *dev, struct mlx5_mp_arg_queue_state_modify *sm) { int ret = 0; switch (rte_eal_process_type()) { case RTE_PROC_PRIMARY: ret = mlx5_queue_state_modify_primary(dev, sm); break; case RTE_PROC_SECONDARY: ret = mlx5_mp_req_queue_state_modify(dev, sm); break; default: break; } return ret; } /** * Handle a Rx error. * The function inserts the RQ state to reset when the first error CQE is * shown, then drains the CQ by the caller function loop. When the CQ is empty, * it moves the RQ state to ready and initializes the RQ. * Next CQE identification and error counting are in the caller responsibility. * * @param[in] rxq * Pointer to RX queue structure. * @param[in] vec * 1 when called from vectorized Rx burst, need to prepare mbufs for the RQ. * 0 when called from non-vectorized Rx burst. * * @return * -1 in case of recovery error, otherwise the CQE status. */ int mlx5_rx_err_handle(struct mlx5_rxq_data *rxq, uint8_t vec) { const uint16_t cqe_n = 1 << rxq->cqe_n; const uint16_t cqe_mask = cqe_n - 1; const unsigned int wqe_n = 1 << rxq->elts_n; struct mlx5_rxq_ctrl *rxq_ctrl = container_of(rxq, struct mlx5_rxq_ctrl, rxq); union { volatile struct mlx5_cqe *cqe; volatile struct mlx5_err_cqe *err_cqe; } u = { .cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_mask], }; struct mlx5_mp_arg_queue_state_modify sm; int ret; switch (rxq->err_state) { case MLX5_RXQ_ERR_STATE_NO_ERROR: rxq->err_state = MLX5_RXQ_ERR_STATE_NEED_RESET; /* Fall-through */ case MLX5_RXQ_ERR_STATE_NEED_RESET: sm.is_wq = 1; sm.queue_id = rxq->idx; sm.state = IBV_WQS_RESET; if (mlx5_queue_state_modify(ETH_DEV(rxq_ctrl->priv), &sm)) return -1; if (rxq_ctrl->dump_file_n < rxq_ctrl->priv->config.max_dump_files_num) { MKSTR(err_str, "Unexpected CQE error syndrome " "0x%02x CQN = %u RQN = %u wqe_counter = %u" " rq_ci = %u cq_ci = %u", u.err_cqe->syndrome, rxq->cqn, rxq_ctrl->wqn, rte_be_to_cpu_16(u.err_cqe->wqe_counter), rxq->rq_ci << rxq->sges_n, rxq->cq_ci); MKSTR(name, "dpdk_mlx5_port_%u_rxq_%u_%u", rxq->port_id, rxq->idx, (uint32_t)rte_rdtsc()); mlx5_dump_debug_information(name, NULL, err_str, 0); mlx5_dump_debug_information(name, "MLX5 Error CQ:", (const void *)((uintptr_t) rxq->cqes), sizeof(*u.cqe) * cqe_n); mlx5_dump_debug_information(name, "MLX5 Error RQ:", (const void *)((uintptr_t) rxq->wqes), 16 * wqe_n); rxq_ctrl->dump_file_n++; } rxq->err_state = MLX5_RXQ_ERR_STATE_NEED_READY; /* Fall-through */ case MLX5_RXQ_ERR_STATE_NEED_READY: ret = check_cqe(u.cqe, cqe_n, rxq->cq_ci); if (ret == MLX5_CQE_STATUS_HW_OWN) { rte_cio_wmb(); *rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci); rte_cio_wmb(); /* * The RQ consumer index must be zeroed while moving * from RESET state to RDY state. */ *rxq->rq_db = rte_cpu_to_be_32(0); rte_cio_wmb(); sm.is_wq = 1; sm.queue_id = rxq->idx; sm.state = IBV_WQS_RDY; if (mlx5_queue_state_modify(ETH_DEV(rxq_ctrl->priv), &sm)) return -1; if (vec) { const uint16_t q_mask = wqe_n - 1; uint16_t elt_idx; struct rte_mbuf **elt; int i; unsigned int n = wqe_n - (rxq->rq_ci - rxq->rq_pi); for (i = 0; i < (int)n; ++i) { elt_idx = (rxq->rq_ci + i) & q_mask; elt = &(*rxq->elts)[elt_idx]; *elt = rte_mbuf_raw_alloc(rxq->mp); if (!*elt) { for (i--; i >= 0; --i) { elt_idx = (rxq->rq_ci + i) & q_mask; elt = &(*rxq->elts) [elt_idx]; rte_pktmbuf_free_seg (*elt); } return -1; } } for (i = 0; i < (int)wqe_n; ++i) { elt = &(*rxq->elts)[i]; DATA_LEN(*elt) = (uint16_t)((*elt)->buf_len - rte_pktmbuf_headroom(*elt)); } /* Padding with a fake mbuf for vec Rx. */ for (i = 0; i < MLX5_VPMD_DESCS_PER_LOOP; ++i) (*rxq->elts)[wqe_n + i] = &rxq->fake_mbuf; } mlx5_rxq_initialize(rxq); rxq->err_state = MLX5_RXQ_ERR_STATE_NO_ERROR; } return ret; default: return -1; } } /** * Get size of the next packet for a given CQE. For compressed CQEs, the * consumer index is updated only once all packets of the current one have * been processed. * * @param rxq * Pointer to RX queue. * @param cqe * CQE to process. * @param[out] mcqe * Store pointer to mini-CQE if compressed. Otherwise, the pointer is not * written. * * @return * 0 in case of empty CQE, otherwise the packet size in bytes. */ static inline int mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe, uint16_t cqe_cnt, volatile struct mlx5_mini_cqe8 **mcqe) { struct rxq_zip *zip = &rxq->zip; uint16_t cqe_n = cqe_cnt + 1; int len; uint16_t idx, end; do { len = 0; /* Process compressed data in the CQE and mini arrays. */ if (zip->ai) { volatile struct mlx5_mini_cqe8 (*mc)[8] = (volatile struct mlx5_mini_cqe8 (*)[8]) (uintptr_t)(&(*rxq->cqes)[zip->ca & cqe_cnt].pkt_info); len = rte_be_to_cpu_32((*mc)[zip->ai & 7].byte_cnt); *mcqe = &(*mc)[zip->ai & 7]; if ((++zip->ai & 7) == 0) { /* Invalidate consumed CQEs */ idx = zip->ca; end = zip->na; while (idx != end) { (*rxq->cqes)[idx & cqe_cnt].op_own = MLX5_CQE_INVALIDATE; ++idx; } /* * Increment consumer index to skip the number * of CQEs consumed. Hardware leaves holes in * the CQ ring for software use. */ zip->ca = zip->na; zip->na += 8; } if (unlikely(rxq->zip.ai == rxq->zip.cqe_cnt)) { /* Invalidate the rest */ idx = zip->ca; end = zip->cq_ci; while (idx != end) { (*rxq->cqes)[idx & cqe_cnt].op_own = MLX5_CQE_INVALIDATE; ++idx; } rxq->cq_ci = zip->cq_ci; zip->ai = 0; } /* * No compressed data, get next CQE and verify if it is * compressed. */ } else { int ret; int8_t op_own; ret = check_cqe(cqe, cqe_n, rxq->cq_ci); if (unlikely(ret != MLX5_CQE_STATUS_SW_OWN)) { if (unlikely(ret == MLX5_CQE_STATUS_ERR || rxq->err_state)) { ret = mlx5_rx_err_handle(rxq, 0); if (ret == MLX5_CQE_STATUS_HW_OWN || ret == -1) return 0; } else { return 0; } } ++rxq->cq_ci; op_own = cqe->op_own; if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED) { volatile struct mlx5_mini_cqe8 (*mc)[8] = (volatile struct mlx5_mini_cqe8 (*)[8]) (uintptr_t)(&(*rxq->cqes) [rxq->cq_ci & cqe_cnt].pkt_info); /* Fix endianness. */ zip->cqe_cnt = rte_be_to_cpu_32(cqe->byte_cnt); /* * Current mini array position is the one * returned by check_cqe64(). * * If completion comprises several mini arrays, * as a special case the second one is located * 7 CQEs after the initial CQE instead of 8 * for subsequent ones. */ zip->ca = rxq->cq_ci; zip->na = zip->ca + 7; /* Compute the next non compressed CQE. */ --rxq->cq_ci; zip->cq_ci = rxq->cq_ci + zip->cqe_cnt; /* Get packet size to return. */ len = rte_be_to_cpu_32((*mc)[0].byte_cnt); *mcqe = &(*mc)[0]; zip->ai = 1; /* Prefetch all to be invalidated */ idx = zip->ca; end = zip->cq_ci; while (idx != end) { rte_prefetch0(&(*rxq->cqes)[(idx) & cqe_cnt]); ++idx; } } else { len = rte_be_to_cpu_32(cqe->byte_cnt); } } if (unlikely(rxq->err_state)) { cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_cnt]; ++rxq->stats.idropped; } else { return len; } } while (1); } /** * Translate RX completion flags to offload flags. * * @param[in] cqe * Pointer to CQE. * * @return * Offload flags (ol_flags) for struct rte_mbuf. */ static inline uint32_t rxq_cq_to_ol_flags(volatile struct mlx5_cqe *cqe) { uint32_t ol_flags = 0; uint16_t flags = rte_be_to_cpu_16(cqe->hdr_type_etc); ol_flags = TRANSPOSE(flags, MLX5_CQE_RX_L3_HDR_VALID, PKT_RX_IP_CKSUM_GOOD) | TRANSPOSE(flags, MLX5_CQE_RX_L4_HDR_VALID, PKT_RX_L4_CKSUM_GOOD); return ol_flags; } /** * Fill in mbuf fields from RX completion flags. * Note that pkt->ol_flags should be initialized outside of this function. * * @param rxq * Pointer to RX queue. * @param pkt * mbuf to fill. * @param cqe * CQE to process. * @param rss_hash_res * Packet RSS Hash result. */ static inline void rxq_cq_to_mbuf(struct mlx5_rxq_data *rxq, struct rte_mbuf *pkt, volatile struct mlx5_cqe *cqe, uint32_t rss_hash_res) { /* Update packet information. */ pkt->packet_type = rxq_cq_to_pkt_type(rxq, cqe); if (rss_hash_res && rxq->rss_hash) { pkt->hash.rss = rss_hash_res; pkt->ol_flags |= PKT_RX_RSS_HASH; } if (rxq->mark && MLX5_FLOW_MARK_IS_VALID(cqe->sop_drop_qpn)) { pkt->ol_flags |= PKT_RX_FDIR; if (cqe->sop_drop_qpn != rte_cpu_to_be_32(MLX5_FLOW_MARK_DEFAULT)) { uint32_t mark = cqe->sop_drop_qpn; pkt->ol_flags |= PKT_RX_FDIR_ID; pkt->hash.fdir.hi = mlx5_flow_mark_get(mark); } } if (rte_flow_dynf_metadata_avail() && cqe->flow_table_metadata) { pkt->ol_flags |= PKT_RX_DYNF_METADATA; *RTE_FLOW_DYNF_METADATA(pkt) = cqe->flow_table_metadata; } if (rxq->csum) pkt->ol_flags |= rxq_cq_to_ol_flags(cqe); if (rxq->vlan_strip && (cqe->hdr_type_etc & rte_cpu_to_be_16(MLX5_CQE_VLAN_STRIPPED))) { pkt->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED; pkt->vlan_tci = rte_be_to_cpu_16(cqe->vlan_info); } if (rxq->hw_timestamp) { pkt->timestamp = rte_be_to_cpu_64(cqe->timestamp); pkt->ol_flags |= PKT_RX_TIMESTAMP; } } /** * DPDK callback for RX. * * @param dpdk_rxq * Generic pointer to RX queue structure. * @param[out] pkts * Array to store received packets. * @param pkts_n * Maximum number of packets in array. * * @return * Number of packets successfully received (<= pkts_n). */ uint16_t mlx5_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n) { struct mlx5_rxq_data *rxq = dpdk_rxq; const unsigned int wqe_cnt = (1 << rxq->elts_n) - 1; const unsigned int cqe_cnt = (1 << rxq->cqe_n) - 1; const unsigned int sges_n = rxq->sges_n; struct rte_mbuf *pkt = NULL; struct rte_mbuf *seg = NULL; volatile struct mlx5_cqe *cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_cnt]; unsigned int i = 0; unsigned int rq_ci = rxq->rq_ci << sges_n; int len = 0; /* keep its value across iterations. */ while (pkts_n) { unsigned int idx = rq_ci & wqe_cnt; volatile struct mlx5_wqe_data_seg *wqe = &((volatile struct mlx5_wqe_data_seg *)rxq->wqes)[idx]; struct rte_mbuf *rep = (*rxq->elts)[idx]; volatile struct mlx5_mini_cqe8 *mcqe = NULL; uint32_t rss_hash_res; if (pkt) NEXT(seg) = rep; seg = rep; rte_prefetch0(seg); rte_prefetch0(cqe); rte_prefetch0(wqe); rep = rte_mbuf_raw_alloc(rxq->mp); if (unlikely(rep == NULL)) { ++rxq->stats.rx_nombuf; if (!pkt) { /* * no buffers before we even started, * bail out silently. */ break; } while (pkt != seg) { assert(pkt != (*rxq->elts)[idx]); rep = NEXT(pkt); NEXT(pkt) = NULL; NB_SEGS(pkt) = 1; rte_mbuf_raw_free(pkt); pkt = rep; } break; } if (!pkt) { cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_cnt]; len = mlx5_rx_poll_len(rxq, cqe, cqe_cnt, &mcqe); if (!len) { rte_mbuf_raw_free(rep); break; } pkt = seg; assert(len >= (rxq->crc_present << 2)); pkt->ol_flags = 0; /* If compressed, take hash result from mini-CQE. */ rss_hash_res = rte_be_to_cpu_32(mcqe == NULL ? cqe->rx_hash_res : mcqe->rx_hash_result); rxq_cq_to_mbuf(rxq, pkt, cqe, rss_hash_res); if (rxq->crc_present) len -= RTE_ETHER_CRC_LEN; PKT_LEN(pkt) = len; if (cqe->lro_num_seg > 1) { mlx5_lro_update_hdr (rte_pktmbuf_mtod(pkt, uint8_t *), cqe, len); pkt->ol_flags |= PKT_RX_LRO; pkt->tso_segsz = len / cqe->lro_num_seg; } } DATA_LEN(rep) = DATA_LEN(seg); PKT_LEN(rep) = PKT_LEN(seg); SET_DATA_OFF(rep, DATA_OFF(seg)); PORT(rep) = PORT(seg); (*rxq->elts)[idx] = rep; /* * Fill NIC descriptor with the new buffer. The lkey and size * of the buffers are already known, only the buffer address * changes. */ wqe->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(rep, uintptr_t)); /* If there's only one MR, no need to replace LKey in WQE. */ if (unlikely(mlx5_mr_btree_len(&rxq->mr_ctrl.cache_bh) > 1)) wqe->lkey = mlx5_rx_mb2mr(rxq, rep); if (len > DATA_LEN(seg)) { len -= DATA_LEN(seg); ++NB_SEGS(pkt); ++rq_ci; continue; } DATA_LEN(seg) = len; #ifdef MLX5_PMD_SOFT_COUNTERS /* Increment bytes counter. */ rxq->stats.ibytes += PKT_LEN(pkt); #endif /* Return packet. */ *(pkts++) = pkt; pkt = NULL; --pkts_n; ++i; /* Align consumer index to the next stride. */ rq_ci >>= sges_n; ++rq_ci; rq_ci <<= sges_n; } if (unlikely((i == 0) && ((rq_ci >> sges_n) == rxq->rq_ci))) return 0; /* Update the consumer index. */ rxq->rq_ci = rq_ci >> sges_n; rte_cio_wmb(); *rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci); rte_cio_wmb(); *rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci); #ifdef MLX5_PMD_SOFT_COUNTERS /* Increment packets counter. */ rxq->stats.ipackets += i; #endif return i; } /** * Update LRO packet TCP header. * The HW LRO feature doesn't update the TCP header after coalescing the * TCP segments but supplies information in CQE to fill it by SW. * * @param tcp * Pointer to the TCP header. * @param cqe * Pointer to the completion entry.. * @param phcsum * The L3 pseudo-header checksum. */ static inline void mlx5_lro_update_tcp_hdr(struct rte_tcp_hdr *restrict tcp, volatile struct mlx5_cqe *restrict cqe, uint32_t phcsum) { uint8_t l4_type = (rte_be_to_cpu_16(cqe->hdr_type_etc) & MLX5_CQE_L4_TYPE_MASK) >> MLX5_CQE_L4_TYPE_SHIFT; /* * The HW calculates only the TCP payload checksum, need to complete * the TCP header checksum and the L3 pseudo-header checksum. */ uint32_t csum = phcsum + cqe->csum; if (l4_type == MLX5_L4_HDR_TYPE_TCP_EMPTY_ACK || l4_type == MLX5_L4_HDR_TYPE_TCP_WITH_ACL) { tcp->tcp_flags |= RTE_TCP_ACK_FLAG; tcp->recv_ack = cqe->lro_ack_seq_num; tcp->rx_win = cqe->lro_tcp_win; } if (cqe->lro_tcppsh_abort_dupack & MLX5_CQE_LRO_PUSH_MASK) tcp->tcp_flags |= RTE_TCP_PSH_FLAG; tcp->cksum = 0; csum += rte_raw_cksum(tcp, (tcp->data_off & 0xF) * 4); csum = ((csum & 0xffff0000) >> 16) + (csum & 0xffff); csum = (~csum) & 0xffff; if (csum == 0) csum = 0xffff; tcp->cksum = csum; } /** * Update LRO packet headers. * The HW LRO feature doesn't update the L3/TCP headers after coalescing the * TCP segments but supply information in CQE to fill it by SW. * * @param padd * The packet address. * @param cqe * Pointer to the completion entry.. * @param len * The packet length. */ static inline void mlx5_lro_update_hdr(uint8_t *restrict padd, volatile struct mlx5_cqe *restrict cqe, uint32_t len) { union { struct rte_ether_hdr *eth; struct rte_vlan_hdr *vlan; struct rte_ipv4_hdr *ipv4; struct rte_ipv6_hdr *ipv6; struct rte_tcp_hdr *tcp; uint8_t *hdr; } h = { .hdr = padd, }; uint16_t proto = h.eth->ether_type; uint32_t phcsum; h.eth++; while (proto == RTE_BE16(RTE_ETHER_TYPE_VLAN) || proto == RTE_BE16(RTE_ETHER_TYPE_QINQ)) { proto = h.vlan->eth_proto; h.vlan++; } if (proto == RTE_BE16(RTE_ETHER_TYPE_IPV4)) { h.ipv4->time_to_live = cqe->lro_min_ttl; h.ipv4->total_length = rte_cpu_to_be_16(len - (h.hdr - padd)); h.ipv4->hdr_checksum = 0; h.ipv4->hdr_checksum = rte_ipv4_cksum(h.ipv4); phcsum = rte_ipv4_phdr_cksum(h.ipv4, 0); h.ipv4++; } else { h.ipv6->hop_limits = cqe->lro_min_ttl; h.ipv6->payload_len = rte_cpu_to_be_16(len - (h.hdr - padd) - sizeof(*h.ipv6)); phcsum = rte_ipv6_phdr_cksum(h.ipv6, 0); h.ipv6++; } mlx5_lro_update_tcp_hdr(h.tcp, cqe, phcsum); } void mlx5_mprq_buf_free_cb(void *addr __rte_unused, void *opaque) { struct mlx5_mprq_buf *buf = opaque; if (rte_atomic16_read(&buf->refcnt) == 1) { rte_mempool_put(buf->mp, buf); } else if (rte_atomic16_add_return(&buf->refcnt, -1) == 0) { rte_atomic16_set(&buf->refcnt, 1); rte_mempool_put(buf->mp, buf); } } void mlx5_mprq_buf_free(struct mlx5_mprq_buf *buf) { mlx5_mprq_buf_free_cb(NULL, buf); } static inline void mprq_buf_replace(struct mlx5_rxq_data *rxq, uint16_t rq_idx, const unsigned int strd_n) { struct mlx5_mprq_buf *rep = rxq->mprq_repl; volatile struct mlx5_wqe_data_seg *wqe = &((volatile struct mlx5_wqe_mprq *)rxq->wqes)[rq_idx].dseg; void *addr; assert(rep != NULL); /* Replace MPRQ buf. */ (*rxq->mprq_bufs)[rq_idx] = rep; /* Replace WQE. */ addr = mlx5_mprq_buf_addr(rep, strd_n); wqe->addr = rte_cpu_to_be_64((uintptr_t)addr); /* If there's only one MR, no need to replace LKey in WQE. */ if (unlikely(mlx5_mr_btree_len(&rxq->mr_ctrl.cache_bh) > 1)) wqe->lkey = mlx5_rx_addr2mr(rxq, (uintptr_t)addr); /* Stash a mbuf for next replacement. */ if (likely(!rte_mempool_get(rxq->mprq_mp, (void **)&rep))) rxq->mprq_repl = rep; else rxq->mprq_repl = NULL; } /** * DPDK callback for RX with Multi-Packet RQ support. * * @param dpdk_rxq * Generic pointer to RX queue structure. * @param[out] pkts * Array to store received packets. * @param pkts_n * Maximum number of packets in array. * * @return * Number of packets successfully received (<= pkts_n). */ uint16_t mlx5_rx_burst_mprq(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n) { struct mlx5_rxq_data *rxq = dpdk_rxq; const unsigned int strd_n = 1 << rxq->strd_num_n; const unsigned int strd_sz = 1 << rxq->strd_sz_n; const unsigned int strd_shift = MLX5_MPRQ_STRIDE_SHIFT_BYTE * rxq->strd_shift_en; const unsigned int cq_mask = (1 << rxq->cqe_n) - 1; const unsigned int wq_mask = (1 << rxq->elts_n) - 1; volatile struct mlx5_cqe *cqe = &(*rxq->cqes)[rxq->cq_ci & cq_mask]; unsigned int i = 0; uint32_t rq_ci = rxq->rq_ci; uint16_t consumed_strd = rxq->consumed_strd; uint16_t headroom_sz = rxq->strd_headroom_en * RTE_PKTMBUF_HEADROOM; struct mlx5_mprq_buf *buf = (*rxq->mprq_bufs)[rq_ci & wq_mask]; while (i < pkts_n) { struct rte_mbuf *pkt; void *addr; int ret; unsigned int len; uint16_t strd_cnt; uint16_t strd_idx; uint32_t offset; uint32_t byte_cnt; volatile struct mlx5_mini_cqe8 *mcqe = NULL; uint32_t rss_hash_res = 0; uint8_t lro_num_seg; if (consumed_strd == strd_n) { /* Replace WQE only if the buffer is still in use. */ if (rte_atomic16_read(&buf->refcnt) > 1) { mprq_buf_replace(rxq, rq_ci & wq_mask, strd_n); /* Release the old buffer. */ mlx5_mprq_buf_free(buf); } else if (unlikely(rxq->mprq_repl == NULL)) { struct mlx5_mprq_buf *rep; /* * Currently, the MPRQ mempool is out of buffer * and doing memcpy regardless of the size of Rx * packet. Retry allocation to get back to * normal. */ if (!rte_mempool_get(rxq->mprq_mp, (void **)&rep)) rxq->mprq_repl = rep; } /* Advance to the next WQE. */ consumed_strd = 0; ++rq_ci; buf = (*rxq->mprq_bufs)[rq_ci & wq_mask]; } cqe = &(*rxq->cqes)[rxq->cq_ci & cq_mask]; ret = mlx5_rx_poll_len(rxq, cqe, cq_mask, &mcqe); if (!ret) break; byte_cnt = ret; strd_cnt = (byte_cnt & MLX5_MPRQ_STRIDE_NUM_MASK) >> MLX5_MPRQ_STRIDE_NUM_SHIFT; assert(strd_cnt); consumed_strd += strd_cnt; if (byte_cnt & MLX5_MPRQ_FILLER_MASK) continue; if (mcqe == NULL) { rss_hash_res = rte_be_to_cpu_32(cqe->rx_hash_res); strd_idx = rte_be_to_cpu_16(cqe->wqe_counter); } else { /* mini-CQE for MPRQ doesn't have hash result. */ strd_idx = rte_be_to_cpu_16(mcqe->stride_idx); } assert(strd_idx < strd_n); assert(!((rte_be_to_cpu_16(cqe->wqe_id) ^ rq_ci) & wq_mask)); lro_num_seg = cqe->lro_num_seg; /* * Currently configured to receive a packet per a stride. But if * MTU is adjusted through kernel interface, device could * consume multiple strides without raising an error. In this * case, the packet should be dropped because it is bigger than * the max_rx_pkt_len. */ if (unlikely(!lro_num_seg && strd_cnt > 1)) { ++rxq->stats.idropped; continue; } pkt = rte_pktmbuf_alloc(rxq->mp); if (unlikely(pkt == NULL)) { ++rxq->stats.rx_nombuf; break; } len = (byte_cnt & MLX5_MPRQ_LEN_MASK) >> MLX5_MPRQ_LEN_SHIFT; assert((int)len >= (rxq->crc_present << 2)); if (rxq->crc_present) len -= RTE_ETHER_CRC_LEN; offset = strd_idx * strd_sz + strd_shift; addr = RTE_PTR_ADD(mlx5_mprq_buf_addr(buf, strd_n), offset); /* * Memcpy packets to the target mbuf if: * - The size of packet is smaller than mprq_max_memcpy_len. * - Out of buffer in the Mempool for Multi-Packet RQ. */ if (len <= rxq->mprq_max_memcpy_len || rxq->mprq_repl == NULL) { /* * When memcpy'ing packet due to out-of-buffer, the * packet must be smaller than the target mbuf. */ if (unlikely(rte_pktmbuf_tailroom(pkt) < len)) { rte_pktmbuf_free_seg(pkt); ++rxq->stats.idropped; continue; } rte_memcpy(rte_pktmbuf_mtod(pkt, void *), addr, len); DATA_LEN(pkt) = len; } else { rte_iova_t buf_iova; struct rte_mbuf_ext_shared_info *shinfo; uint16_t buf_len = strd_cnt * strd_sz; void *buf_addr; /* Increment the refcnt of the whole chunk. */ rte_atomic16_add_return(&buf->refcnt, 1); assert((uint16_t)rte_atomic16_read(&buf->refcnt) <= strd_n + 1); buf_addr = RTE_PTR_SUB(addr, headroom_sz); /* * MLX5 device doesn't use iova but it is necessary in a * case where the Rx packet is transmitted via a * different PMD. */ buf_iova = rte_mempool_virt2iova(buf) + RTE_PTR_DIFF(buf_addr, buf); shinfo = &buf->shinfos[strd_idx]; rte_mbuf_ext_refcnt_set(shinfo, 1); /* * EXT_ATTACHED_MBUF will be set to pkt->ol_flags when * attaching the stride to mbuf and more offload flags * will be added below by calling rxq_cq_to_mbuf(). * Other fields will be overwritten. */ rte_pktmbuf_attach_extbuf(pkt, buf_addr, buf_iova, buf_len, shinfo); /* Set mbuf head-room. */ pkt->data_off = headroom_sz; assert(pkt->ol_flags == EXT_ATTACHED_MBUF); /* * Prevent potential overflow due to MTU change through * kernel interface. */ if (unlikely(rte_pktmbuf_tailroom(pkt) < len)) { rte_pktmbuf_free_seg(pkt); ++rxq->stats.idropped; continue; } DATA_LEN(pkt) = len; /* * LRO packet may consume all the stride memory, in this * case packet head-room space is not guaranteed so must * to add an empty mbuf for the head-room. */ if (!rxq->strd_headroom_en) { struct rte_mbuf *headroom_mbuf = rte_pktmbuf_alloc(rxq->mp); if (unlikely(headroom_mbuf == NULL)) { rte_pktmbuf_free_seg(pkt); ++rxq->stats.rx_nombuf; break; } PORT(pkt) = rxq->port_id; NEXT(headroom_mbuf) = pkt; pkt = headroom_mbuf; NB_SEGS(pkt) = 2; } } rxq_cq_to_mbuf(rxq, pkt, cqe, rss_hash_res); if (lro_num_seg > 1) { mlx5_lro_update_hdr(addr, cqe, len); pkt->ol_flags |= PKT_RX_LRO; pkt->tso_segsz = strd_sz; } PKT_LEN(pkt) = len; PORT(pkt) = rxq->port_id; #ifdef MLX5_PMD_SOFT_COUNTERS /* Increment bytes counter. */ rxq->stats.ibytes += PKT_LEN(pkt); #endif /* Return packet. */ *(pkts++) = pkt; ++i; } /* Update the consumer indexes. */ rxq->consumed_strd = consumed_strd; rte_cio_wmb(); *rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci); if (rq_ci != rxq->rq_ci) { rxq->rq_ci = rq_ci; rte_cio_wmb(); *rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci); } #ifdef MLX5_PMD_SOFT_COUNTERS /* Increment packets counter. */ rxq->stats.ipackets += i; #endif return i; } /** * Dummy DPDK callback for TX. * * This function is used to temporarily replace the real callback during * unsafe control operations on the queue, or in case of error. * * @param dpdk_txq * Generic pointer to TX queue structure. * @param[in] pkts * Packets to transmit. * @param pkts_n * Number of packets in array. * * @return * Number of packets successfully transmitted (<= pkts_n). */ uint16_t removed_tx_burst(void *dpdk_txq __rte_unused, struct rte_mbuf **pkts __rte_unused, uint16_t pkts_n __rte_unused) { rte_mb(); return 0; } /** * Dummy DPDK callback for RX. * * This function is used to temporarily replace the real callback during * unsafe control operations on the queue, or in case of error. * * @param dpdk_rxq * Generic pointer to RX queue structure. * @param[out] pkts * Array to store received packets. * @param pkts_n * Maximum number of packets in array. * * @return * Number of packets successfully received (<= pkts_n). */ uint16_t removed_rx_burst(void *dpdk_txq __rte_unused, struct rte_mbuf **pkts __rte_unused, uint16_t pkts_n __rte_unused) { rte_mb(); return 0; } /* * Vectorized Rx/Tx routines are not compiled in when required vector * instructions are not supported on a target architecture. The following null * stubs are needed for linkage when those are not included outside of this file * (e.g. mlx5_rxtx_vec_sse.c for x86). */ __rte_weak uint16_t mlx5_rx_burst_vec(void *dpdk_txq __rte_unused, struct rte_mbuf **pkts __rte_unused, uint16_t pkts_n __rte_unused) { return 0; } __rte_weak int mlx5_rxq_check_vec_support(struct mlx5_rxq_data *rxq __rte_unused) { return -ENOTSUP; } __rte_weak int mlx5_check_vec_rx_support(struct rte_eth_dev *dev __rte_unused) { return -ENOTSUP; } /** * Free the mbufs from the linear array of pointers. * * @param pkts * Pointer to array of packets to be free. * @param pkts_n * Number of packets to be freed. * @param olx * Configured Tx offloads mask. It is fully defined at * compile time and may be used for optimization. */ static __rte_always_inline void mlx5_tx_free_mbuf(struct rte_mbuf **restrict pkts, unsigned int pkts_n, unsigned int olx __rte_unused) { struct rte_mempool *pool = NULL; struct rte_mbuf **p_free = NULL; struct rte_mbuf *mbuf; unsigned int n_free = 0; /* * The implemented algorithm eliminates * copying pointers to temporary array * for rte_mempool_put_bulk() calls. */ assert(pkts); assert(pkts_n); for (;;) { for (;;) { /* * Decrement mbuf reference counter, detach * indirect and external buffers if needed. */ mbuf = rte_pktmbuf_prefree_seg(*pkts); if (likely(mbuf != NULL)) { assert(mbuf == *pkts); if (likely(n_free != 0)) { if (unlikely(pool != mbuf->pool)) /* From different pool. */ break; } else { /* Start new scan array. */ pool = mbuf->pool; p_free = pkts; } ++n_free; ++pkts; --pkts_n; if (unlikely(pkts_n == 0)) { mbuf = NULL; break; } } else { /* * This happens if mbuf is still referenced. * We can't put it back to the pool, skip. */ ++pkts; --pkts_n; if (unlikely(n_free != 0)) /* There is some array to free.*/ break; if (unlikely(pkts_n == 0)) /* Last mbuf, nothing to free. */ return; } } for (;;) { /* * This loop is implemented to avoid multiple * inlining of rte_mempool_put_bulk(). */ assert(pool); assert(p_free); assert(n_free); /* * Free the array of pre-freed mbufs * belonging to the same memory pool. */ rte_mempool_put_bulk(pool, (void *)p_free, n_free); if (unlikely(mbuf != NULL)) { /* There is the request to start new scan. */ pool = mbuf->pool; p_free = pkts++; n_free = 1; --pkts_n; if (likely(pkts_n != 0)) break; /* * This is the last mbuf to be freed. * Do one more loop iteration to complete. * This is rare case of the last unique mbuf. */ mbuf = NULL; continue; } if (likely(pkts_n == 0)) return; n_free = 0; break; } } } /** * Free the mbuf from the elts ring buffer till new tail. * * @param txq * Pointer to Tx queue structure. * @param tail * Index in elts to free up to, becomes new elts tail. * @param olx * Configured Tx offloads mask. It is fully defined at * compile time and may be used for optimization. */ static __rte_always_inline void mlx5_tx_free_elts(struct mlx5_txq_data *restrict txq, uint16_t tail, unsigned int olx __rte_unused) { uint16_t n_elts = tail - txq->elts_tail; assert(n_elts); assert(n_elts <= txq->elts_s); /* * Implement a loop to support ring buffer wraparound * with single inlining of mlx5_tx_free_mbuf(). */ do { unsigned int part; part = txq->elts_s - (txq->elts_tail & txq->elts_m); part = RTE_MIN(part, n_elts); assert(part); assert(part <= txq->elts_s); mlx5_tx_free_mbuf(&txq->elts[txq->elts_tail & txq->elts_m], part, olx); txq->elts_tail += part; n_elts -= part; } while (n_elts); } /** * Store the mbuf being sent into elts ring buffer. * On Tx completion these mbufs will be freed. * * @param txq * Pointer to Tx queue structure. * @param pkts * Pointer to array of packets to be stored. * @param pkts_n * Number of packets to be stored. * @param olx * Configured Tx offloads mask. It is fully defined at * compile time and may be used for optimization. */ static __rte_always_inline void mlx5_tx_copy_elts(struct mlx5_txq_data *restrict txq, struct rte_mbuf **restrict pkts, unsigned int pkts_n, unsigned int olx __rte_unused) { unsigned int part; struct rte_mbuf **elts = (struct rte_mbuf **)txq->elts; assert(pkts); assert(pkts_n); part = txq->elts_s - (txq->elts_head & txq->elts_m); assert(part); assert(part <= txq->elts_s); /* This code is a good candidate for vectorizing with SIMD. */ rte_memcpy((void *)(elts + (txq->elts_head & txq->elts_m)), (void *)pkts, RTE_MIN(part, pkts_n) * sizeof(struct rte_mbuf *)); txq->elts_head += pkts_n; if (unlikely(part < pkts_n)) /* The copy is wrapping around the elts array. */ rte_memcpy((void *)elts, (void *)(pkts + part), (pkts_n - part) * sizeof(struct rte_mbuf *)); } /** * Update completion queue consuming index via doorbell * and flush the completed data buffers. * * @param txq * Pointer to TX queue structure. * @param valid CQE pointer * if not NULL update txq->wqe_pi and flush the buffers * @param olx * Configured Tx offloads mask. It is fully defined at * compile time and may be used for optimization. */ static __rte_always_inline void mlx5_tx_comp_flush(struct mlx5_txq_data *restrict txq, volatile struct mlx5_cqe *last_cqe, unsigned int olx __rte_unused) { if (likely(last_cqe != NULL)) { uint16_t tail; txq->wqe_pi = rte_be_to_cpu_16(last_cqe->wqe_counter); tail = txq->fcqs[(txq->cq_ci - 1) & txq->cqe_m]; if (likely(tail != txq->elts_tail)) { mlx5_tx_free_elts(txq, tail, olx); assert(tail == txq->elts_tail); } } } /** * Manage TX completions. This routine checks the CQ for * arrived CQEs, deduces the last accomplished WQE in SQ, * updates SQ producing index and frees all completed mbufs. * * @param txq * Pointer to TX queue structure. * @param olx * Configured Tx offloads mask. It is fully defined at * compile time and may be used for optimization. * * NOTE: not inlined intentionally, it makes tx_burst * routine smaller, simple and faster - from experiments. */ static void mlx5_tx_handle_completion(struct mlx5_txq_data *restrict txq, unsigned int olx __rte_unused) { unsigned int count = MLX5_TX_COMP_MAX_CQE; volatile struct mlx5_cqe *last_cqe = NULL; uint16_t ci = txq->cq_ci; int ret; static_assert(MLX5_CQE_STATUS_HW_OWN < 0, "Must be negative value"); static_assert(MLX5_CQE_STATUS_SW_OWN < 0, "Must be negative value"); do { volatile struct mlx5_cqe *cqe; cqe = &txq->cqes[ci & txq->cqe_m]; ret = check_cqe(cqe, txq->cqe_s, ci); if (unlikely(ret != MLX5_CQE_STATUS_SW_OWN)) { if (likely(ret != MLX5_CQE_STATUS_ERR)) { /* No new CQEs in completion queue. */ assert(ret == MLX5_CQE_STATUS_HW_OWN); break; } /* * Some error occurred, try to restart. * We have no barrier after WQE related Doorbell * written, make sure all writes are completed * here, before we might perform SQ reset. */ rte_wmb(); txq->cq_ci = ci; ret = mlx5_tx_error_cqe_handle (txq, (volatile struct mlx5_err_cqe *)cqe); if (unlikely(ret < 0)) { /* * Some error occurred on queue error * handling, we do not advance the index * here, allowing to retry on next call. */ return; } /* * We are going to fetch all entries with * MLX5_CQE_SYNDROME_WR_FLUSH_ERR status. * The send queue is supposed to be empty. */ ++ci; txq->cq_pi = ci; last_cqe = NULL; continue; } /* Normal transmit completion. */ assert(ci != txq->cq_pi); assert((txq->fcqs[ci & txq->cqe_m] >> 16) == cqe->wqe_counter); ++ci; last_cqe = cqe; /* * We have to restrict the amount of processed CQEs * in one tx_burst routine call. The CQ may be large * and many CQEs may be updated by the NIC in one * transaction. Buffers freeing is time consuming, * multiple iterations may introduce significant * latency. */ if (likely(--count == 0)) break; } while (true); if (likely(ci != txq->cq_ci)) { /* * Update completion queue consuming index * and ring doorbell to notify hardware. */ rte_compiler_barrier(); txq->cq_ci = ci; *txq->cq_db = rte_cpu_to_be_32(ci); mlx5_tx_comp_flush(txq, last_cqe, olx); } } /** * Check if the completion request flag should be set in the last WQE. * Both pushed mbufs and WQEs are monitored and the completion request * flag is set if any of thresholds is reached. * * @param txq * Pointer to TX queue structure. * @param loc * Pointer to burst routine local context. * @param olx * Configured Tx offloads mask. It is fully defined at * compile time and may be used for optimization. */ static __rte_always_inline void mlx5_tx_request_completion(struct mlx5_txq_data *restrict txq, struct mlx5_txq_local *restrict loc, unsigned int olx) { uint16_t head = txq->elts_head; unsigned int part; part = MLX5_TXOFF_CONFIG(INLINE) ? 0 : loc->pkts_sent - loc->pkts_copy; head += part; if ((uint16_t)(head - txq->elts_comp) >= MLX5_TX_COMP_THRESH || (MLX5_TXOFF_CONFIG(INLINE) && (uint16_t)(txq->wqe_ci - txq->wqe_comp) >= txq->wqe_thres)) { volatile struct mlx5_wqe *last = loc->wqe_last; txq->elts_comp = head; if (MLX5_TXOFF_CONFIG(INLINE)) txq->wqe_comp = txq->wqe_ci; /* Request unconditional completion on last WQE. */ last->cseg.flags = RTE_BE32(MLX5_COMP_ALWAYS << MLX5_COMP_MODE_OFFSET); /* Save elts_head in dedicated free on completion queue. */ #ifdef NDEBUG txq->fcqs[txq->cq_pi++ & txq->cqe_m] = head; #else txq->fcqs[txq->cq_pi++ & txq->cqe_m] = head | (last->cseg.opcode >> 8) << 16; #endif /* A CQE slot must always be available. */ assert((txq->cq_pi - txq->cq_ci) <= txq->cqe_s); } } /** * DPDK callback to check the status of a tx descriptor. * * @param tx_queue * The tx queue. * @param[in] offset * The index of the descriptor in the ring. * * @return * The status of the tx descriptor. */ int mlx5_tx_descriptor_status(void *tx_queue, uint16_t offset) { struct mlx5_txq_data *restrict txq = tx_queue; uint16_t used; mlx5_tx_handle_completion(txq, 0); used = txq->elts_head - txq->elts_tail; if (offset < used) return RTE_ETH_TX_DESC_FULL; return RTE_ETH_TX_DESC_DONE; } /** * Build the Control Segment with specified opcode: * - MLX5_OPCODE_SEND * - MLX5_OPCODE_ENHANCED_MPSW * - MLX5_OPCODE_TSO * * @param txq * Pointer to TX queue structure. * @param loc * Pointer to burst routine local context. * @param wqe * Pointer to WQE to fill with built Control Segment. * @param ds * Supposed length of WQE in segments. * @param opcode * SQ WQE opcode to put into Control Segment. * @param olx * Configured Tx offloads mask. It is fully defined at * compile time and may be used for optimization. */ static __rte_always_inline void mlx5_tx_cseg_init(struct mlx5_txq_data *restrict txq, struct mlx5_txq_local *restrict loc __rte_unused, struct mlx5_wqe *restrict wqe, unsigned int ds, unsigned int opcode, unsigned int olx __rte_unused) { struct mlx5_wqe_cseg *restrict cs = &wqe->cseg; /* For legacy MPW replace the EMPW by TSO with modifier. */ if (MLX5_TXOFF_CONFIG(MPW) && opcode == MLX5_OPCODE_ENHANCED_MPSW) opcode = MLX5_OPCODE_TSO | MLX5_OPC_MOD_MPW << 24; cs->opcode = rte_cpu_to_be_32((txq->wqe_ci << 8) | opcode); cs->sq_ds = rte_cpu_to_be_32(txq->qp_num_8s | ds); cs->flags = RTE_BE32(MLX5_COMP_ONLY_FIRST_ERR << MLX5_COMP_MODE_OFFSET); cs->misc = RTE_BE32(0); } /** * Build the Ethernet Segment without inlined data. * Supports Software Parser, Checksums and VLAN * insertion Tx offload features. * * @param txq * Pointer to TX queue structure. * @param loc * Pointer to burst routine local context. * @param wqe * Pointer to WQE to fill with built Ethernet Segment. * @param olx * Configured Tx offloads mask. It is fully defined at * compile time and may be used for optimization. */ static __rte_always_inline void mlx5_tx_eseg_none(struct mlx5_txq_data *restrict txq __rte_unused, struct mlx5_txq_local *restrict loc, struct mlx5_wqe *restrict wqe, unsigned int olx) { struct mlx5_wqe_eseg *restrict es = &wqe->eseg; uint32_t csum; /* * Calculate and set check sum flags first, dword field * in segment may be shared with Software Parser flags. */ csum = MLX5_TXOFF_CONFIG(CSUM) ? txq_ol_cksum_to_cs(loc->mbuf) : 0; es->flags = rte_cpu_to_le_32(csum); /* * Calculate and set Software Parser offsets and flags. * These flags a set for custom UDP and IP tunnel packets. */ es->swp_offs = txq_mbuf_to_swp(loc, &es->swp_flags, olx); /* Fill metadata field if needed. */ es->metadata = MLX5_TXOFF_CONFIG(METADATA) ? loc->mbuf->ol_flags & PKT_TX_DYNF_METADATA ? *RTE_FLOW_DYNF_METADATA(loc->mbuf) : 0 : 0; /* Engage VLAN tag insertion feature if requested. */ if (MLX5_TXOFF_CONFIG(VLAN) && loc->mbuf->ol_flags & PKT_TX_VLAN_PKT) { /* * We should get here only if device support * this feature correctly. */ assert(txq->vlan_en); es->inline_hdr = rte_cpu_to_be_32(MLX5_ETH_WQE_VLAN_INSERT | loc->mbuf->vlan_tci); } else { es->inline_hdr = RTE_BE32(0); } } /** * Build the Ethernet Segment with minimal inlined data * of MLX5_ESEG_MIN_INLINE_SIZE bytes length. This is * used to fill the gap in single WQEBB WQEs. * Supports Software Parser, Checksums and VLAN * insertion Tx offload features. * * @param txq * Pointer to TX queue structure. * @param loc * Pointer to burst routine local context. * @param wqe * Pointer to WQE to fill with built Ethernet Segment. * @param vlan * Length of VLAN tag insertion if any. * @param olx * Configured Tx offloads mask. It is fully defined at * compile time and may be used for optimization. */ static __rte_always_inline void mlx5_tx_eseg_dmin(struct mlx5_txq_data *restrict txq __rte_unused, struct mlx5_txq_local *restrict loc, struct mlx5_wqe *restrict wqe, unsigned int vlan, unsigned int olx) { struct mlx5_wqe_eseg *restrict es = &wqe->eseg; uint32_t csum; uint8_t *psrc, *pdst; /* * Calculate and set check sum flags first, dword field * in segment may be shared with Software Parser flags. */ csum = MLX5_TXOFF_CONFIG(CSUM) ? txq_ol_cksum_to_cs(loc->mbuf) : 0; es->flags = rte_cpu_to_le_32(csum); /* * Calculate and set Software Parser offsets and flags. * These flags a set for custom UDP and IP tunnel packets. */ es->swp_offs = txq_mbuf_to_swp(loc, &es->swp_flags, olx); /* Fill metadata field if needed. */ es->metadata = MLX5_TXOFF_CONFIG(METADATA) ? loc->mbuf->ol_flags & PKT_TX_DYNF_METADATA ? *RTE_FLOW_DYNF_METADATA(loc->mbuf) : 0 : 0; static_assert(MLX5_ESEG_MIN_INLINE_SIZE == (sizeof(uint16_t) + sizeof(rte_v128u32_t)), "invalid Ethernet Segment data size"); static_assert(MLX5_ESEG_MIN_INLINE_SIZE == (sizeof(uint16_t) + sizeof(struct rte_vlan_hdr) + 2 * RTE_ETHER_ADDR_LEN), "invalid Ethernet Segment data size"); psrc = rte_pktmbuf_mtod(loc->mbuf, uint8_t *); es->inline_hdr_sz = RTE_BE16(MLX5_ESEG_MIN_INLINE_SIZE); es->inline_data = *(unaligned_uint16_t *)psrc; psrc += sizeof(uint16_t); pdst = (uint8_t *)(es + 1); if (MLX5_TXOFF_CONFIG(VLAN) && vlan) { /* Implement VLAN tag insertion as part inline data. */ memcpy(pdst, psrc, 2 * RTE_ETHER_ADDR_LEN - sizeof(uint16_t)); pdst += 2 * RTE_ETHER_ADDR_LEN - sizeof(uint16_t); psrc += 2 * RTE_ETHER_ADDR_LEN - sizeof(uint16_t); /* Insert VLAN ethertype + VLAN tag. */ *(unaligned_uint32_t *)pdst = rte_cpu_to_be_32 ((RTE_ETHER_TYPE_VLAN << 16) | loc->mbuf->vlan_tci); pdst += sizeof(struct rte_vlan_hdr); /* Copy the rest two bytes from packet data. */ assert(pdst == RTE_PTR_ALIGN(pdst, sizeof(uint16_t))); *(uint16_t *)pdst = *(unaligned_uint16_t *)psrc; } else { /* Fill the gap in the title WQEBB with inline data. */ rte_mov16(pdst, psrc); } } /** * Build the Ethernet Segment with entire packet * data inlining. Checks the boundary of WQEBB and * ring buffer wrapping, supports Software Parser, * Checksums and VLAN insertion Tx offload features. * * @param txq * Pointer to TX queue structure. * @param loc * Pointer to burst routine local context. * @param wqe * Pointer to WQE to fill with built Ethernet Segment. * @param vlan * Length of VLAN tag insertion if any. * @param inlen * Length of data to inline (VLAN included, if any). * @param tso * TSO flag, set mss field from the packet. * @param olx * Configured Tx offloads mask. It is fully defined at * compile time and may be used for optimization. * * @return * Pointer to the next Data Segment (aligned and wrapped around). */ static __rte_always_inline struct mlx5_wqe_dseg * mlx5_tx_eseg_data(struct mlx5_txq_data *restrict txq, struct mlx5_txq_local *restrict loc, struct mlx5_wqe *restrict wqe, unsigned int vlan, unsigned int inlen, unsigned int tso, unsigned int olx) { struct mlx5_wqe_eseg *restrict es = &wqe->eseg; uint32_t csum; uint8_t *psrc, *pdst; unsigned int part; /* * Calculate and set check sum flags first, dword field * in segment may be shared with Software Parser flags. */ csum = MLX5_TXOFF_CONFIG(CSUM) ? txq_ol_cksum_to_cs(loc->mbuf) : 0; if (tso) { csum <<= 24; csum |= loc->mbuf->tso_segsz; es->flags = rte_cpu_to_be_32(csum); } else { es->flags = rte_cpu_to_le_32(csum); } /* * Calculate and set Software Parser offsets and flags. * These flags a set for custom UDP and IP tunnel packets. */ es->swp_offs = txq_mbuf_to_swp(loc, &es->swp_flags, olx); /* Fill metadata field if needed. */ es->metadata = MLX5_TXOFF_CONFIG(METADATA) ? loc->mbuf->ol_flags & PKT_TX_DYNF_METADATA ? *RTE_FLOW_DYNF_METADATA(loc->mbuf) : 0 : 0; static_assert(MLX5_ESEG_MIN_INLINE_SIZE == (sizeof(uint16_t) + sizeof(rte_v128u32_t)), "invalid Ethernet Segment data size"); static_assert(MLX5_ESEG_MIN_INLINE_SIZE == (sizeof(uint16_t) + sizeof(struct rte_vlan_hdr) + 2 * RTE_ETHER_ADDR_LEN), "invalid Ethernet Segment data size"); psrc = rte_pktmbuf_mtod(loc->mbuf, uint8_t *); es->inline_hdr_sz = rte_cpu_to_be_16(inlen); es->inline_data = *(unaligned_uint16_t *)psrc; psrc += sizeof(uint16_t); pdst = (uint8_t *)(es + 1); if (MLX5_TXOFF_CONFIG(VLAN) && vlan) { /* Implement VLAN tag insertion as part inline data. */ memcpy(pdst, psrc, 2 * RTE_ETHER_ADDR_LEN - sizeof(uint16_t)); pdst += 2 * RTE_ETHER_ADDR_LEN - sizeof(uint16_t); psrc += 2 * RTE_ETHER_ADDR_LEN - sizeof(uint16_t); /* Insert VLAN ethertype + VLAN tag. */ *(unaligned_uint32_t *)pdst = rte_cpu_to_be_32 ((RTE_ETHER_TYPE_VLAN << 16) | loc->mbuf->vlan_tci); pdst += sizeof(struct rte_vlan_hdr); /* Copy the rest two bytes from packet data. */ assert(pdst == RTE_PTR_ALIGN(pdst, sizeof(uint16_t))); *(uint16_t *)pdst = *(unaligned_uint16_t *)psrc; psrc += sizeof(uint16_t); } else { /* Fill the gap in the title WQEBB with inline data. */ rte_mov16(pdst, psrc); psrc += sizeof(rte_v128u32_t); } pdst = (uint8_t *)(es + 2); assert(inlen >= MLX5_ESEG_MIN_INLINE_SIZE); assert(pdst < (uint8_t *)txq->wqes_end); inlen -= MLX5_ESEG_MIN_INLINE_SIZE; if (!inlen) { assert(pdst == RTE_PTR_ALIGN(pdst, MLX5_WSEG_SIZE)); return (struct mlx5_wqe_dseg *)pdst; } /* * The WQEBB space availability is checked by caller. * Here we should be aware of WQE ring buffer wraparound only. */ part = (uint8_t *)txq->wqes_end - pdst; part = RTE_MIN(part, inlen); do { rte_memcpy(pdst, psrc, part); inlen -= part; if (likely(!inlen)) { /* * If return value is not used by the caller * the code below will be optimized out. */ pdst += part; pdst = RTE_PTR_ALIGN(pdst, MLX5_WSEG_SIZE); if (unlikely(pdst >= (uint8_t *)txq->wqes_end)) pdst = (uint8_t *)txq->wqes; return (struct mlx5_wqe_dseg *)pdst; } pdst = (uint8_t *)txq->wqes; psrc += part; part = inlen; } while (true); } /** * Copy data from chain of mbuf to the specified linear buffer. * Checksums and VLAN insertion Tx offload features. If data * from some mbuf copied completely this mbuf is freed. Local * structure is used to keep the byte stream state. * * @param pdst * Pointer to the destination linear buffer. * @param loc * Pointer to burst routine local context. * @param len * Length of data to be copied. * @param olx * Configured Tx offloads mask. It is fully defined at * compile time and may be used for optimization. */ static __rte_always_inline void mlx5_tx_mseg_memcpy(uint8_t *pdst, struct mlx5_txq_local *restrict loc, unsigned int len, unsigned int olx __rte_unused) { struct rte_mbuf *mbuf; unsigned int part, dlen; uint8_t *psrc; assert(len); do { /* Allow zero length packets, must check first. */ dlen = rte_pktmbuf_data_len(loc->mbuf); if (dlen <= loc->mbuf_off) { /* Exhausted packet, just free. */ mbuf = loc->mbuf; loc->mbuf = mbuf->next; rte_pktmbuf_free_seg(mbuf); loc->mbuf_off = 0; assert(loc->mbuf_nseg > 1); assert(loc->mbuf); --loc->mbuf_nseg; continue; } dlen -= loc->mbuf_off; psrc = rte_pktmbuf_mtod_offset(loc->mbuf, uint8_t *, loc->mbuf_off); part = RTE_MIN(len, dlen); rte_memcpy(pdst, psrc, part); loc->mbuf_off += part; len -= part; if (!len) { if (loc->mbuf_off >= rte_pktmbuf_data_len(loc->mbuf)) { loc->mbuf_off = 0; /* Exhausted packet, just free. */ mbuf = loc->mbuf; loc->mbuf = mbuf->next; rte_pktmbuf_free_seg(mbuf); loc->mbuf_off = 0; assert(loc->mbuf_nseg >= 1); --loc->mbuf_nseg; } return; } pdst += part; } while (true); } /** * Build the Ethernet Segment with inlined data from * multi-segment packet. Checks the boundary of WQEBB * and ring buffer wrapping, supports Software Parser, * Checksums and VLAN insertion Tx offload features. * * @param txq * Pointer to TX queue structure. * @param loc * Pointer to burst routine local context. * @param wqe * Pointer to WQE to fill with built Ethernet Segment. * @param vlan * Length of VLAN tag insertion if any. * @param inlen * Length of data to inline (VLAN included, if any). * @param tso * TSO flag, set mss field from the packet. * @param olx * Configured Tx offloads mask. It is fully defined at * compile time and may be used for optimization. * * @return * Pointer to the next Data Segment (aligned and * possible NOT wrapped around - caller should do * wrapping check on its own). */ static __rte_always_inline struct mlx5_wqe_dseg * mlx5_tx_eseg_mdat(struct mlx5_txq_data *restrict txq, struct mlx5_txq_local *restrict loc, struct mlx5_wqe *restrict wqe, unsigned int vlan, unsigned int inlen, unsigned int tso, unsigned int olx) { struct mlx5_wqe_eseg *restrict es = &wqe->eseg; uint32_t csum; uint8_t *pdst; unsigned int part; /* * Calculate and set check sum flags first, uint32_t field * in segment may be shared with Software Parser flags. */ csum = MLX5_TXOFF_CONFIG(CSUM) ? txq_ol_cksum_to_cs(loc->mbuf) : 0; if (tso) { csum <<= 24; csum |= loc->mbuf->tso_segsz; es->flags = rte_cpu_to_be_32(csum); } else { es->flags = rte_cpu_to_le_32(csum); } /* * Calculate and set Software Parser offsets and flags. * These flags a set for custom UDP and IP tunnel packets. */ es->swp_offs = txq_mbuf_to_swp(loc, &es->swp_flags, olx); /* Fill metadata field if needed. */ es->metadata = MLX5_TXOFF_CONFIG(METADATA) ? loc->mbuf->ol_flags & PKT_TX_DYNF_METADATA ? *RTE_FLOW_DYNF_METADATA(loc->mbuf) : 0 : 0; static_assert(MLX5_ESEG_MIN_INLINE_SIZE == (sizeof(uint16_t) + sizeof(rte_v128u32_t)), "invalid Ethernet Segment data size"); static_assert(MLX5_ESEG_MIN_INLINE_SIZE == (sizeof(uint16_t) + sizeof(struct rte_vlan_hdr) + 2 * RTE_ETHER_ADDR_LEN), "invalid Ethernet Segment data size"); assert(inlen >= MLX5_ESEG_MIN_INLINE_SIZE); es->inline_hdr_sz = rte_cpu_to_be_16(inlen); pdst = (uint8_t *)&es->inline_data; if (MLX5_TXOFF_CONFIG(VLAN) && vlan) { /* Implement VLAN tag insertion as part inline data. */ mlx5_tx_mseg_memcpy(pdst, loc, 2 * RTE_ETHER_ADDR_LEN, olx); pdst += 2 * RTE_ETHER_ADDR_LEN; *(unaligned_uint32_t *)pdst = rte_cpu_to_be_32 ((RTE_ETHER_TYPE_VLAN << 16) | loc->mbuf->vlan_tci); pdst += sizeof(struct rte_vlan_hdr); inlen -= 2 * RTE_ETHER_ADDR_LEN + sizeof(struct rte_vlan_hdr); } assert(pdst < (uint8_t *)txq->wqes_end); /* * The WQEBB space availability is checked by caller. * Here we should be aware of WQE ring buffer wraparound only. */ part = (uint8_t *)txq->wqes_end - pdst; part = RTE_MIN(part, inlen); assert(part); do { mlx5_tx_mseg_memcpy(pdst, loc, part, olx); inlen -= part; if (likely(!inlen)) { pdst += part; pdst = RTE_PTR_ALIGN(pdst, MLX5_WSEG_SIZE); return (struct mlx5_wqe_dseg *)pdst; } pdst = (uint8_t *)txq->wqes; part = inlen; } while (true); } /** * Build the Data Segment of pointer type. * * @param txq * Pointer to TX queue structure. * @param loc * Pointer to burst routine local context. * @param dseg * Pointer to WQE to fill with built Data Segment. * @param buf * Data buffer to point. * @param len * Data buffer length. * @param olx * Configured Tx offloads mask. It is fully defined at * compile time and may be used for optimization. */ static __rte_always_inline void mlx5_tx_dseg_ptr(struct mlx5_txq_data *restrict txq, struct mlx5_txq_local *restrict loc, struct mlx5_wqe_dseg *restrict dseg, uint8_t *buf, unsigned int len, unsigned int olx __rte_unused) { assert(len); dseg->bcount = rte_cpu_to_be_32(len); dseg->lkey = mlx5_tx_mb2mr(txq, loc->mbuf); dseg->pbuf = rte_cpu_to_be_64((uintptr_t)buf); } /** * Build the Data Segment of pointer type or inline * if data length is less than buffer in minimal * Data Segment size. * * @param txq * Pointer to TX queue structure. * @param loc * Pointer to burst routine local context. * @param dseg * Pointer to WQE to fill with built Data Segment. * @param buf * Data buffer to point. * @param len * Data buffer length. * @param olx * Configured Tx offloads mask. It is fully defined at * compile time and may be used for optimization. */ static __rte_always_inline void mlx5_tx_dseg_iptr(struct mlx5_txq_data *restrict txq, struct mlx5_txq_local *restrict loc, struct mlx5_wqe_dseg *restrict dseg, uint8_t *buf, unsigned int len, unsigned int olx __rte_unused) { uintptr_t dst, src; assert(len); if (len > MLX5_DSEG_MIN_INLINE_SIZE) { dseg->bcount = rte_cpu_to_be_32(len); dseg->lkey = mlx5_tx_mb2mr(txq, loc->mbuf); dseg->pbuf = rte_cpu_to_be_64((uintptr_t)buf); return; } dseg->bcount = rte_cpu_to_be_32(len | MLX5_ETH_WQE_DATA_INLINE); /* Unrolled implementation of generic rte_memcpy. */ dst = (uintptr_t)&dseg->inline_data[0]; src = (uintptr_t)buf; if (len & 0x08) { #ifdef RTE_ARCH_STRICT_ALIGN assert(dst == RTE_PTR_ALIGN(dst, sizeof(uint32_t))); *(uint32_t *)dst = *(unaligned_uint32_t *)src; dst += sizeof(uint32_t); src += sizeof(uint32_t); *(uint32_t *)dst = *(unaligned_uint32_t *)src; dst += sizeof(uint32_t); src += sizeof(uint32_t); #else *(uint64_t *)dst = *(unaligned_uint64_t *)src; dst += sizeof(uint64_t); src += sizeof(uint64_t); #endif } if (len & 0x04) { *(uint32_t *)dst = *(unaligned_uint32_t *)src; dst += sizeof(uint32_t); src += sizeof(uint32_t); } if (len & 0x02) { *(uint16_t *)dst = *(unaligned_uint16_t *)src; dst += sizeof(uint16_t); src += sizeof(uint16_t); } if (len & 0x01) *(uint8_t *)dst = *(uint8_t *)src; } /** * Build the Data Segment of inlined data from single * segment packet, no VLAN insertion. * * @param txq * Pointer to TX queue structure. * @param loc * Pointer to burst routine local context. * @param dseg * Pointer to WQE to fill with built Data Segment. * @param buf * Data buffer to point. * @param len * Data buffer length. * @param olx * Configured Tx offloads mask. It is fully defined at * compile time and may be used for optimization. * * @return * Pointer to the next Data Segment after inlined data. * Ring buffer wraparound check is needed. We do not * do it here because it may not be needed for the * last packet in the eMPW session. */ static __rte_always_inline struct mlx5_wqe_dseg * mlx5_tx_dseg_empw(struct mlx5_txq_data *restrict txq, struct mlx5_txq_local *restrict loc __rte_unused, struct mlx5_wqe_dseg *restrict dseg, uint8_t *buf, unsigned int len, unsigned int olx __rte_unused) { unsigned int part; uint8_t *pdst; if (!MLX5_TXOFF_CONFIG(MPW)) { /* Store the descriptor byte counter for eMPW sessions. */ dseg->bcount = rte_cpu_to_be_32(len | MLX5_ETH_WQE_DATA_INLINE); pdst = &dseg->inline_data[0]; } else { /* The entire legacy MPW session counter is stored on close. */ pdst = (uint8_t *)dseg; } /* * The WQEBB space availability is checked by caller. * Here we should be aware of WQE ring buffer wraparound only. */ part = (uint8_t *)txq->wqes_end - pdst; part = RTE_MIN(part, len); do { rte_memcpy(pdst, buf, part); len -= part; if (likely(!len)) { pdst += part; if (!MLX5_TXOFF_CONFIG(MPW)) pdst = RTE_PTR_ALIGN(pdst, MLX5_WSEG_SIZE); /* Note: no final wraparound check here. */ return (struct mlx5_wqe_dseg *)pdst; } pdst = (uint8_t *)txq->wqes; buf += part; part = len; } while (true); } /** * Build the Data Segment of inlined data from single * segment packet with VLAN insertion. * * @param txq * Pointer to TX queue structure. * @param loc * Pointer to burst routine local context. * @param dseg * Pointer to the dseg fill with built Data Segment. * @param buf * Data buffer to point. * @param len * Data buffer length. * @param olx * Configured Tx offloads mask. It is fully defined at * compile time and may be used for optimization. * * @return * Pointer to the next Data Segment after inlined data. * Ring buffer wraparound check is needed. */ static __rte_always_inline struct mlx5_wqe_dseg * mlx5_tx_dseg_vlan(struct mlx5_txq_data *restrict txq, struct mlx5_txq_local *restrict loc __rte_unused, struct mlx5_wqe_dseg *restrict dseg, uint8_t *buf, unsigned int len, unsigned int olx __rte_unused) { unsigned int part; uint8_t *pdst; assert(len > MLX5_ESEG_MIN_INLINE_SIZE); static_assert(MLX5_DSEG_MIN_INLINE_SIZE == (2 * RTE_ETHER_ADDR_LEN), "invalid Data Segment data size"); if (!MLX5_TXOFF_CONFIG(MPW)) { /* Store the descriptor byte counter for eMPW sessions. */ dseg->bcount = rte_cpu_to_be_32 ((len + sizeof(struct rte_vlan_hdr)) | MLX5_ETH_WQE_DATA_INLINE); pdst = &dseg->inline_data[0]; } else { /* The entire legacy MPW session counter is stored on close. */ pdst = (uint8_t *)dseg; } memcpy(pdst, buf, MLX5_DSEG_MIN_INLINE_SIZE); buf += MLX5_DSEG_MIN_INLINE_SIZE; pdst += MLX5_DSEG_MIN_INLINE_SIZE; len -= MLX5_DSEG_MIN_INLINE_SIZE; /* Insert VLAN ethertype + VLAN tag. Pointer is aligned. */ assert(pdst == RTE_PTR_ALIGN(pdst, MLX5_WSEG_SIZE)); if (unlikely(pdst >= (uint8_t *)txq->wqes_end)) pdst = (uint8_t *)txq->wqes; *(uint32_t *)pdst = rte_cpu_to_be_32((RTE_ETHER_TYPE_VLAN << 16) | loc->mbuf->vlan_tci); pdst += sizeof(struct rte_vlan_hdr); /* * The WQEBB space availability is checked by caller. * Here we should be aware of WQE ring buffer wraparound only. */ part = (uint8_t *)txq->wqes_end - pdst; part = RTE_MIN(part, len); do { rte_memcpy(pdst, buf, part); len -= part; if (likely(!len)) { pdst += part; if (!MLX5_TXOFF_CONFIG(MPW)) pdst = RTE_PTR_ALIGN(pdst, MLX5_WSEG_SIZE); /* Note: no final wraparound check here. */ return (struct mlx5_wqe_dseg *)pdst; } pdst = (uint8_t *)txq->wqes; buf += part; part = len; } while (true); } /** * Build the Ethernet Segment with optionally inlined data with * VLAN insertion and following Data Segments (if any) from * multi-segment packet. Used by ordinary send and TSO. * * @param txq * Pointer to TX queue structure. * @param loc * Pointer to burst routine local context. * @param wqe * Pointer to WQE to fill with built Ethernet/Data Segments. * @param vlan * Length of VLAN header to insert, 0 means no VLAN insertion. * @param inlen * Data length to inline. For TSO this parameter specifies * exact value, for ordinary send routine can be aligned by * caller to provide better WQE space saving and data buffer * start address alignment. This length includes VLAN header * being inserted. * @param tso * Zero means ordinary send, inlined data can be extended, * otherwise this is TSO, inlined data length is fixed. * @param olx * Configured Tx offloads mask. It is fully defined at * compile time and may be used for optimization. * * @return * Actual size of built WQE in segments. */ static __rte_always_inline unsigned int mlx5_tx_mseg_build(struct mlx5_txq_data *restrict txq, struct mlx5_txq_local *restrict loc, struct mlx5_wqe *restrict wqe, unsigned int vlan, unsigned int inlen, unsigned int tso, unsigned int olx __rte_unused) { struct mlx5_wqe_dseg *restrict dseg; unsigned int ds; assert((rte_pktmbuf_pkt_len(loc->mbuf) + vlan) >= inlen); loc->mbuf_nseg = NB_SEGS(loc->mbuf); loc->mbuf_off = 0; dseg = mlx5_tx_eseg_mdat(txq, loc, wqe, vlan, inlen, tso, olx); if (!loc->mbuf_nseg) goto dseg_done; /* * There are still some mbuf remaining, not inlined. * The first mbuf may be partially inlined and we * must process the possible non-zero data offset. */ if (loc->mbuf_off) { unsigned int dlen; uint8_t *dptr; /* * Exhausted packets must be dropped before. * Non-zero offset means there are some data * remained in the packet. */ assert(loc->mbuf_off < rte_pktmbuf_data_len(loc->mbuf)); assert(rte_pktmbuf_data_len(loc->mbuf)); dptr = rte_pktmbuf_mtod_offset(loc->mbuf, uint8_t *, loc->mbuf_off); dlen = rte_pktmbuf_data_len(loc->mbuf) - loc->mbuf_off; /* * Build the pointer/minimal data Data Segment. * Do ring buffer wrapping check in advance. */ if ((uintptr_t)dseg >= (uintptr_t)txq->wqes_end) dseg = (struct mlx5_wqe_dseg *)txq->wqes; mlx5_tx_dseg_iptr(txq, loc, dseg, dptr, dlen, olx); /* Store the mbuf to be freed on completion. */ assert(loc->elts_free); txq->elts[txq->elts_head++ & txq->elts_m] = loc->mbuf; --loc->elts_free; ++dseg; if (--loc->mbuf_nseg == 0) goto dseg_done; loc->mbuf = loc->mbuf->next; loc->mbuf_off = 0; } do { if (unlikely(!rte_pktmbuf_data_len(loc->mbuf))) { struct rte_mbuf *mbuf; /* Zero length segment found, just skip. */ mbuf = loc->mbuf; loc->mbuf = loc->mbuf->next; rte_pktmbuf_free_seg(mbuf); if (--loc->mbuf_nseg == 0) break; } else { if ((uintptr_t)dseg >= (uintptr_t)txq->wqes_end) dseg = (struct mlx5_wqe_dseg *)txq->wqes; mlx5_tx_dseg_iptr (txq, loc, dseg, rte_pktmbuf_mtod(loc->mbuf, uint8_t *), rte_pktmbuf_data_len(loc->mbuf), olx); assert(loc->elts_free); txq->elts[txq->elts_head++ & txq->elts_m] = loc->mbuf; --loc->elts_free; ++dseg; if (--loc->mbuf_nseg == 0) break; loc->mbuf = loc->mbuf->next; } } while (true); dseg_done: /* Calculate actual segments used from the dseg pointer. */ if ((uintptr_t)wqe < (uintptr_t)dseg) ds = ((uintptr_t)dseg - (uintptr_t)wqe) / MLX5_WSEG_SIZE; else ds = (((uintptr_t)dseg - (uintptr_t)wqe) + txq->wqe_s * MLX5_WQE_SIZE) / MLX5_WSEG_SIZE; return ds; } /** * Tx one packet function for multi-segment TSO. Supports all * types of Tx offloads, uses MLX5_OPCODE_TSO to build WQEs, * sends one packet per WQE. * * This routine is responsible for storing processed mbuf * into elts ring buffer and update elts_head. * * @param txq * Pointer to TX queue structure. * @param loc * Pointer to burst routine local context. * @param olx * Configured Tx offloads mask. It is fully defined at * compile time and may be used for optimization. * * @return * MLX5_TXCMP_CODE_EXIT - sending is done or impossible. * MLX5_TXCMP_CODE_ERROR - some unrecoverable error occurred. * Local context variables partially updated. */ static __rte_always_inline enum mlx5_txcmp_code mlx5_tx_packet_multi_tso(struct mlx5_txq_data *restrict txq, struct mlx5_txq_local *restrict loc, unsigned int olx) { struct mlx5_wqe *restrict wqe; unsigned int ds, dlen, inlen, ntcp, vlan = 0; /* * Calculate data length to be inlined to estimate * the required space in WQE ring buffer. */ dlen = rte_pktmbuf_pkt_len(loc->mbuf); if (MLX5_TXOFF_CONFIG(VLAN) && loc->mbuf->ol_flags & PKT_TX_VLAN_PKT) vlan = sizeof(struct rte_vlan_hdr); inlen = loc->mbuf->l2_len + vlan + loc->mbuf->l3_len + loc->mbuf->l4_len; if (unlikely((!inlen || !loc->mbuf->tso_segsz))) return MLX5_TXCMP_CODE_ERROR; if (loc->mbuf->ol_flags & PKT_TX_TUNNEL_MASK) inlen += loc->mbuf->outer_l2_len + loc->mbuf->outer_l3_len; /* Packet must contain all TSO headers. */ if (unlikely(inlen > MLX5_MAX_TSO_HEADER || inlen <= MLX5_ESEG_MIN_INLINE_SIZE || inlen > (dlen + vlan))) return MLX5_TXCMP_CODE_ERROR; assert(inlen >= txq->inlen_mode); /* * Check whether there are enough free WQEBBs: * - Control Segment * - Ethernet Segment * - First Segment of inlined Ethernet data * - ... data continued ... * - Data Segments of pointer/min inline type */ ds = NB_SEGS(loc->mbuf) + 2 + (inlen - MLX5_ESEG_MIN_INLINE_SIZE + MLX5_WSEG_SIZE + MLX5_WSEG_SIZE - 1) / MLX5_WSEG_SIZE; if (unlikely(loc->wqe_free < ((ds + 3) / 4))) return MLX5_TXCMP_CODE_EXIT; /* Check for maximal WQE size. */ if (unlikely((MLX5_WQE_SIZE_MAX / MLX5_WSEG_SIZE) < ((ds + 3) / 4))) return MLX5_TXCMP_CODE_ERROR; #ifdef MLX5_PMD_SOFT_COUNTERS /* Update sent data bytes/packets counters. */ ntcp = (dlen - (inlen - vlan) + loc->mbuf->tso_segsz - 1) / loc->mbuf->tso_segsz; /* * One will be added for mbuf itself * at the end of the mlx5_tx_burst from * loc->pkts_sent field. */ --ntcp; txq->stats.opackets += ntcp; txq->stats.obytes += dlen + vlan + ntcp * inlen; #endif wqe = txq->wqes + (txq->wqe_ci & txq->wqe_m); loc->wqe_last = wqe; mlx5_tx_cseg_init(txq, loc, wqe, 0, MLX5_OPCODE_TSO, olx); ds = mlx5_tx_mseg_build(txq, loc, wqe, vlan, inlen, 1, olx); wqe->cseg.sq_ds = rte_cpu_to_be_32(txq->qp_num_8s | ds); txq->wqe_ci += (ds + 3) / 4; loc->wqe_free -= (ds + 3) / 4; return MLX5_TXCMP_CODE_MULTI; } /** * Tx one packet function for multi-segment SEND. Supports all * types of Tx offloads, uses MLX5_OPCODE_SEND to build WQEs, * sends one packet per WQE, without any data inlining in * Ethernet Segment. * * This routine is responsible for storing processed mbuf * into elts ring buffer and update elts_head. * * @param txq * Pointer to TX queue structure. * @param loc * Pointer to burst routine local context. * @param olx * Configured Tx offloads mask. It is fully defined at * compile time and may be used for optimization. * * @return * MLX5_TXCMP_CODE_EXIT - sending is done or impossible. * MLX5_TXCMP_CODE_ERROR - some unrecoverable error occurred. * Local context variables partially updated. */ static __rte_always_inline enum mlx5_txcmp_code mlx5_tx_packet_multi_send(struct mlx5_txq_data *restrict txq, struct mlx5_txq_local *restrict loc, unsigned int olx) { struct mlx5_wqe_dseg *restrict dseg; struct mlx5_wqe *restrict wqe; unsigned int ds, nseg; assert(NB_SEGS(loc->mbuf) > 1); /* * No inline at all, it means the CPU cycles saving * is prioritized at configuration, we should not * copy any packet data to WQE. */ nseg = NB_SEGS(loc->mbuf); ds = 2 + nseg; if (unlikely(loc->wqe_free < ((ds + 3) / 4))) return MLX5_TXCMP_CODE_EXIT; /* Check for maximal WQE size. */ if (unlikely((MLX5_WQE_SIZE_MAX / MLX5_WSEG_SIZE) < ((ds + 3) / 4))) return MLX5_TXCMP_CODE_ERROR; /* * Some Tx offloads may cause an error if * packet is not long enough, check against * assumed minimal length. */ if (rte_pktmbuf_pkt_len(loc->mbuf) <= MLX5_ESEG_MIN_INLINE_SIZE) return MLX5_TXCMP_CODE_ERROR; #ifdef MLX5_PMD_SOFT_COUNTERS /* Update sent data bytes counter. */ txq->stats.obytes += rte_pktmbuf_pkt_len(loc->mbuf); if (MLX5_TXOFF_CONFIG(VLAN) && loc->mbuf->ol_flags & PKT_TX_VLAN_PKT) txq->stats.obytes += sizeof(struct rte_vlan_hdr); #endif /* * SEND WQE, one WQEBB: * - Control Segment, SEND opcode * - Ethernet Segment, optional VLAN, no inline * - Data Segments, pointer only type */ wqe = txq->wqes + (txq->wqe_ci & txq->wqe_m); loc->wqe_last = wqe; mlx5_tx_cseg_init(txq, loc, wqe, ds, MLX5_OPCODE_SEND, olx); mlx5_tx_eseg_none(txq, loc, wqe, olx); dseg = &wqe->dseg[0]; do { if (unlikely(!rte_pktmbuf_data_len(loc->mbuf))) { struct rte_mbuf *mbuf; /* * Zero length segment found, have to * correct total size of WQE in segments. * It is supposed to be rare occasion, so * in normal case (no zero length segments) * we avoid extra writing to the Control * Segment. */ --ds; wqe->cseg.sq_ds -= RTE_BE32(1); mbuf = loc->mbuf; loc->mbuf = mbuf->next; rte_pktmbuf_free_seg(mbuf); if (--nseg == 0) break; } else { mlx5_tx_dseg_ptr (txq, loc, dseg, rte_pktmbuf_mtod(loc->mbuf, uint8_t *), rte_pktmbuf_data_len(loc->mbuf), olx); txq->elts[txq->elts_head++ & txq->elts_m] = loc->mbuf; --loc->elts_free; if (--nseg == 0) break; ++dseg; if ((uintptr_t)dseg >= (uintptr_t)txq->wqes_end) dseg = (struct mlx5_wqe_dseg *)txq->wqes; loc->mbuf = loc->mbuf->next; } } while (true); txq->wqe_ci += (ds + 3) / 4; loc->wqe_free -= (ds + 3) / 4; return MLX5_TXCMP_CODE_MULTI; } /** * Tx one packet function for multi-segment SEND. Supports all * types of Tx offloads, uses MLX5_OPCODE_SEND to build WQEs, * sends one packet per WQE, with data inlining in * Ethernet Segment and minimal Data Segments. * * This routine is responsible for storing processed mbuf * into elts ring buffer and update elts_head. * * @param txq * Pointer to TX queue structure. * @param loc * Pointer to burst routine local context. * @param olx * Configured Tx offloads mask. It is fully defined at * compile time and may be used for optimization. * * @return * MLX5_TXCMP_CODE_EXIT - sending is done or impossible. * MLX5_TXCMP_CODE_ERROR - some unrecoverable error occurred. * Local context variables partially updated. */ static __rte_always_inline enum mlx5_txcmp_code mlx5_tx_packet_multi_inline(struct mlx5_txq_data *restrict txq, struct mlx5_txq_local *restrict loc, unsigned int olx) { struct mlx5_wqe *restrict wqe; unsigned int ds, inlen, dlen, vlan = 0; assert(MLX5_TXOFF_CONFIG(INLINE)); assert(NB_SEGS(loc->mbuf) > 1); /* * First calculate data length to be inlined * to estimate the required space for WQE. */ dlen = rte_pktmbuf_pkt_len(loc->mbuf); if (MLX5_TXOFF_CONFIG(VLAN) && loc->mbuf->ol_flags & PKT_TX_VLAN_PKT) vlan = sizeof(struct rte_vlan_hdr); inlen = dlen + vlan; /* Check against minimal length. */ if (inlen <= MLX5_ESEG_MIN_INLINE_SIZE) return MLX5_TXCMP_CODE_ERROR; assert(txq->inlen_send >= MLX5_ESEG_MIN_INLINE_SIZE); if (inlen > txq->inlen_send) { struct rte_mbuf *mbuf; unsigned int nxlen; uintptr_t start; /* * Packet length exceeds the allowed inline * data length, check whether the minimal * inlining is required. */ if (txq->inlen_mode) { assert(txq->inlen_mode >= MLX5_ESEG_MIN_INLINE_SIZE); assert(txq->inlen_mode <= txq->inlen_send); inlen = txq->inlen_mode; } else { if (!vlan || txq->vlan_en) { /* * VLAN insertion will be done inside by HW. * It is not utmost effective - VLAN flag is * checked twice, but we should proceed the * inlining length correctly and take into * account the VLAN header being inserted. */ return mlx5_tx_packet_multi_send (txq, loc, olx); } inlen = MLX5_ESEG_MIN_INLINE_SIZE; } /* * Now we know the minimal amount of data is requested * to inline. Check whether we should inline the buffers * from the chain beginning to eliminate some mbufs. */ mbuf = loc->mbuf; nxlen = rte_pktmbuf_data_len(mbuf); if (unlikely(nxlen <= txq->inlen_send)) { /* We can inline first mbuf at least. */ if (nxlen < inlen) { unsigned int smlen; /* Scan mbufs till inlen filled. */ do { smlen = nxlen; mbuf = NEXT(mbuf); assert(mbuf); nxlen = rte_pktmbuf_data_len(mbuf); nxlen += smlen; } while (unlikely(nxlen < inlen)); if (unlikely(nxlen > txq->inlen_send)) { /* We cannot inline entire mbuf. */ smlen = inlen - smlen; start = rte_pktmbuf_mtod_offset (mbuf, uintptr_t, smlen); goto do_align; } } do { inlen = nxlen; mbuf = NEXT(mbuf); /* There should be not end of packet. */ assert(mbuf); nxlen = inlen + rte_pktmbuf_data_len(mbuf); } while (unlikely(nxlen < txq->inlen_send)); } start = rte_pktmbuf_mtod(mbuf, uintptr_t); /* * Check whether we can do inline to align start * address of data buffer to cacheline. */ do_align: start = (~start + 1) & (RTE_CACHE_LINE_SIZE - 1); if (unlikely(start)) { start += inlen; if (start <= txq->inlen_send) inlen = start; } } /* * Check whether there are enough free WQEBBs: * - Control Segment * - Ethernet Segment * - First Segment of inlined Ethernet data * - ... data continued ... * - Data Segments of pointer/min inline type * * Estimate the number of Data Segments conservatively, * supposing no any mbufs is being freed during inlining. */ assert(inlen <= txq->inlen_send); ds = NB_SEGS(loc->mbuf) + 2 + (inlen - MLX5_ESEG_MIN_INLINE_SIZE + MLX5_WSEG_SIZE + MLX5_WSEG_SIZE - 1) / MLX5_WSEG_SIZE; if (unlikely(loc->wqe_free < ((ds + 3) / 4))) return MLX5_TXCMP_CODE_EXIT; /* Check for maximal WQE size. */ if (unlikely((MLX5_WQE_SIZE_MAX / MLX5_WSEG_SIZE) < ((ds + 3) / 4))) return MLX5_TXCMP_CODE_ERROR; #ifdef MLX5_PMD_SOFT_COUNTERS /* Update sent data bytes/packets counters. */ txq->stats.obytes += dlen + vlan; #endif wqe = txq->wqes + (txq->wqe_ci & txq->wqe_m); loc->wqe_last = wqe; mlx5_tx_cseg_init(txq, loc, wqe, 0, MLX5_OPCODE_SEND, olx); ds = mlx5_tx_mseg_build(txq, loc, wqe, vlan, inlen, 0, olx); wqe->cseg.sq_ds = rte_cpu_to_be_32(txq->qp_num_8s | ds); txq->wqe_ci += (ds + 3) / 4; loc->wqe_free -= (ds + 3) / 4; return MLX5_TXCMP_CODE_MULTI; } /** * Tx burst function for multi-segment packets. Supports all * types of Tx offloads, uses MLX5_OPCODE_SEND/TSO to build WQEs, * sends one packet per WQE. Function stops sending if it * encounters the single-segment packet. * * This routine is responsible for storing processed mbuf * into elts ring buffer and update elts_head. * * @param txq * Pointer to TX queue structure. * @param[in] pkts * Packets to transmit. * @param pkts_n * Number of packets in array. * @param loc * Pointer to burst routine local context. * @param olx * Configured Tx offloads mask. It is fully defined at * compile time and may be used for optimization. * * @return * MLX5_TXCMP_CODE_EXIT - sending is done or impossible. * MLX5_TXCMP_CODE_ERROR - some unrecoverable error occurred. * MLX5_TXCMP_CODE_SINGLE - single-segment packet encountered. * MLX5_TXCMP_CODE_TSO - TSO single-segment packet encountered. * Local context variables updated. */ static __rte_always_inline enum mlx5_txcmp_code mlx5_tx_burst_mseg(struct mlx5_txq_data *restrict txq, struct rte_mbuf **restrict pkts, unsigned int pkts_n, struct mlx5_txq_local *restrict loc, unsigned int olx) { assert(loc->elts_free && loc->wqe_free); assert(pkts_n > loc->pkts_sent); pkts += loc->pkts_sent + 1; pkts_n -= loc->pkts_sent; for (;;) { enum mlx5_txcmp_code ret; assert(NB_SEGS(loc->mbuf) > 1); /* * Estimate the number of free elts quickly but * conservatively. Some segment may be fully inlined * and freed, ignore this here - precise estimation * is costly. */ if (loc->elts_free < NB_SEGS(loc->mbuf)) return MLX5_TXCMP_CODE_EXIT; if (MLX5_TXOFF_CONFIG(TSO) && unlikely(loc->mbuf->ol_flags & PKT_TX_TCP_SEG)) { /* Proceed with multi-segment TSO. */ ret = mlx5_tx_packet_multi_tso(txq, loc, olx); } else if (MLX5_TXOFF_CONFIG(INLINE)) { /* Proceed with multi-segment SEND with inlining. */ ret = mlx5_tx_packet_multi_inline(txq, loc, olx); } else { /* Proceed with multi-segment SEND w/o inlining. */ ret = mlx5_tx_packet_multi_send(txq, loc, olx); } if (ret == MLX5_TXCMP_CODE_EXIT) return MLX5_TXCMP_CODE_EXIT; if (ret == MLX5_TXCMP_CODE_ERROR) return MLX5_TXCMP_CODE_ERROR; /* WQE is built, go to the next packet. */ ++loc->pkts_sent; --pkts_n; if (unlikely(!pkts_n || !loc->elts_free || !loc->wqe_free)) return MLX5_TXCMP_CODE_EXIT; loc->mbuf = *pkts++; if (pkts_n > 1) rte_prefetch0(*pkts); if (likely(NB_SEGS(loc->mbuf) > 1)) continue; /* Here ends the series of multi-segment packets. */ if (MLX5_TXOFF_CONFIG(TSO) && unlikely(loc->mbuf->ol_flags & PKT_TX_TCP_SEG)) return MLX5_TXCMP_CODE_TSO; return MLX5_TXCMP_CODE_SINGLE; } assert(false); } /** * Tx burst function for single-segment packets with TSO. * Supports all types of Tx offloads, except multi-packets. * Uses MLX5_OPCODE_TSO to build WQEs, sends one packet per WQE. * Function stops sending if it encounters the multi-segment * packet or packet without TSO requested. * * The routine is responsible for storing processed mbuf * into elts ring buffer and update elts_head if inline * offloads is requested due to possible early freeing * of the inlined mbufs (can not store pkts array in elts * as a batch). * * @param txq * Pointer to TX queue structure. * @param[in] pkts * Packets to transmit. * @param pkts_n * Number of packets in array. * @param loc * Pointer to burst routine local context. * @param olx * Configured Tx offloads mask. It is fully defined at * compile time and may be used for optimization. * * @return * MLX5_TXCMP_CODE_EXIT - sending is done or impossible. * MLX5_TXCMP_CODE_ERROR - some unrecoverable error occurred. * MLX5_TXCMP_CODE_SINGLE - single-segment packet encountered. * MLX5_TXCMP_CODE_MULTI - multi-segment packet encountered. * Local context variables updated. */ static __rte_always_inline enum mlx5_txcmp_code mlx5_tx_burst_tso(struct mlx5_txq_data *restrict txq, struct rte_mbuf **restrict pkts, unsigned int pkts_n, struct mlx5_txq_local *restrict loc, unsigned int olx) { assert(loc->elts_free && loc->wqe_free); assert(pkts_n > loc->pkts_sent); pkts += loc->pkts_sent + 1; pkts_n -= loc->pkts_sent; for (;;) { struct mlx5_wqe_dseg *restrict dseg; struct mlx5_wqe *restrict wqe; unsigned int ds, dlen, hlen, ntcp, vlan = 0; uint8_t *dptr; assert(NB_SEGS(loc->mbuf) == 1); dlen = rte_pktmbuf_data_len(loc->mbuf); if (MLX5_TXOFF_CONFIG(VLAN) && loc->mbuf->ol_flags & PKT_TX_VLAN_PKT) { vlan = sizeof(struct rte_vlan_hdr); } /* * First calculate the WQE size to check * whether we have enough space in ring buffer. */ hlen = loc->mbuf->l2_len + vlan + loc->mbuf->l3_len + loc->mbuf->l4_len; if (unlikely((!hlen || !loc->mbuf->tso_segsz))) return MLX5_TXCMP_CODE_ERROR; if (loc->mbuf->ol_flags & PKT_TX_TUNNEL_MASK) hlen += loc->mbuf->outer_l2_len + loc->mbuf->outer_l3_len; /* Segment must contain all TSO headers. */ if (unlikely(hlen > MLX5_MAX_TSO_HEADER || hlen <= MLX5_ESEG_MIN_INLINE_SIZE || hlen > (dlen + vlan))) return MLX5_TXCMP_CODE_ERROR; /* * Check whether there are enough free WQEBBs: * - Control Segment * - Ethernet Segment * - First Segment of inlined Ethernet data * - ... data continued ... * - Finishing Data Segment of pointer type */ ds = 4 + (hlen - MLX5_ESEG_MIN_INLINE_SIZE + MLX5_WSEG_SIZE - 1) / MLX5_WSEG_SIZE; if (loc->wqe_free < ((ds + 3) / 4)) return MLX5_TXCMP_CODE_EXIT; #ifdef MLX5_PMD_SOFT_COUNTERS /* Update sent data bytes/packets counters. */ ntcp = (dlen + vlan - hlen + loc->mbuf->tso_segsz - 1) / loc->mbuf->tso_segsz; /* * One will be added for mbuf itself at the end * of the mlx5_tx_burst from loc->pkts_sent field. */ --ntcp; txq->stats.opackets += ntcp; txq->stats.obytes += dlen + vlan + ntcp * hlen; #endif /* * Build the TSO WQE: * - Control Segment * - Ethernet Segment with hlen bytes inlined * - Data Segment of pointer type */ wqe = txq->wqes + (txq->wqe_ci & txq->wqe_m); loc->wqe_last = wqe; mlx5_tx_cseg_init(txq, loc, wqe, ds, MLX5_OPCODE_TSO, olx); dseg = mlx5_tx_eseg_data(txq, loc, wqe, vlan, hlen, 1, olx); dptr = rte_pktmbuf_mtod(loc->mbuf, uint8_t *) + hlen - vlan; dlen -= hlen - vlan; mlx5_tx_dseg_ptr(txq, loc, dseg, dptr, dlen, olx); /* * WQE is built, update the loop parameters * and go to the next packet. */ txq->wqe_ci += (ds + 3) / 4; loc->wqe_free -= (ds + 3) / 4; if (MLX5_TXOFF_CONFIG(INLINE)) txq->elts[txq->elts_head++ & txq->elts_m] = loc->mbuf; --loc->elts_free; ++loc->pkts_sent; --pkts_n; if (unlikely(!pkts_n || !loc->elts_free || !loc->wqe_free)) return MLX5_TXCMP_CODE_EXIT; loc->mbuf = *pkts++; if (pkts_n > 1) rte_prefetch0(*pkts); if (MLX5_TXOFF_CONFIG(MULTI) && unlikely(NB_SEGS(loc->mbuf) > 1)) return MLX5_TXCMP_CODE_MULTI; if (likely(!(loc->mbuf->ol_flags & PKT_TX_TCP_SEG))) return MLX5_TXCMP_CODE_SINGLE; /* Continue with the next TSO packet. */ } assert(false); } /** * Analyze the packet and select the best method to send. * * @param txq * Pointer to TX queue structure. * @param loc * Pointer to burst routine local context. * @param olx * Configured Tx offloads mask. It is fully defined at * compile time and may be used for optimization. * @param newp * The predefined flag whether do complete check for * multi-segment packets and TSO. * * @return * MLX5_TXCMP_CODE_MULTI - multi-segment packet encountered. * MLX5_TXCMP_CODE_TSO - TSO required, use TSO/LSO. * MLX5_TXCMP_CODE_SINGLE - single-segment packet, use SEND. * MLX5_TXCMP_CODE_EMPW - single-segment packet, use MPW. */ static __rte_always_inline enum mlx5_txcmp_code mlx5_tx_able_to_empw(struct mlx5_txq_data *restrict txq, struct mlx5_txq_local *restrict loc, unsigned int olx, bool newp) { /* Check for multi-segment packet. */ if (newp && MLX5_TXOFF_CONFIG(MULTI) && unlikely(NB_SEGS(loc->mbuf) > 1)) return MLX5_TXCMP_CODE_MULTI; /* Check for TSO packet. */ if (newp && MLX5_TXOFF_CONFIG(TSO) && unlikely(loc->mbuf->ol_flags & PKT_TX_TCP_SEG)) return MLX5_TXCMP_CODE_TSO; /* Check if eMPW is enabled at all. */ if (!MLX5_TXOFF_CONFIG(EMPW)) return MLX5_TXCMP_CODE_SINGLE; /* Check if eMPW can be engaged. */ if (MLX5_TXOFF_CONFIG(VLAN) && unlikely(loc->mbuf->ol_flags & PKT_TX_VLAN_PKT) && (!MLX5_TXOFF_CONFIG(INLINE) || unlikely((rte_pktmbuf_data_len(loc->mbuf) + sizeof(struct rte_vlan_hdr)) > txq->inlen_empw))) { /* * eMPW does not support VLAN insertion offload, * we have to inline the entire packet but * packet is too long for inlining. */ return MLX5_TXCMP_CODE_SINGLE; } return MLX5_TXCMP_CODE_EMPW; } /** * Check the next packet attributes to match with the eMPW batch ones. * In addition, for legacy MPW the packet length is checked either. * * @param txq * Pointer to TX queue structure. * @param es * Pointer to Ethernet Segment of eMPW batch. * @param loc * Pointer to burst routine local context. * @param dlen * Length of previous packet in MPW descriptor. * @param olx * Configured Tx offloads mask. It is fully defined at * compile time and may be used for optimization. * * @return * true - packet match with eMPW batch attributes. * false - no match, eMPW should be restarted. */ static __rte_always_inline bool mlx5_tx_match_empw(struct mlx5_txq_data *restrict txq __rte_unused, struct mlx5_wqe_eseg *restrict es, struct mlx5_txq_local *restrict loc, uint32_t dlen, unsigned int olx) { uint8_t swp_flags = 0; /* Compare the checksum flags, if any. */ if (MLX5_TXOFF_CONFIG(CSUM) && txq_ol_cksum_to_cs(loc->mbuf) != es->cs_flags) return false; /* Compare the Software Parser offsets and flags. */ if (MLX5_TXOFF_CONFIG(SWP) && (es->swp_offs != txq_mbuf_to_swp(loc, &swp_flags, olx) || es->swp_flags != swp_flags)) return false; /* Fill metadata field if needed. */ if (MLX5_TXOFF_CONFIG(METADATA) && es->metadata != (loc->mbuf->ol_flags & PKT_TX_DYNF_METADATA ? *RTE_FLOW_DYNF_METADATA(loc->mbuf) : 0)) return false; /* Legacy MPW can send packets with the same lengt only. */ if (MLX5_TXOFF_CONFIG(MPW) && dlen != rte_pktmbuf_data_len(loc->mbuf)) return false; /* There must be no VLAN packets in eMPW loop. */ if (MLX5_TXOFF_CONFIG(VLAN)) assert(!(loc->mbuf->ol_flags & PKT_TX_VLAN_PKT)); return true; } /* * Update send loop variables and WQE for eMPW loop * without data inlining. Number of Data Segments is * equal to the number of sent packets. * * @param txq * Pointer to TX queue structure. * @param loc * Pointer to burst routine local context. * @param ds * Number of packets/Data Segments/Packets. * @param slen * Accumulated statistics, bytes sent * @param olx * Configured Tx offloads mask. It is fully defined at * compile time and may be used for optimization. * * @return * true - packet match with eMPW batch attributes. * false - no match, eMPW should be restarted. */ static __rte_always_inline void mlx5_tx_sdone_empw(struct mlx5_txq_data *restrict txq, struct mlx5_txq_local *restrict loc, unsigned int ds, unsigned int slen, unsigned int olx __rte_unused) { assert(!MLX5_TXOFF_CONFIG(INLINE)); #ifdef MLX5_PMD_SOFT_COUNTERS /* Update sent data bytes counter. */ txq->stats.obytes += slen; #else (void)slen; #endif loc->elts_free -= ds; loc->pkts_sent += ds; ds += 2; loc->wqe_last->cseg.sq_ds = rte_cpu_to_be_32(txq->qp_num_8s | ds); txq->wqe_ci += (ds + 3) / 4; loc->wqe_free -= (ds + 3) / 4; } /* * Update send loop variables and WQE for eMPW loop * with data inlining. Gets the size of pushed descriptors * and data to the WQE. * * @param txq * Pointer to TX queue structure. * @param loc * Pointer to burst routine local context. * @param len * Total size of descriptor/data in bytes. * @param slen * Accumulated statistics, data bytes sent. * @param olx * Configured Tx offloads mask. It is fully defined at * compile time and may be used for optimization. * * @return * true - packet match with eMPW batch attributes. * false - no match, eMPW should be restarted. */ static __rte_always_inline void mlx5_tx_idone_empw(struct mlx5_txq_data *restrict txq, struct mlx5_txq_local *restrict loc, unsigned int len, unsigned int slen, unsigned int olx __rte_unused) { struct mlx5_wqe_dseg *dseg = &loc->wqe_last->dseg[0]; assert(MLX5_TXOFF_CONFIG(INLINE)); #ifdef MLX5_PMD_SOFT_COUNTERS /* Update sent data bytes counter. */ txq->stats.obytes += slen; #else (void)slen; #endif if (MLX5_TXOFF_CONFIG(MPW) && dseg->bcount == RTE_BE32(0)) { /* * If the legacy MPW session contains the inline packets * we should set the only inline data segment length * and align the total length to the segment size. */ assert(len > sizeof(dseg->bcount)); dseg->bcount = rte_cpu_to_be_32((len - sizeof(dseg->bcount)) | MLX5_ETH_WQE_DATA_INLINE); len = (len + MLX5_WSEG_SIZE - 1) / MLX5_WSEG_SIZE + 2; } else { /* * The session is not legacy MPW or contains the * data buffer pointer segments. */ assert((len % MLX5_WSEG_SIZE) == 0); len = len / MLX5_WSEG_SIZE + 2; } loc->wqe_last->cseg.sq_ds = rte_cpu_to_be_32(txq->qp_num_8s | len); txq->wqe_ci += (len + 3) / 4; loc->wqe_free -= (len + 3) / 4; } /** * The set of Tx burst functions for single-segment packets * without TSO and with Multi-Packet Writing feature support. * Supports all types of Tx offloads, except multi-packets * and TSO. * * Uses MLX5_OPCODE_EMPW to build WQEs if possible and sends * as many packet per WQE as it can. If eMPW is not configured * or packet can not be sent with eMPW (VLAN insertion) the * ordinary SEND opcode is used and only one packet placed * in WQE. * * Functions stop sending if it encounters the multi-segment * packet or packet with TSO requested. * * The routines are responsible for storing processed mbuf * into elts ring buffer and update elts_head if inlining * offload is requested. Otherwise the copying mbufs to elts * can be postponed and completed at the end of burst routine. * * @param txq * Pointer to TX queue structure. * @param[in] pkts * Packets to transmit. * @param pkts_n * Number of packets in array. * @param loc * Pointer to burst routine local context. * @param olx * Configured Tx offloads mask. It is fully defined at * compile time and may be used for optimization. * * @return * MLX5_TXCMP_CODE_EXIT - sending is done or impossible. * MLX5_TXCMP_CODE_ERROR - some unrecoverable error occurred. * MLX5_TXCMP_CODE_MULTI - multi-segment packet encountered. * MLX5_TXCMP_CODE_TSO - TSO packet encountered. * MLX5_TXCMP_CODE_SINGLE - used inside functions set. * MLX5_TXCMP_CODE_EMPW - used inside functions set. * * Local context variables updated. * * * The routine sends packets with MLX5_OPCODE_EMPW * without inlining, this is dedicated optimized branch. * No VLAN insertion is supported. */ static __rte_always_inline enum mlx5_txcmp_code mlx5_tx_burst_empw_simple(struct mlx5_txq_data *restrict txq, struct rte_mbuf **restrict pkts, unsigned int pkts_n, struct mlx5_txq_local *restrict loc, unsigned int olx) { /* * Subroutine is the part of mlx5_tx_burst_single() * and sends single-segment packet with eMPW opcode * without data inlining. */ assert(!MLX5_TXOFF_CONFIG(INLINE)); assert(MLX5_TXOFF_CONFIG(EMPW)); assert(loc->elts_free && loc->wqe_free); assert(pkts_n > loc->pkts_sent); static_assert(MLX5_EMPW_MIN_PACKETS >= 2, "invalid min size"); pkts += loc->pkts_sent + 1; pkts_n -= loc->pkts_sent; for (;;) { struct mlx5_wqe_dseg *restrict dseg; struct mlx5_wqe_eseg *restrict eseg; enum mlx5_txcmp_code ret; unsigned int part, loop; unsigned int slen = 0; next_empw: assert(NB_SEGS(loc->mbuf) == 1); part = RTE_MIN(pkts_n, MLX5_TXOFF_CONFIG(MPW) ? MLX5_MPW_MAX_PACKETS : MLX5_EMPW_MAX_PACKETS); if (unlikely(loc->elts_free < part)) { /* We have no enough elts to save all mbufs. */ if (unlikely(loc->elts_free < MLX5_EMPW_MIN_PACKETS)) return MLX5_TXCMP_CODE_EXIT; /* But we still able to send at least minimal eMPW. */ part = loc->elts_free; } /* Check whether we have enough WQEs */ if (unlikely(loc->wqe_free < ((2 + part + 3) / 4))) { if (unlikely(loc->wqe_free < ((2 + MLX5_EMPW_MIN_PACKETS + 3) / 4))) return MLX5_TXCMP_CODE_EXIT; part = (loc->wqe_free * 4) - 2; } if (likely(part > 1)) rte_prefetch0(*pkts); loc->wqe_last = txq->wqes + (txq->wqe_ci & txq->wqe_m); /* * Build eMPW title WQEBB: * - Control Segment, eMPW opcode * - Ethernet Segment, no inline */ mlx5_tx_cseg_init(txq, loc, loc->wqe_last, part + 2, MLX5_OPCODE_ENHANCED_MPSW, olx); mlx5_tx_eseg_none(txq, loc, loc->wqe_last, olx & ~MLX5_TXOFF_CONFIG_VLAN); eseg = &loc->wqe_last->eseg; dseg = &loc->wqe_last->dseg[0]; loop = part; /* Store the packet length for legacy MPW. */ if (MLX5_TXOFF_CONFIG(MPW)) eseg->mss = rte_cpu_to_be_16 (rte_pktmbuf_data_len(loc->mbuf)); for (;;) { uint32_t dlen = rte_pktmbuf_data_len(loc->mbuf); #ifdef MLX5_PMD_SOFT_COUNTERS /* Update sent data bytes counter. */ slen += dlen; #endif mlx5_tx_dseg_ptr (txq, loc, dseg, rte_pktmbuf_mtod(loc->mbuf, uint8_t *), dlen, olx); if (unlikely(--loop == 0)) break; loc->mbuf = *pkts++; if (likely(loop > 1)) rte_prefetch0(*pkts); ret = mlx5_tx_able_to_empw(txq, loc, olx, true); /* * Unroll the completion code to avoid * returning variable value - it results in * unoptimized sequent checking in caller. */ if (ret == MLX5_TXCMP_CODE_MULTI) { part -= loop; mlx5_tx_sdone_empw(txq, loc, part, slen, olx); if (unlikely(!loc->elts_free || !loc->wqe_free)) return MLX5_TXCMP_CODE_EXIT; return MLX5_TXCMP_CODE_MULTI; } assert(NB_SEGS(loc->mbuf) == 1); if (ret == MLX5_TXCMP_CODE_TSO) { part -= loop; mlx5_tx_sdone_empw(txq, loc, part, slen, olx); if (unlikely(!loc->elts_free || !loc->wqe_free)) return MLX5_TXCMP_CODE_EXIT; return MLX5_TXCMP_CODE_TSO; } if (ret == MLX5_TXCMP_CODE_SINGLE) { part -= loop; mlx5_tx_sdone_empw(txq, loc, part, slen, olx); if (unlikely(!loc->elts_free || !loc->wqe_free)) return MLX5_TXCMP_CODE_EXIT; return MLX5_TXCMP_CODE_SINGLE; } if (ret != MLX5_TXCMP_CODE_EMPW) { assert(false); part -= loop; mlx5_tx_sdone_empw(txq, loc, part, slen, olx); return MLX5_TXCMP_CODE_ERROR; } /* * Check whether packet parameters coincide * within assumed eMPW batch: * - check sum settings * - metadata value * - software parser settings * - packets length (legacy MPW only) */ if (!mlx5_tx_match_empw(txq, eseg, loc, dlen, olx)) { assert(loop); part -= loop; mlx5_tx_sdone_empw(txq, loc, part, slen, olx); if (unlikely(!loc->elts_free || !loc->wqe_free)) return MLX5_TXCMP_CODE_EXIT; pkts_n -= part; goto next_empw; } /* Packet attributes match, continue the same eMPW. */ ++dseg; if ((uintptr_t)dseg >= (uintptr_t)txq->wqes_end) dseg = (struct mlx5_wqe_dseg *)txq->wqes; } /* eMPW is built successfully, update loop parameters. */ assert(!loop); assert(pkts_n >= part); #ifdef MLX5_PMD_SOFT_COUNTERS /* Update sent data bytes counter. */ txq->stats.obytes += slen; #endif loc->elts_free -= part; loc->pkts_sent += part; txq->wqe_ci += (2 + part + 3) / 4; loc->wqe_free -= (2 + part + 3) / 4; pkts_n -= part; if (unlikely(!pkts_n || !loc->elts_free || !loc->wqe_free)) return MLX5_TXCMP_CODE_EXIT; loc->mbuf = *pkts++; ret = mlx5_tx_able_to_empw(txq, loc, olx, true); if (unlikely(ret != MLX5_TXCMP_CODE_EMPW)) return ret; /* Continue sending eMPW batches. */ } assert(false); } /** * The routine sends packets with MLX5_OPCODE_EMPW * with inlining, optionally supports VLAN insertion. */ static __rte_always_inline enum mlx5_txcmp_code mlx5_tx_burst_empw_inline(struct mlx5_txq_data *restrict txq, struct rte_mbuf **restrict pkts, unsigned int pkts_n, struct mlx5_txq_local *restrict loc, unsigned int olx) { /* * Subroutine is the part of mlx5_tx_burst_single() * and sends single-segment packet with eMPW opcode * with data inlining. */ assert(MLX5_TXOFF_CONFIG(INLINE)); assert(MLX5_TXOFF_CONFIG(EMPW)); assert(loc->elts_free && loc->wqe_free); assert(pkts_n > loc->pkts_sent); static_assert(MLX5_EMPW_MIN_PACKETS >= 2, "invalid min size"); pkts += loc->pkts_sent + 1; pkts_n -= loc->pkts_sent; for (;;) { struct mlx5_wqe_dseg *restrict dseg; struct mlx5_wqe_eseg *restrict eseg; enum mlx5_txcmp_code ret; unsigned int room, part, nlim; unsigned int slen = 0; assert(NB_SEGS(loc->mbuf) == 1); /* * Limits the amount of packets in one WQE * to improve CQE latency generation. */ nlim = RTE_MIN(pkts_n, MLX5_TXOFF_CONFIG(MPW) ? MLX5_MPW_INLINE_MAX_PACKETS : MLX5_EMPW_MAX_PACKETS); /* Check whether we have minimal amount WQEs */ if (unlikely(loc->wqe_free < ((2 + MLX5_EMPW_MIN_PACKETS + 3) / 4))) return MLX5_TXCMP_CODE_EXIT; if (likely(pkts_n > 1)) rte_prefetch0(*pkts); loc->wqe_last = txq->wqes + (txq->wqe_ci & txq->wqe_m); /* * Build eMPW title WQEBB: * - Control Segment, eMPW opcode, zero DS * - Ethernet Segment, no inline */ mlx5_tx_cseg_init(txq, loc, loc->wqe_last, 0, MLX5_OPCODE_ENHANCED_MPSW, olx); mlx5_tx_eseg_none(txq, loc, loc->wqe_last, olx & ~MLX5_TXOFF_CONFIG_VLAN); eseg = &loc->wqe_last->eseg; dseg = &loc->wqe_last->dseg[0]; /* Store the packet length for legacy MPW. */ if (MLX5_TXOFF_CONFIG(MPW)) eseg->mss = rte_cpu_to_be_16 (rte_pktmbuf_data_len(loc->mbuf)); room = RTE_MIN(MLX5_WQE_SIZE_MAX / MLX5_WQE_SIZE, loc->wqe_free) * MLX5_WQE_SIZE - MLX5_WQE_CSEG_SIZE - MLX5_WQE_ESEG_SIZE; /* Limit the room for legacy MPW sessions for performance. */ if (MLX5_TXOFF_CONFIG(MPW)) room = RTE_MIN(room, RTE_MAX(txq->inlen_empw + sizeof(dseg->bcount) + (MLX5_TXOFF_CONFIG(VLAN) ? sizeof(struct rte_vlan_hdr) : 0), MLX5_MPW_INLINE_MAX_PACKETS * MLX5_WQE_DSEG_SIZE)); /* Build WQE till we have space, packets and resources. */ part = room; for (;;) { uint32_t dlen = rte_pktmbuf_data_len(loc->mbuf); uint8_t *dptr = rte_pktmbuf_mtod(loc->mbuf, uint8_t *); unsigned int tlen; assert(room >= MLX5_WQE_DSEG_SIZE); assert((room % MLX5_WQE_DSEG_SIZE) == 0); assert((uintptr_t)dseg < (uintptr_t)txq->wqes_end); /* * Some Tx offloads may cause an error if * packet is not long enough, check against * assumed minimal length. */ if (unlikely(dlen <= MLX5_ESEG_MIN_INLINE_SIZE)) { part -= room; if (unlikely(!part)) return MLX5_TXCMP_CODE_ERROR; /* * We have some successfully built * packet Data Segments to send. */ mlx5_tx_idone_empw(txq, loc, part, slen, olx); return MLX5_TXCMP_CODE_ERROR; } /* Inline or not inline - that's the Question. */ if (dlen > txq->inlen_empw) goto pointer_empw; if (MLX5_TXOFF_CONFIG(MPW)) { if (dlen > txq->inlen_send) goto pointer_empw; tlen = dlen; if (part == room) { /* Open new inline MPW session. */ tlen += sizeof(dseg->bcount); dseg->bcount = RTE_BE32(0); dseg = RTE_PTR_ADD (dseg, sizeof(dseg->bcount)); } else { /* * No pointer and inline descriptor * intermix for legacy MPW sessions. */ if (loc->wqe_last->dseg[0].bcount) break; } } else { tlen = sizeof(dseg->bcount) + dlen; } /* Inline entire packet, optional VLAN insertion. */ if (MLX5_TXOFF_CONFIG(VLAN) && loc->mbuf->ol_flags & PKT_TX_VLAN_PKT) { /* * The packet length must be checked in * mlx5_tx_able_to_empw() and packet * fits into inline length guaranteed. */ assert((dlen + sizeof(struct rte_vlan_hdr)) <= txq->inlen_empw); tlen += sizeof(struct rte_vlan_hdr); if (room < tlen) break; dseg = mlx5_tx_dseg_vlan(txq, loc, dseg, dptr, dlen, olx); #ifdef MLX5_PMD_SOFT_COUNTERS /* Update sent data bytes counter. */ slen += sizeof(struct rte_vlan_hdr); #endif } else { if (room < tlen) break; dseg = mlx5_tx_dseg_empw(txq, loc, dseg, dptr, dlen, olx); } if (!MLX5_TXOFF_CONFIG(MPW)) tlen = RTE_ALIGN(tlen, MLX5_WSEG_SIZE); assert(room >= tlen); room -= tlen; /* * Packet data are completely inlined, * free the packet immediately. */ rte_pktmbuf_free_seg(loc->mbuf); goto next_mbuf; pointer_empw: /* * No pointer and inline descriptor * intermix for legacy MPW sessions. */ if (MLX5_TXOFF_CONFIG(MPW) && part != room && loc->wqe_last->dseg[0].bcount == RTE_BE32(0)) break; /* * Not inlinable VLAN packets are * proceeded outside of this routine. */ assert(room >= MLX5_WQE_DSEG_SIZE); if (MLX5_TXOFF_CONFIG(VLAN)) assert(!(loc->mbuf->ol_flags & PKT_TX_VLAN_PKT)); mlx5_tx_dseg_ptr(txq, loc, dseg, dptr, dlen, olx); /* We have to store mbuf in elts.*/ txq->elts[txq->elts_head++ & txq->elts_m] = loc->mbuf; room -= MLX5_WQE_DSEG_SIZE; /* Ring buffer wraparound is checked at the loop end.*/ ++dseg; next_mbuf: #ifdef MLX5_PMD_SOFT_COUNTERS /* Update sent data bytes counter. */ slen += dlen; #endif loc->pkts_sent++; loc->elts_free--; pkts_n--; if (unlikely(!pkts_n || !loc->elts_free)) { /* * We have no resources/packets to * continue build descriptors. */ part -= room; mlx5_tx_idone_empw(txq, loc, part, slen, olx); return MLX5_TXCMP_CODE_EXIT; } loc->mbuf = *pkts++; if (likely(pkts_n > 1)) rte_prefetch0(*pkts); ret = mlx5_tx_able_to_empw(txq, loc, olx, true); /* * Unroll the completion code to avoid * returning variable value - it results in * unoptimized sequent checking in caller. */ if (ret == MLX5_TXCMP_CODE_MULTI) { part -= room; mlx5_tx_idone_empw(txq, loc, part, slen, olx); if (unlikely(!loc->elts_free || !loc->wqe_free)) return MLX5_TXCMP_CODE_EXIT; return MLX5_TXCMP_CODE_MULTI; } assert(NB_SEGS(loc->mbuf) == 1); if (ret == MLX5_TXCMP_CODE_TSO) { part -= room; mlx5_tx_idone_empw(txq, loc, part, slen, olx); if (unlikely(!loc->elts_free || !loc->wqe_free)) return MLX5_TXCMP_CODE_EXIT; return MLX5_TXCMP_CODE_TSO; } if (ret == MLX5_TXCMP_CODE_SINGLE) { part -= room; mlx5_tx_idone_empw(txq, loc, part, slen, olx); if (unlikely(!loc->elts_free || !loc->wqe_free)) return MLX5_TXCMP_CODE_EXIT; return MLX5_TXCMP_CODE_SINGLE; } if (ret != MLX5_TXCMP_CODE_EMPW) { assert(false); part -= room; mlx5_tx_idone_empw(txq, loc, part, slen, olx); return MLX5_TXCMP_CODE_ERROR; } /* Check if we have minimal room left. */ nlim--; if (unlikely(!nlim || room < MLX5_WQE_DSEG_SIZE)) break; /* * Check whether packet parameters coincide * within assumed eMPW batch: * - check sum settings * - metadata value * - software parser settings * - packets length (legacy MPW only) */ if (!mlx5_tx_match_empw(txq, eseg, loc, dlen, olx)) break; /* Packet attributes match, continue the same eMPW. */ if ((uintptr_t)dseg >= (uintptr_t)txq->wqes_end) dseg = (struct mlx5_wqe_dseg *)txq->wqes; } /* * We get here to close an existing eMPW * session and start the new one. */ assert(pkts_n); part -= room; if (unlikely(!part)) return MLX5_TXCMP_CODE_EXIT; mlx5_tx_idone_empw(txq, loc, part, slen, olx); if (unlikely(!loc->elts_free || !loc->wqe_free)) return MLX5_TXCMP_CODE_EXIT; /* Continue the loop with new eMPW session. */ } assert(false); } /** * The routine sends packets with ordinary MLX5_OPCODE_SEND. * Data inlining and VLAN insertion are supported. */ static __rte_always_inline enum mlx5_txcmp_code mlx5_tx_burst_single_send(struct mlx5_txq_data *restrict txq, struct rte_mbuf **restrict pkts, unsigned int pkts_n, struct mlx5_txq_local *restrict loc, unsigned int olx) { /* * Subroutine is the part of mlx5_tx_burst_single() * and sends single-segment packet with SEND opcode. */ assert(loc->elts_free && loc->wqe_free); assert(pkts_n > loc->pkts_sent); pkts += loc->pkts_sent + 1; pkts_n -= loc->pkts_sent; for (;;) { struct mlx5_wqe *restrict wqe; enum mlx5_txcmp_code ret; assert(NB_SEGS(loc->mbuf) == 1); if (MLX5_TXOFF_CONFIG(INLINE)) { unsigned int inlen, vlan = 0; inlen = rte_pktmbuf_data_len(loc->mbuf); if (MLX5_TXOFF_CONFIG(VLAN) && loc->mbuf->ol_flags & PKT_TX_VLAN_PKT) { vlan = sizeof(struct rte_vlan_hdr); inlen += vlan; static_assert((sizeof(struct rte_vlan_hdr) + sizeof(struct rte_ether_hdr)) == MLX5_ESEG_MIN_INLINE_SIZE, "invalid min inline data size"); } /* * If inlining is enabled at configuration time * the limit must be not less than minimal size. * Otherwise we would do extra check for data * size to avoid crashes due to length overflow. */ assert(txq->inlen_send >= MLX5_ESEG_MIN_INLINE_SIZE); if (inlen <= txq->inlen_send) { unsigned int seg_n, wqe_n; rte_prefetch0(rte_pktmbuf_mtod (loc->mbuf, uint8_t *)); /* Check against minimal length. */ if (inlen <= MLX5_ESEG_MIN_INLINE_SIZE) return MLX5_TXCMP_CODE_ERROR; /* * Completely inlined packet data WQE: * - Control Segment, SEND opcode * - Ethernet Segment, no VLAN insertion * - Data inlined, VLAN optionally inserted * - Alignment to MLX5_WSEG_SIZE * Have to estimate amount of WQEBBs */ seg_n = (inlen + 3 * MLX5_WSEG_SIZE - MLX5_ESEG_MIN_INLINE_SIZE + MLX5_WSEG_SIZE - 1) / MLX5_WSEG_SIZE; /* Check if there are enough WQEBBs. */ wqe_n = (seg_n + 3) / 4; if (wqe_n > loc->wqe_free) return MLX5_TXCMP_CODE_EXIT; wqe = txq->wqes + (txq->wqe_ci & txq->wqe_m); loc->wqe_last = wqe; mlx5_tx_cseg_init(txq, loc, wqe, seg_n, MLX5_OPCODE_SEND, olx); mlx5_tx_eseg_data(txq, loc, wqe, vlan, inlen, 0, olx); txq->wqe_ci += wqe_n; loc->wqe_free -= wqe_n; /* * Packet data are completely inlined, * free the packet immediately. */ rte_pktmbuf_free_seg(loc->mbuf); } else if ((!MLX5_TXOFF_CONFIG(EMPW) || MLX5_TXOFF_CONFIG(MPW)) && txq->inlen_mode) { /* * If minimal inlining is requested the eMPW * feature should be disabled due to data is * inlined into Ethernet Segment, which can * not contain inlined data for eMPW due to * segment shared for all packets. */ struct mlx5_wqe_dseg *restrict dseg; unsigned int ds; uint8_t *dptr; /* * The inline-mode settings require * to inline the specified amount of * data bytes to the Ethernet Segment. * We should check the free space in * WQE ring buffer to inline partially. */ assert(txq->inlen_send >= txq->inlen_mode); assert(inlen > txq->inlen_mode); assert(txq->inlen_mode >= MLX5_ESEG_MIN_INLINE_SIZE); /* * Check whether there are enough free WQEBBs: * - Control Segment * - Ethernet Segment * - First Segment of inlined Ethernet data * - ... data continued ... * - Finishing Data Segment of pointer type */ ds = (MLX5_WQE_CSEG_SIZE + MLX5_WQE_ESEG_SIZE + MLX5_WQE_DSEG_SIZE + txq->inlen_mode - MLX5_ESEG_MIN_INLINE_SIZE + MLX5_WQE_DSEG_SIZE + MLX5_WSEG_SIZE - 1) / MLX5_WSEG_SIZE; if (loc->wqe_free < ((ds + 3) / 4)) return MLX5_TXCMP_CODE_EXIT; /* * Build the ordinary SEND WQE: * - Control Segment * - Ethernet Segment, inline inlen_mode bytes * - Data Segment of pointer type */ wqe = txq->wqes + (txq->wqe_ci & txq->wqe_m); loc->wqe_last = wqe; mlx5_tx_cseg_init(txq, loc, wqe, ds, MLX5_OPCODE_SEND, olx); dseg = mlx5_tx_eseg_data(txq, loc, wqe, vlan, txq->inlen_mode, 0, olx); dptr = rte_pktmbuf_mtod(loc->mbuf, uint8_t *) + txq->inlen_mode - vlan; inlen -= txq->inlen_mode; mlx5_tx_dseg_ptr(txq, loc, dseg, dptr, inlen, olx); /* * WQE is built, update the loop parameters * and got to the next packet. */ txq->wqe_ci += (ds + 3) / 4; loc->wqe_free -= (ds + 3) / 4; /* We have to store mbuf in elts.*/ assert(MLX5_TXOFF_CONFIG(INLINE)); txq->elts[txq->elts_head++ & txq->elts_m] = loc->mbuf; --loc->elts_free; } else { uint8_t *dptr; unsigned int dlen; /* * Partially inlined packet data WQE, we have * some space in title WQEBB, we can fill it * with some packet data. It takes one WQEBB, * it is available, no extra space check: * - Control Segment, SEND opcode * - Ethernet Segment, no VLAN insertion * - MLX5_ESEG_MIN_INLINE_SIZE bytes of Data * - Data Segment, pointer type * * We also get here if VLAN insertion is not * supported by HW, the inline is enabled. */ wqe = txq->wqes + (txq->wqe_ci & txq->wqe_m); loc->wqe_last = wqe; mlx5_tx_cseg_init(txq, loc, wqe, 4, MLX5_OPCODE_SEND, olx); mlx5_tx_eseg_dmin(txq, loc, wqe, vlan, olx); dptr = rte_pktmbuf_mtod(loc->mbuf, uint8_t *) + MLX5_ESEG_MIN_INLINE_SIZE - vlan; /* * The length check is performed above, by * comparing with txq->inlen_send. We should * not get overflow here. */ assert(inlen > MLX5_ESEG_MIN_INLINE_SIZE); dlen = inlen - MLX5_ESEG_MIN_INLINE_SIZE; mlx5_tx_dseg_ptr(txq, loc, &wqe->dseg[1], dptr, dlen, olx); ++txq->wqe_ci; --loc->wqe_free; /* We have to store mbuf in elts.*/ assert(MLX5_TXOFF_CONFIG(INLINE)); txq->elts[txq->elts_head++ & txq->elts_m] = loc->mbuf; --loc->elts_free; } #ifdef MLX5_PMD_SOFT_COUNTERS /* Update sent data bytes counter. */ txq->stats.obytes += vlan + rte_pktmbuf_data_len(loc->mbuf); #endif } else { /* * No inline at all, it means the CPU cycles saving * is prioritized at configuration, we should not * copy any packet data to WQE. * * SEND WQE, one WQEBB: * - Control Segment, SEND opcode * - Ethernet Segment, optional VLAN, no inline * - Data Segment, pointer type */ wqe = txq->wqes + (txq->wqe_ci & txq->wqe_m); loc->wqe_last = wqe; mlx5_tx_cseg_init(txq, loc, wqe, 3, MLX5_OPCODE_SEND, olx); mlx5_tx_eseg_none(txq, loc, wqe, olx); mlx5_tx_dseg_ptr (txq, loc, &wqe->dseg[0], rte_pktmbuf_mtod(loc->mbuf, uint8_t *), rte_pktmbuf_data_len(loc->mbuf), olx); ++txq->wqe_ci; --loc->wqe_free; /* * We should not store mbuf pointer in elts * if no inlining is configured, this is done * by calling routine in a batch copy. */ assert(!MLX5_TXOFF_CONFIG(INLINE)); --loc->elts_free; #ifdef MLX5_PMD_SOFT_COUNTERS /* Update sent data bytes counter. */ txq->stats.obytes += rte_pktmbuf_data_len(loc->mbuf); if (MLX5_TXOFF_CONFIG(VLAN) && loc->mbuf->ol_flags & PKT_TX_VLAN_PKT) txq->stats.obytes += sizeof(struct rte_vlan_hdr); #endif } ++loc->pkts_sent; --pkts_n; if (unlikely(!pkts_n || !loc->elts_free || !loc->wqe_free)) return MLX5_TXCMP_CODE_EXIT; loc->mbuf = *pkts++; if (pkts_n > 1) rte_prefetch0(*pkts); ret = mlx5_tx_able_to_empw(txq, loc, olx, true); if (unlikely(ret != MLX5_TXCMP_CODE_SINGLE)) return ret; } assert(false); } static __rte_always_inline enum mlx5_txcmp_code mlx5_tx_burst_single(struct mlx5_txq_data *restrict txq, struct rte_mbuf **restrict pkts, unsigned int pkts_n, struct mlx5_txq_local *restrict loc, unsigned int olx) { enum mlx5_txcmp_code ret; ret = mlx5_tx_able_to_empw(txq, loc, olx, false); if (ret == MLX5_TXCMP_CODE_SINGLE) goto ordinary_send; assert(ret == MLX5_TXCMP_CODE_EMPW); for (;;) { /* Optimize for inline/no inline eMPW send. */ ret = (MLX5_TXOFF_CONFIG(INLINE)) ? mlx5_tx_burst_empw_inline (txq, pkts, pkts_n, loc, olx) : mlx5_tx_burst_empw_simple (txq, pkts, pkts_n, loc, olx); if (ret != MLX5_TXCMP_CODE_SINGLE) return ret; /* The resources to send one packet should remain. */ assert(loc->elts_free && loc->wqe_free); ordinary_send: ret = mlx5_tx_burst_single_send(txq, pkts, pkts_n, loc, olx); assert(ret != MLX5_TXCMP_CODE_SINGLE); if (ret != MLX5_TXCMP_CODE_EMPW) return ret; /* The resources to send one packet should remain. */ assert(loc->elts_free && loc->wqe_free); } } /** * DPDK Tx callback template. This is configured template * used to generate routines optimized for specified offload setup. * One of this generated functions is chosen at SQ configuration * time. * * @param txq * Generic pointer to TX queue structure. * @param[in] pkts * Packets to transmit. * @param pkts_n * Number of packets in array. * @param olx * Configured offloads mask, presents the bits of MLX5_TXOFF_CONFIG_xxx * values. Should be static to take compile time static configuration * advantages. * * @return * Number of packets successfully transmitted (<= pkts_n). */ static __rte_always_inline uint16_t mlx5_tx_burst_tmpl(struct mlx5_txq_data *restrict txq, struct rte_mbuf **restrict pkts, uint16_t pkts_n, unsigned int olx) { struct mlx5_txq_local loc; enum mlx5_txcmp_code ret; unsigned int part; assert(txq->elts_s >= (uint16_t)(txq->elts_head - txq->elts_tail)); assert(txq->wqe_s >= (uint16_t)(txq->wqe_ci - txq->wqe_pi)); if (unlikely(!pkts_n)) return 0; loc.pkts_sent = 0; loc.pkts_copy = 0; loc.wqe_last = NULL; send_loop: loc.pkts_loop = loc.pkts_sent; /* * Check if there are some CQEs, if any: * - process an encountered errors * - process the completed WQEs * - free related mbufs * - doorbell the NIC about processed CQEs */ rte_prefetch0(*(pkts + loc.pkts_sent)); mlx5_tx_handle_completion(txq, olx); /* * Calculate the number of available resources - elts and WQEs. * There are two possible different scenarios: * - no data inlining into WQEs, one WQEBB may contains upto * four packets, in this case elts become scarce resource * - data inlining into WQEs, one packet may require multiple * WQEBBs, the WQEs become the limiting factor. */ assert(txq->elts_s >= (uint16_t)(txq->elts_head - txq->elts_tail)); loc.elts_free = txq->elts_s - (uint16_t)(txq->elts_head - txq->elts_tail); assert(txq->wqe_s >= (uint16_t)(txq->wqe_ci - txq->wqe_pi)); loc.wqe_free = txq->wqe_s - (uint16_t)(txq->wqe_ci - txq->wqe_pi); if (unlikely(!loc.elts_free || !loc.wqe_free)) goto burst_exit; for (;;) { /* * Fetch the packet from array. Usually this is * the first packet in series of multi/single * segment packets. */ loc.mbuf = *(pkts + loc.pkts_sent); /* Dedicated branch for multi-segment packets. */ if (MLX5_TXOFF_CONFIG(MULTI) && unlikely(NB_SEGS(loc.mbuf) > 1)) { /* * Multi-segment packet encountered. * Hardware is able to process it only * with SEND/TSO opcodes, one packet * per WQE, do it in dedicated routine. */ enter_send_multi: assert(loc.pkts_sent >= loc.pkts_copy); part = loc.pkts_sent - loc.pkts_copy; if (!MLX5_TXOFF_CONFIG(INLINE) && part) { /* * There are some single-segment mbufs not * stored in elts. The mbufs must be in the * same order as WQEs, so we must copy the * mbufs to elts here, before the coming * multi-segment packet mbufs is appended. */ mlx5_tx_copy_elts(txq, pkts + loc.pkts_copy, part, olx); loc.pkts_copy = loc.pkts_sent; } assert(pkts_n > loc.pkts_sent); ret = mlx5_tx_burst_mseg(txq, pkts, pkts_n, &loc, olx); if (!MLX5_TXOFF_CONFIG(INLINE)) loc.pkts_copy = loc.pkts_sent; /* * These returned code checks are supposed * to be optimized out due to routine inlining. */ if (ret == MLX5_TXCMP_CODE_EXIT) { /* * The routine returns this code when * all packets are sent or there is no * enough resources to complete request. */ break; } if (ret == MLX5_TXCMP_CODE_ERROR) { /* * The routine returns this code when * some error in the incoming packets * format occurred. */ txq->stats.oerrors++; break; } if (ret == MLX5_TXCMP_CODE_SINGLE) { /* * The single-segment packet was encountered * in the array, try to send it with the * best optimized way, possible engaging eMPW. */ goto enter_send_single; } if (MLX5_TXOFF_CONFIG(TSO) && ret == MLX5_TXCMP_CODE_TSO) { /* * The single-segment TSO packet was * encountered in the array. */ goto enter_send_tso; } /* We must not get here. Something is going wrong. */ assert(false); txq->stats.oerrors++; break; } /* Dedicated branch for single-segment TSO packets. */ if (MLX5_TXOFF_CONFIG(TSO) && unlikely(loc.mbuf->ol_flags & PKT_TX_TCP_SEG)) { /* * TSO might require special way for inlining * (dedicated parameters) and is sent with * MLX5_OPCODE_TSO opcode only, provide this * in dedicated branch. */ enter_send_tso: assert(NB_SEGS(loc.mbuf) == 1); assert(pkts_n > loc.pkts_sent); ret = mlx5_tx_burst_tso(txq, pkts, pkts_n, &loc, olx); /* * These returned code checks are supposed * to be optimized out due to routine inlining. */ if (ret == MLX5_TXCMP_CODE_EXIT) break; if (ret == MLX5_TXCMP_CODE_ERROR) { txq->stats.oerrors++; break; } if (ret == MLX5_TXCMP_CODE_SINGLE) goto enter_send_single; if (MLX5_TXOFF_CONFIG(MULTI) && ret == MLX5_TXCMP_CODE_MULTI) { /* * The multi-segment packet was * encountered in the array. */ goto enter_send_multi; } /* We must not get here. Something is going wrong. */ assert(false); txq->stats.oerrors++; break; } /* * The dedicated branch for the single-segment packets * without TSO. Often these ones can be sent using * MLX5_OPCODE_EMPW with multiple packets in one WQE. * The routine builds the WQEs till it encounters * the TSO or multi-segment packet (in case if these * offloads are requested at SQ configuration time). */ enter_send_single: assert(pkts_n > loc.pkts_sent); ret = mlx5_tx_burst_single(txq, pkts, pkts_n, &loc, olx); /* * These returned code checks are supposed * to be optimized out due to routine inlining. */ if (ret == MLX5_TXCMP_CODE_EXIT) break; if (ret == MLX5_TXCMP_CODE_ERROR) { txq->stats.oerrors++; break; } if (MLX5_TXOFF_CONFIG(MULTI) && ret == MLX5_TXCMP_CODE_MULTI) { /* * The multi-segment packet was * encountered in the array. */ goto enter_send_multi; } if (MLX5_TXOFF_CONFIG(TSO) && ret == MLX5_TXCMP_CODE_TSO) { /* * The single-segment TSO packet was * encountered in the array. */ goto enter_send_tso; } /* We must not get here. Something is going wrong. */ assert(false); txq->stats.oerrors++; break; } /* * Main Tx loop is completed, do the rest: * - set completion request if thresholds are reached * - doorbell the hardware * - copy the rest of mbufs to elts (if any) */ assert(MLX5_TXOFF_CONFIG(INLINE) || loc.pkts_sent >= loc.pkts_copy); /* Take a shortcut if nothing is sent. */ if (unlikely(loc.pkts_sent == loc.pkts_loop)) goto burst_exit; /* Request CQE generation if limits are reached. */ mlx5_tx_request_completion(txq, &loc, olx); /* * Ring QP doorbell immediately after WQE building completion * to improve latencies. The pure software related data treatment * can be completed after doorbell. Tx CQEs for this SQ are * processed in this thread only by the polling. * * The rdma core library can map doorbell register in two ways, * depending on the environment variable "MLX5_SHUT_UP_BF": * * - as regular cached memory, the variable is either missing or * set to zero. This type of mapping may cause the significant * doorbell register writing latency and requires explicit * memory write barrier to mitigate this issue and prevent * write combining. * * - as non-cached memory, the variable is present and set to * not "0" value. This type of mapping may cause performance * impact under heavy loading conditions but the explicit write * memory barrier is not required and it may improve core * performance. * * - the legacy behaviour (prior 19.08 release) was to use some * heuristics to decide whether write memory barrier should * be performed. This behavior is supported with specifying * tx_db_nc=2, write barrier is skipped if application * provides the full recommended burst of packets, it * supposes the next packets are coming and the write barrier * will be issued on the next burst (after descriptor writing, * at least). */ mlx5_tx_dbrec_cond_wmb(txq, loc.wqe_last, !txq->db_nc && (!txq->db_heu || pkts_n % MLX5_TX_DEFAULT_BURST)); /* Not all of the mbufs may be stored into elts yet. */ part = MLX5_TXOFF_CONFIG(INLINE) ? 0 : loc.pkts_sent - loc.pkts_copy; if (!MLX5_TXOFF_CONFIG(INLINE) && part) { /* * There are some single-segment mbufs not stored in elts. * It can be only if the last packet was single-segment. * The copying is gathered into one place due to it is * a good opportunity to optimize that with SIMD. * Unfortunately if inlining is enabled the gaps in * pointer array may happen due to early freeing of the * inlined mbufs. */ mlx5_tx_copy_elts(txq, pkts + loc.pkts_copy, part, olx); loc.pkts_copy = loc.pkts_sent; } assert(txq->elts_s >= (uint16_t)(txq->elts_head - txq->elts_tail)); assert(txq->wqe_s >= (uint16_t)(txq->wqe_ci - txq->wqe_pi)); if (pkts_n > loc.pkts_sent) { /* * If burst size is large there might be no enough CQE * fetched from completion queue and no enough resources * freed to send all the packets. */ goto send_loop; } burst_exit: #ifdef MLX5_PMD_SOFT_COUNTERS /* Increment sent packets counter. */ txq->stats.opackets += loc.pkts_sent; #endif return loc.pkts_sent; } /* Generate routines with Enhanced Multi-Packet Write support. */ MLX5_TXOFF_DECL(full_empw, MLX5_TXOFF_CONFIG_FULL | MLX5_TXOFF_CONFIG_EMPW) MLX5_TXOFF_DECL(none_empw, MLX5_TXOFF_CONFIG_NONE | MLX5_TXOFF_CONFIG_EMPW) MLX5_TXOFF_DECL(md_empw, MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW) MLX5_TXOFF_DECL(mt_empw, MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO | MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW) MLX5_TXOFF_DECL(mtsc_empw, MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO | MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM | MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW) MLX5_TXOFF_DECL(mti_empw, MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO | MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW) MLX5_TXOFF_DECL(mtv_empw, MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO | MLX5_TXOFF_CONFIG_VLAN | MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW) MLX5_TXOFF_DECL(mtiv_empw, MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO | MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN | MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW) MLX5_TXOFF_DECL(sc_empw, MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM | MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW) MLX5_TXOFF_DECL(sci_empw, MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM | MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW) MLX5_TXOFF_DECL(scv_empw, MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM | MLX5_TXOFF_CONFIG_VLAN | MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW) MLX5_TXOFF_DECL(sciv_empw, MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM | MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN | MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW) MLX5_TXOFF_DECL(i_empw, MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW) MLX5_TXOFF_DECL(v_empw, MLX5_TXOFF_CONFIG_VLAN | MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW) MLX5_TXOFF_DECL(iv_empw, MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN | MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW) /* Generate routines without Enhanced Multi-Packet Write support. */ MLX5_TXOFF_DECL(full, MLX5_TXOFF_CONFIG_FULL) MLX5_TXOFF_DECL(none, MLX5_TXOFF_CONFIG_NONE) MLX5_TXOFF_DECL(md, MLX5_TXOFF_CONFIG_METADATA) MLX5_TXOFF_DECL(mt, MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO | MLX5_TXOFF_CONFIG_METADATA) MLX5_TXOFF_DECL(mtsc, MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO | MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM | MLX5_TXOFF_CONFIG_METADATA) MLX5_TXOFF_DECL(mti, MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO | MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_METADATA) MLX5_TXOFF_DECL(mtv, MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO | MLX5_TXOFF_CONFIG_VLAN | MLX5_TXOFF_CONFIG_METADATA) MLX5_TXOFF_DECL(mtiv, MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO | MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN | MLX5_TXOFF_CONFIG_METADATA) MLX5_TXOFF_DECL(sc, MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM | MLX5_TXOFF_CONFIG_METADATA) MLX5_TXOFF_DECL(sci, MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM | MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_METADATA) MLX5_TXOFF_DECL(scv, MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM | MLX5_TXOFF_CONFIG_VLAN | MLX5_TXOFF_CONFIG_METADATA) MLX5_TXOFF_DECL(sciv, MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM | MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN | MLX5_TXOFF_CONFIG_METADATA) MLX5_TXOFF_DECL(i, MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_METADATA) MLX5_TXOFF_DECL(v, MLX5_TXOFF_CONFIG_VLAN | MLX5_TXOFF_CONFIG_METADATA) MLX5_TXOFF_DECL(iv, MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN | MLX5_TXOFF_CONFIG_METADATA) /* * Generate routines with Legacy Multi-Packet Write support. * This mode is supported by ConnectX-4 Lx only and imposes * offload limitations, not supported: * - ACL/Flows (metadata are becoming meaningless) * - WQE Inline headers * - SRIOV (E-Switch offloads) * - VLAN insertion * - tunnel encapsulation/decapsulation * - TSO */ MLX5_TXOFF_DECL(none_mpw, MLX5_TXOFF_CONFIG_NONE | MLX5_TXOFF_CONFIG_EMPW | MLX5_TXOFF_CONFIG_MPW) MLX5_TXOFF_DECL(mci_mpw, MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_CSUM | MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_EMPW | MLX5_TXOFF_CONFIG_MPW) MLX5_TXOFF_DECL(mc_mpw, MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_CSUM | MLX5_TXOFF_CONFIG_EMPW | MLX5_TXOFF_CONFIG_MPW) MLX5_TXOFF_DECL(i_mpw, MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_EMPW | MLX5_TXOFF_CONFIG_MPW) /* * Array of declared and compiled Tx burst function and corresponding * supported offloads set. The array is used to select the Tx burst * function for specified offloads set at Tx queue configuration time. */ const struct { eth_tx_burst_t func; unsigned int olx; } txoff_func[] = { MLX5_TXOFF_INFO(full_empw, MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO | MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM | MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN | MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW) MLX5_TXOFF_INFO(none_empw, MLX5_TXOFF_CONFIG_NONE | MLX5_TXOFF_CONFIG_EMPW) MLX5_TXOFF_INFO(md_empw, MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW) MLX5_TXOFF_INFO(mt_empw, MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO | MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW) MLX5_TXOFF_INFO(mtsc_empw, MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO | MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM | MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW) MLX5_TXOFF_INFO(mti_empw, MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO | MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW) MLX5_TXOFF_INFO(mtv_empw, MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO | MLX5_TXOFF_CONFIG_VLAN | MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW) MLX5_TXOFF_INFO(mtiv_empw, MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO | MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN | MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW) MLX5_TXOFF_INFO(sc_empw, MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM | MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW) MLX5_TXOFF_INFO(sci_empw, MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM | MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW) MLX5_TXOFF_INFO(scv_empw, MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM | MLX5_TXOFF_CONFIG_VLAN | MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW) MLX5_TXOFF_INFO(sciv_empw, MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM | MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN | MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW) MLX5_TXOFF_INFO(i_empw, MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW) MLX5_TXOFF_INFO(v_empw, MLX5_TXOFF_CONFIG_VLAN | MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW) MLX5_TXOFF_INFO(iv_empw, MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN | MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW) MLX5_TXOFF_INFO(full, MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO | MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM | MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN | MLX5_TXOFF_CONFIG_METADATA) MLX5_TXOFF_INFO(none, MLX5_TXOFF_CONFIG_NONE) MLX5_TXOFF_INFO(md, MLX5_TXOFF_CONFIG_METADATA) MLX5_TXOFF_INFO(mt, MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO | MLX5_TXOFF_CONFIG_METADATA) MLX5_TXOFF_INFO(mtsc, MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO | MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM | MLX5_TXOFF_CONFIG_METADATA) MLX5_TXOFF_INFO(mti, MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO | MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_METADATA) MLX5_TXOFF_INFO(mtv, MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO | MLX5_TXOFF_CONFIG_VLAN | MLX5_TXOFF_CONFIG_METADATA) MLX5_TXOFF_INFO(mtiv, MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO | MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN | MLX5_TXOFF_CONFIG_METADATA) MLX5_TXOFF_INFO(sc, MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM | MLX5_TXOFF_CONFIG_METADATA) MLX5_TXOFF_INFO(sci, MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM | MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_METADATA) MLX5_TXOFF_INFO(scv, MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM | MLX5_TXOFF_CONFIG_VLAN | MLX5_TXOFF_CONFIG_METADATA) MLX5_TXOFF_INFO(sciv, MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM | MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN | MLX5_TXOFF_CONFIG_METADATA) MLX5_TXOFF_INFO(i, MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_METADATA) MLX5_TXOFF_INFO(v, MLX5_TXOFF_CONFIG_VLAN | MLX5_TXOFF_CONFIG_METADATA) MLX5_TXOFF_INFO(iv, MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN | MLX5_TXOFF_CONFIG_METADATA) MLX5_TXOFF_INFO(none_mpw, MLX5_TXOFF_CONFIG_NONE | MLX5_TXOFF_CONFIG_EMPW | MLX5_TXOFF_CONFIG_MPW) MLX5_TXOFF_INFO(mci_mpw, MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_CSUM | MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_EMPW | MLX5_TXOFF_CONFIG_MPW) MLX5_TXOFF_INFO(mc_mpw, MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_CSUM | MLX5_TXOFF_CONFIG_EMPW | MLX5_TXOFF_CONFIG_MPW) MLX5_TXOFF_INFO(i_mpw, MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_EMPW | MLX5_TXOFF_CONFIG_MPW) }; /** * Configure the Tx function to use. The routine checks configured * Tx offloads for the device and selects appropriate Tx burst * routine. There are multiple Tx burst routines compiled from * the same template in the most optimal way for the dedicated * Tx offloads set. * * @param dev * Pointer to private data structure. * * @return * Pointer to selected Tx burst function. */ eth_tx_burst_t mlx5_select_tx_function(struct rte_eth_dev *dev) { struct mlx5_priv *priv = dev->data->dev_private; struct mlx5_dev_config *config = &priv->config; uint64_t tx_offloads = dev->data->dev_conf.txmode.offloads; unsigned int diff = 0, olx = 0, i, m; static_assert(MLX5_WQE_SIZE_MAX / MLX5_WSEG_SIZE <= MLX5_DSEG_MAX, "invalid WQE max size"); static_assert(MLX5_WQE_CSEG_SIZE == MLX5_WSEG_SIZE, "invalid WQE Control Segment size"); static_assert(MLX5_WQE_ESEG_SIZE == MLX5_WSEG_SIZE, "invalid WQE Ethernet Segment size"); static_assert(MLX5_WQE_DSEG_SIZE == MLX5_WSEG_SIZE, "invalid WQE Data Segment size"); static_assert(MLX5_WQE_SIZE == 4 * MLX5_WSEG_SIZE, "invalid WQE size"); assert(priv); if (tx_offloads & DEV_TX_OFFLOAD_MULTI_SEGS) { /* We should support Multi-Segment Packets. */ olx |= MLX5_TXOFF_CONFIG_MULTI; } if (tx_offloads & (DEV_TX_OFFLOAD_TCP_TSO | DEV_TX_OFFLOAD_VXLAN_TNL_TSO | DEV_TX_OFFLOAD_GRE_TNL_TSO | DEV_TX_OFFLOAD_IP_TNL_TSO | DEV_TX_OFFLOAD_UDP_TNL_TSO)) { /* We should support TCP Send Offload. */ olx |= MLX5_TXOFF_CONFIG_TSO; } if (tx_offloads & (DEV_TX_OFFLOAD_IP_TNL_TSO | DEV_TX_OFFLOAD_UDP_TNL_TSO | DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM)) { /* We should support Software Parser for Tunnels. */ olx |= MLX5_TXOFF_CONFIG_SWP; } if (tx_offloads & (DEV_TX_OFFLOAD_IPV4_CKSUM | DEV_TX_OFFLOAD_UDP_CKSUM | DEV_TX_OFFLOAD_TCP_CKSUM | DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM)) { /* We should support IP/TCP/UDP Checksums. */ olx |= MLX5_TXOFF_CONFIG_CSUM; } if (tx_offloads & DEV_TX_OFFLOAD_VLAN_INSERT) { /* We should support VLAN insertion. */ olx |= MLX5_TXOFF_CONFIG_VLAN; } if (priv->txqs_n && (*priv->txqs)[0]) { struct mlx5_txq_data *txd = (*priv->txqs)[0]; if (txd->inlen_send) { /* * Check the data inline requirements. Data inline * is enabled on per device basis, we can check * the first Tx queue only. * * If device does not support VLAN insertion in WQE * and some queues are requested to perform VLAN * insertion offload than inline must be enabled. */ olx |= MLX5_TXOFF_CONFIG_INLINE; } } if (config->mps == MLX5_MPW_ENHANCED && config->txq_inline_min <= 0) { /* * The NIC supports Enhanced Multi-Packet Write * and does not require minimal inline data. */ olx |= MLX5_TXOFF_CONFIG_EMPW; } if (rte_flow_dynf_metadata_avail()) { /* We should support Flow metadata. */ olx |= MLX5_TXOFF_CONFIG_METADATA; } if (config->mps == MLX5_MPW) { /* * The NIC supports Legacy Multi-Packet Write. * The MLX5_TXOFF_CONFIG_MPW controls the * descriptor building method in combination * with MLX5_TXOFF_CONFIG_EMPW. */ if (!(olx & (MLX5_TXOFF_CONFIG_TSO | MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_VLAN | MLX5_TXOFF_CONFIG_METADATA))) olx |= MLX5_TXOFF_CONFIG_EMPW | MLX5_TXOFF_CONFIG_MPW; } /* * Scan the routines table to find the minimal * satisfying routine with requested offloads. */ m = RTE_DIM(txoff_func); for (i = 0; i < RTE_DIM(txoff_func); i++) { unsigned int tmp; tmp = txoff_func[i].olx; if (tmp == olx) { /* Meets requested offloads exactly.*/ m = i; break; } if ((tmp & olx) != olx) { /* Does not meet requested offloads at all. */ continue; } if ((olx ^ tmp) & MLX5_TXOFF_CONFIG_EMPW) /* Do not enable eMPW if not configured. */ continue; if ((olx ^ tmp) & MLX5_TXOFF_CONFIG_INLINE) /* Do not enable inlining if not configured. */ continue; /* * Some routine meets the requirements. * Check whether it has minimal amount * of not requested offloads. */ tmp = __builtin_popcountl(tmp & ~olx); if (m >= RTE_DIM(txoff_func) || tmp < diff) { /* First or better match, save and continue. */ m = i; diff = tmp; continue; } if (tmp == diff) { tmp = txoff_func[i].olx ^ txoff_func[m].olx; if (__builtin_ffsl(txoff_func[i].olx & ~tmp) < __builtin_ffsl(txoff_func[m].olx & ~tmp)) { /* Lighter not requested offload. */ m = i; } } } if (m >= RTE_DIM(txoff_func)) { DRV_LOG(DEBUG, "port %u has no selected Tx function" " for requested offloads %04X", dev->data->port_id, olx); return NULL; } DRV_LOG(DEBUG, "port %u has selected Tx function" " supporting offloads %04X/%04X", dev->data->port_id, olx, txoff_func[m].olx); if (txoff_func[m].olx & MLX5_TXOFF_CONFIG_MULTI) DRV_LOG(DEBUG, "\tMULTI (multi segment)"); if (txoff_func[m].olx & MLX5_TXOFF_CONFIG_TSO) DRV_LOG(DEBUG, "\tTSO (TCP send offload)"); if (txoff_func[m].olx & MLX5_TXOFF_CONFIG_SWP) DRV_LOG(DEBUG, "\tSWP (software parser)"); if (txoff_func[m].olx & MLX5_TXOFF_CONFIG_CSUM) DRV_LOG(DEBUG, "\tCSUM (checksum offload)"); if (txoff_func[m].olx & MLX5_TXOFF_CONFIG_INLINE) DRV_LOG(DEBUG, "\tINLIN (inline data)"); if (txoff_func[m].olx & MLX5_TXOFF_CONFIG_VLAN) DRV_LOG(DEBUG, "\tVLANI (VLAN insertion)"); if (txoff_func[m].olx & MLX5_TXOFF_CONFIG_METADATA) DRV_LOG(DEBUG, "\tMETAD (tx Flow metadata)"); if (txoff_func[m].olx & MLX5_TXOFF_CONFIG_EMPW) { if (txoff_func[m].olx & MLX5_TXOFF_CONFIG_MPW) DRV_LOG(DEBUG, "\tMPW (Legacy MPW)"); else DRV_LOG(DEBUG, "\tEMPW (Enhanced MPW)"); } return txoff_func[m].func; }