/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2001 - 2015 Intel Corporation */ /* 82562G 10/100 Network Connection * 82562G-2 10/100 Network Connection * 82562GT 10/100 Network Connection * 82562GT-2 10/100 Network Connection * 82562V 10/100 Network Connection * 82562V-2 10/100 Network Connection * 82566DC-2 Gigabit Network Connection * 82566DC Gigabit Network Connection * 82566DM-2 Gigabit Network Connection * 82566DM Gigabit Network Connection * 82566MC Gigabit Network Connection * 82566MM Gigabit Network Connection * 82567LM Gigabit Network Connection * 82567LF Gigabit Network Connection * 82567V Gigabit Network Connection * 82567LM-2 Gigabit Network Connection * 82567LF-2 Gigabit Network Connection * 82567V-2 Gigabit Network Connection * 82567LF-3 Gigabit Network Connection * 82567LM-3 Gigabit Network Connection * 82567LM-4 Gigabit Network Connection * 82577LM Gigabit Network Connection * 82577LC Gigabit Network Connection * 82578DM Gigabit Network Connection * 82578DC Gigabit Network Connection * 82579LM Gigabit Network Connection * 82579V Gigabit Network Connection * Ethernet Connection I217-LM * Ethernet Connection I217-V * Ethernet Connection I218-V * Ethernet Connection I218-LM * Ethernet Connection (2) I218-LM * Ethernet Connection (2) I218-V * Ethernet Connection (3) I218-LM * Ethernet Connection (3) I218-V */ #include "e1000_api.h" STATIC s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state); STATIC s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw); STATIC void e1000_release_swflag_ich8lan(struct e1000_hw *hw); STATIC s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw); STATIC void e1000_release_nvm_ich8lan(struct e1000_hw *hw); STATIC bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw); STATIC bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw); STATIC int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index); STATIC int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index); STATIC s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw); #ifndef NO_NON_BLOCKING_PHY_MTA_UPDATE_SUPPORT STATIC void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw, u8 *mc_addr_list, u32 mc_addr_count); #endif /* NO_NON_BLOCKING_PHY_MTA_UPDATE_SUPPORT */ STATIC s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw); STATIC s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw); STATIC s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active); STATIC s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active); STATIC s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active); STATIC s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); STATIC s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); STATIC s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); STATIC s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw); STATIC s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw); STATIC s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw); STATIC s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data); STATIC s32 e1000_id_led_init_pchlan(struct e1000_hw *hw); STATIC s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw); STATIC s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw); STATIC s32 e1000_init_hw_ich8lan(struct e1000_hw *hw); STATIC s32 e1000_setup_link_ich8lan(struct e1000_hw *hw); STATIC s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw); STATIC s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw); STATIC s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed, u16 *duplex); STATIC s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw); STATIC s32 e1000_led_on_ich8lan(struct e1000_hw *hw); STATIC s32 e1000_led_off_ich8lan(struct e1000_hw *hw); STATIC s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link); STATIC s32 e1000_setup_led_pchlan(struct e1000_hw *hw); STATIC s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw); STATIC s32 e1000_led_on_pchlan(struct e1000_hw *hw); STATIC s32 e1000_led_off_pchlan(struct e1000_hw *hw); STATIC void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw); STATIC s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank); STATIC void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw); STATIC s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw); STATIC s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, u8 *data); STATIC s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, u8 size, u16 *data); STATIC s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset, u32 *data); STATIC s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset, u32 *data); STATIC s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset, u32 data); STATIC s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset, u32 dword); STATIC s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, u16 *data); STATIC s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, u8 byte); STATIC s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw); STATIC void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw); STATIC s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw); STATIC s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw); STATIC s32 e1000_k1_workaround_lv(struct e1000_hw *hw); STATIC void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate); /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */ /* Offset 04h HSFSTS */ union ich8_hws_flash_status { struct ich8_hsfsts { u16 flcdone:1; /* bit 0 Flash Cycle Done */ u16 flcerr:1; /* bit 1 Flash Cycle Error */ u16 dael:1; /* bit 2 Direct Access error Log */ u16 berasesz:2; /* bit 4:3 Sector Erase Size */ u16 flcinprog:1; /* bit 5 flash cycle in Progress */ u16 reserved1:2; /* bit 13:6 Reserved */ u16 reserved2:6; /* bit 13:6 Reserved */ u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */ u16 flockdn:1; /* bit 15 Flash Config Lock-Down */ } hsf_status; u16 regval; }; /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */ /* Offset 06h FLCTL */ union ich8_hws_flash_ctrl { struct ich8_hsflctl { u16 flcgo:1; /* 0 Flash Cycle Go */ u16 flcycle:2; /* 2:1 Flash Cycle */ u16 reserved:5; /* 7:3 Reserved */ u16 fldbcount:2; /* 9:8 Flash Data Byte Count */ u16 flockdn:6; /* 15:10 Reserved */ } hsf_ctrl; u16 regval; }; /* ICH Flash Region Access Permissions */ union ich8_hws_flash_regacc { struct ich8_flracc { u32 grra:8; /* 0:7 GbE region Read Access */ u32 grwa:8; /* 8:15 GbE region Write Access */ u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */ u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */ } hsf_flregacc; u16 regval; }; /** * e1000_phy_is_accessible_pchlan - Check if able to access PHY registers * @hw: pointer to the HW structure * * Test access to the PHY registers by reading the PHY ID registers. If * the PHY ID is already known (e.g. resume path) compare it with known ID, * otherwise assume the read PHY ID is correct if it is valid. * * Assumes the sw/fw/hw semaphore is already acquired. **/ STATIC bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw) { u16 phy_reg = 0; u32 phy_id = 0; s32 ret_val = 0; u16 retry_count; u32 mac_reg = 0; for (retry_count = 0; retry_count < 2; retry_count++) { ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_reg); if (ret_val || (phy_reg == 0xFFFF)) continue; phy_id = (u32)(phy_reg << 16); ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_reg); if (ret_val || (phy_reg == 0xFFFF)) { phy_id = 0; continue; } phy_id |= (u32)(phy_reg & PHY_REVISION_MASK); break; } if (hw->phy.id) { if (hw->phy.id == phy_id) goto out; } else if (phy_id) { hw->phy.id = phy_id; hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK); goto out; } /* In case the PHY needs to be in mdio slow mode, * set slow mode and try to get the PHY id again. */ if (hw->mac.type < e1000_pch_lpt) { hw->phy.ops.release(hw); ret_val = e1000_set_mdio_slow_mode_hv(hw); if (!ret_val) ret_val = e1000_get_phy_id(hw); hw->phy.ops.acquire(hw); } if (ret_val) return false; out: if (hw->mac.type >= e1000_pch_lpt) { /* Only unforce SMBus if ME is not active */ if (!(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID)) { /* Unforce SMBus mode in PHY */ hw->phy.ops.read_reg_locked(hw, CV_SMB_CTRL, &phy_reg); phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS; hw->phy.ops.write_reg_locked(hw, CV_SMB_CTRL, phy_reg); /* Unforce SMBus mode in MAC */ mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT); mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg); } } return true; } /** * e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value * @hw: pointer to the HW structure * * Toggling the LANPHYPC pin value fully power-cycles the PHY and is * used to reset the PHY to a quiescent state when necessary. **/ STATIC void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw) { u32 mac_reg; DEBUGFUNC("e1000_toggle_lanphypc_pch_lpt"); /* Set Phy Config Counter to 50msec */ mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM3); mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK; mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC; E1000_WRITE_REG(hw, E1000_FEXTNVM3, mac_reg); /* Toggle LANPHYPC Value bit */ mac_reg = E1000_READ_REG(hw, E1000_CTRL); mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE; mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE; E1000_WRITE_REG(hw, E1000_CTRL, mac_reg); E1000_WRITE_FLUSH(hw); msec_delay(1); mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE; E1000_WRITE_REG(hw, E1000_CTRL, mac_reg); E1000_WRITE_FLUSH(hw); if (hw->mac.type < e1000_pch_lpt) { msec_delay(50); } else { u16 count = 20; do { msec_delay(5); } while (!(E1000_READ_REG(hw, E1000_CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--); msec_delay(30); } } /** * e1000_init_phy_workarounds_pchlan - PHY initialization workarounds * @hw: pointer to the HW structure * * Workarounds/flow necessary for PHY initialization during driver load * and resume paths. **/ STATIC s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw) { u32 mac_reg, fwsm = E1000_READ_REG(hw, E1000_FWSM); s32 ret_val; DEBUGFUNC("e1000_init_phy_workarounds_pchlan"); /* Gate automatic PHY configuration by hardware on managed and * non-managed 82579 and newer adapters. */ e1000_gate_hw_phy_config_ich8lan(hw, true); #ifdef ULP_SUPPORT /* It is not possible to be certain of the current state of ULP * so forcibly disable it. */ hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown; #endif /* ULP_SUPPORT */ ret_val = hw->phy.ops.acquire(hw); if (ret_val) { DEBUGOUT("Failed to initialize PHY flow\n"); goto out; } /* The MAC-PHY interconnect may be in SMBus mode. If the PHY is * inaccessible and resetting the PHY is not blocked, toggle the * LANPHYPC Value bit to force the interconnect to PCIe mode. */ switch (hw->mac.type) { case e1000_pch_lpt: case e1000_pch_spt: case e1000_pch_cnp: if (e1000_phy_is_accessible_pchlan(hw)) break; /* Before toggling LANPHYPC, see if PHY is accessible by * forcing MAC to SMBus mode first. */ mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT); mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS; E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg); /* Wait 50 milliseconds for MAC to finish any retries * that it might be trying to perform from previous * attempts to acknowledge any phy read requests. */ msec_delay(50); /* fall-through */ case e1000_pch2lan: if (e1000_phy_is_accessible_pchlan(hw)) break; /* fall-through */ case e1000_pchlan: if ((hw->mac.type == e1000_pchlan) && (fwsm & E1000_ICH_FWSM_FW_VALID)) break; if (hw->phy.ops.check_reset_block(hw)) { DEBUGOUT("Required LANPHYPC toggle blocked by ME\n"); ret_val = -E1000_ERR_PHY; break; } /* Toggle LANPHYPC Value bit */ e1000_toggle_lanphypc_pch_lpt(hw); if (hw->mac.type >= e1000_pch_lpt) { if (e1000_phy_is_accessible_pchlan(hw)) break; /* Toggling LANPHYPC brings the PHY out of SMBus mode * so ensure that the MAC is also out of SMBus mode */ mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT); mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg); if (e1000_phy_is_accessible_pchlan(hw)) break; ret_val = -E1000_ERR_PHY; } break; default: break; } hw->phy.ops.release(hw); if (!ret_val) { /* Check to see if able to reset PHY. Print error if not */ if (hw->phy.ops.check_reset_block(hw)) { ERROR_REPORT("Reset blocked by ME\n"); goto out; } /* Reset the PHY before any access to it. Doing so, ensures * that the PHY is in a known good state before we read/write * PHY registers. The generic reset is sufficient here, * because we haven't determined the PHY type yet. */ ret_val = e1000_phy_hw_reset_generic(hw); if (ret_val) goto out; /* On a successful reset, possibly need to wait for the PHY * to quiesce to an accessible state before returning control * to the calling function. If the PHY does not quiesce, then * return E1000E_BLK_PHY_RESET, as this is the condition that * the PHY is in. */ ret_val = hw->phy.ops.check_reset_block(hw); if (ret_val) ERROR_REPORT("ME blocked access to PHY after reset\n"); } out: /* Ungate automatic PHY configuration on non-managed 82579 */ if ((hw->mac.type == e1000_pch2lan) && !(fwsm & E1000_ICH_FWSM_FW_VALID)) { msec_delay(10); e1000_gate_hw_phy_config_ich8lan(hw, false); } return ret_val; } /** * e1000_init_phy_params_pchlan - Initialize PHY function pointers * @hw: pointer to the HW structure * * Initialize family-specific PHY parameters and function pointers. **/ STATIC s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; DEBUGFUNC("e1000_init_phy_params_pchlan"); phy->addr = 1; phy->reset_delay_us = 100; phy->ops.acquire = e1000_acquire_swflag_ich8lan; phy->ops.check_reset_block = e1000_check_reset_block_ich8lan; phy->ops.get_cfg_done = e1000_get_cfg_done_ich8lan; phy->ops.set_page = e1000_set_page_igp; phy->ops.read_reg = e1000_read_phy_reg_hv; phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked; phy->ops.read_reg_page = e1000_read_phy_reg_page_hv; phy->ops.release = e1000_release_swflag_ich8lan; phy->ops.reset = e1000_phy_hw_reset_ich8lan; phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan; phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan; phy->ops.write_reg = e1000_write_phy_reg_hv; phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked; phy->ops.write_reg_page = e1000_write_phy_reg_page_hv; phy->ops.power_up = e1000_power_up_phy_copper; phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; phy->id = e1000_phy_unknown; ret_val = e1000_init_phy_workarounds_pchlan(hw); if (ret_val) return ret_val; if (phy->id == e1000_phy_unknown) switch (hw->mac.type) { default: ret_val = e1000_get_phy_id(hw); if (ret_val) return ret_val; if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK)) break; /* fall-through */ case e1000_pch2lan: case e1000_pch_lpt: case e1000_pch_spt: case e1000_pch_cnp: /* In case the PHY needs to be in mdio slow mode, * set slow mode and try to get the PHY id again. */ ret_val = e1000_set_mdio_slow_mode_hv(hw); if (ret_val) return ret_val; ret_val = e1000_get_phy_id(hw); if (ret_val) return ret_val; break; } phy->type = e1000_get_phy_type_from_id(phy->id); switch (phy->type) { case e1000_phy_82577: case e1000_phy_82579: case e1000_phy_i217: phy->ops.check_polarity = e1000_check_polarity_82577; phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_82577; phy->ops.get_cable_length = e1000_get_cable_length_82577; phy->ops.get_info = e1000_get_phy_info_82577; phy->ops.commit = e1000_phy_sw_reset_generic; break; case e1000_phy_82578: phy->ops.check_polarity = e1000_check_polarity_m88; phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88; phy->ops.get_cable_length = e1000_get_cable_length_m88; phy->ops.get_info = e1000_get_phy_info_m88; break; default: ret_val = -E1000_ERR_PHY; break; } return ret_val; } /** * e1000_init_phy_params_ich8lan - Initialize PHY function pointers * @hw: pointer to the HW structure * * Initialize family-specific PHY parameters and function pointers. **/ STATIC s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 i = 0; DEBUGFUNC("e1000_init_phy_params_ich8lan"); phy->addr = 1; phy->reset_delay_us = 100; phy->ops.acquire = e1000_acquire_swflag_ich8lan; phy->ops.check_reset_block = e1000_check_reset_block_ich8lan; phy->ops.get_cable_length = e1000_get_cable_length_igp_2; phy->ops.get_cfg_done = e1000_get_cfg_done_ich8lan; phy->ops.read_reg = e1000_read_phy_reg_igp; phy->ops.release = e1000_release_swflag_ich8lan; phy->ops.reset = e1000_phy_hw_reset_ich8lan; phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan; phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan; phy->ops.write_reg = e1000_write_phy_reg_igp; phy->ops.power_up = e1000_power_up_phy_copper; phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; /* We may need to do this twice - once for IGP and if that fails, * we'll set BM func pointers and try again */ ret_val = e1000_determine_phy_address(hw); if (ret_val) { phy->ops.write_reg = e1000_write_phy_reg_bm; phy->ops.read_reg = e1000_read_phy_reg_bm; ret_val = e1000_determine_phy_address(hw); if (ret_val) { DEBUGOUT("Cannot determine PHY addr. Erroring out\n"); return ret_val; } } phy->id = 0; while ((e1000_phy_unknown == e1000_get_phy_type_from_id(phy->id)) && (i++ < 100)) { msec_delay(1); ret_val = e1000_get_phy_id(hw); if (ret_val) return ret_val; } /* Verify phy id */ switch (phy->id) { case IGP03E1000_E_PHY_ID: phy->type = e1000_phy_igp_3; phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; phy->ops.read_reg_locked = e1000_read_phy_reg_igp_locked; phy->ops.write_reg_locked = e1000_write_phy_reg_igp_locked; phy->ops.get_info = e1000_get_phy_info_igp; phy->ops.check_polarity = e1000_check_polarity_igp; phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp; break; case IFE_E_PHY_ID: case IFE_PLUS_E_PHY_ID: case IFE_C_E_PHY_ID: phy->type = e1000_phy_ife; phy->autoneg_mask = E1000_ALL_NOT_GIG; phy->ops.get_info = e1000_get_phy_info_ife; phy->ops.check_polarity = e1000_check_polarity_ife; phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife; break; case BME1000_E_PHY_ID: phy->type = e1000_phy_bm; phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; phy->ops.read_reg = e1000_read_phy_reg_bm; phy->ops.write_reg = e1000_write_phy_reg_bm; phy->ops.commit = e1000_phy_sw_reset_generic; phy->ops.get_info = e1000_get_phy_info_m88; phy->ops.check_polarity = e1000_check_polarity_m88; phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88; break; default: return -E1000_ERR_PHY; break; } return E1000_SUCCESS; } /** * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers * @hw: pointer to the HW structure * * Initialize family-specific NVM parameters and function * pointers. **/ STATIC s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw) { struct e1000_nvm_info *nvm = &hw->nvm; struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; u32 gfpreg, sector_base_addr, sector_end_addr; u16 i; u32 nvm_size; DEBUGFUNC("e1000_init_nvm_params_ich8lan"); nvm->type = e1000_nvm_flash_sw; if (hw->mac.type >= e1000_pch_spt) { /* in SPT, gfpreg doesn't exist. NVM size is taken from the * STRAP register. This is because in SPT the GbE Flash region * is no longer accessed through the flash registers. Instead, * the mechanism has changed, and the Flash region access * registers are now implemented in GbE memory space. */ nvm->flash_base_addr = 0; nvm_size = (((E1000_READ_REG(hw, E1000_STRAP) >> 1) & 0x1F) + 1) * NVM_SIZE_MULTIPLIER; nvm->flash_bank_size = nvm_size / 2; /* Adjust to word count */ nvm->flash_bank_size /= sizeof(u16); /* Set the base address for flash register access */ hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR; } else { /* Can't read flash registers if register set isn't mapped. */ if (!hw->flash_address) { DEBUGOUT("ERROR: Flash registers not mapped\n"); return -E1000_ERR_CONFIG; } gfpreg = E1000_READ_FLASH_REG(hw, ICH_FLASH_GFPREG); /* sector_X_addr is a "sector"-aligned address (4096 bytes) * Add 1 to sector_end_addr since this sector is included in * the overall size. */ sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK; sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1; /* flash_base_addr is byte-aligned */ nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT; /* find total size of the NVM, then cut in half since the total * size represents two separate NVM banks. */ nvm->flash_bank_size = ((sector_end_addr - sector_base_addr) << FLASH_SECTOR_ADDR_SHIFT); nvm->flash_bank_size /= 2; /* Adjust to word count */ nvm->flash_bank_size /= sizeof(u16); } nvm->word_size = E1000_SHADOW_RAM_WORDS; /* Clear shadow ram */ for (i = 0; i < nvm->word_size; i++) { dev_spec->shadow_ram[i].modified = false; dev_spec->shadow_ram[i].value = 0xFFFF; } E1000_MUTEX_INIT(&dev_spec->nvm_mutex); E1000_MUTEX_INIT(&dev_spec->swflag_mutex); /* Function Pointers */ nvm->ops.acquire = e1000_acquire_nvm_ich8lan; nvm->ops.release = e1000_release_nvm_ich8lan; if (hw->mac.type >= e1000_pch_spt) { nvm->ops.read = e1000_read_nvm_spt; nvm->ops.update = e1000_update_nvm_checksum_spt; } else { nvm->ops.read = e1000_read_nvm_ich8lan; nvm->ops.update = e1000_update_nvm_checksum_ich8lan; } nvm->ops.valid_led_default = e1000_valid_led_default_ich8lan; nvm->ops.validate = e1000_validate_nvm_checksum_ich8lan; nvm->ops.write = e1000_write_nvm_ich8lan; return E1000_SUCCESS; } /** * e1000_init_mac_params_ich8lan - Initialize MAC function pointers * @hw: pointer to the HW structure * * Initialize family-specific MAC parameters and function * pointers. **/ STATIC s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; #if defined(QV_RELEASE) || !defined(NO_PCH_LPT_B0_SUPPORT) u16 pci_cfg; #endif /* QV_RELEASE || !defined(NO_PCH_LPT_B0_SUPPORT) */ DEBUGFUNC("e1000_init_mac_params_ich8lan"); /* Set media type function pointer */ hw->phy.media_type = e1000_media_type_copper; /* Set mta register count */ mac->mta_reg_count = 32; /* Set rar entry count */ mac->rar_entry_count = E1000_ICH_RAR_ENTRIES; if (mac->type == e1000_ich8lan) mac->rar_entry_count--; /* Set if part includes ASF firmware */ mac->asf_firmware_present = true; /* FWSM register */ mac->has_fwsm = true; /* ARC subsystem not supported */ mac->arc_subsystem_valid = false; /* Adaptive IFS supported */ mac->adaptive_ifs = true; /* Function pointers */ /* bus type/speed/width */ mac->ops.get_bus_info = e1000_get_bus_info_ich8lan; /* function id */ mac->ops.set_lan_id = e1000_set_lan_id_single_port; /* reset */ mac->ops.reset_hw = e1000_reset_hw_ich8lan; /* hw initialization */ mac->ops.init_hw = e1000_init_hw_ich8lan; /* link setup */ mac->ops.setup_link = e1000_setup_link_ich8lan; /* physical interface setup */ mac->ops.setup_physical_interface = e1000_setup_copper_link_ich8lan; /* check for link */ mac->ops.check_for_link = e1000_check_for_copper_link_ich8lan; /* link info */ mac->ops.get_link_up_info = e1000_get_link_up_info_ich8lan; /* multicast address update */ mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic; /* clear hardware counters */ mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan; /* LED and other operations */ switch (mac->type) { case e1000_ich8lan: case e1000_ich9lan: case e1000_ich10lan: /* check management mode */ mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan; /* ID LED init */ mac->ops.id_led_init = e1000_id_led_init_generic; /* blink LED */ mac->ops.blink_led = e1000_blink_led_generic; /* setup LED */ mac->ops.setup_led = e1000_setup_led_generic; /* cleanup LED */ mac->ops.cleanup_led = e1000_cleanup_led_ich8lan; /* turn on/off LED */ mac->ops.led_on = e1000_led_on_ich8lan; mac->ops.led_off = e1000_led_off_ich8lan; break; case e1000_pch2lan: mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES; mac->ops.rar_set = e1000_rar_set_pch2lan; /* fall-through */ case e1000_pch_lpt: case e1000_pch_spt: case e1000_pch_cnp: #ifndef NO_NON_BLOCKING_PHY_MTA_UPDATE_SUPPORT /* multicast address update for pch2 */ mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_pch2lan; /* fall-through */ #endif case e1000_pchlan: #if defined(QV_RELEASE) || !defined(NO_PCH_LPT_B0_SUPPORT) /* save PCH revision_id */ e1000_read_pci_cfg(hw, E1000_PCI_REVISION_ID_REG, &pci_cfg); /* SPT uses full byte for revision ID, * as opposed to previous generations */ if (hw->mac.type >= e1000_pch_spt) hw->revision_id = (u8)(pci_cfg &= 0x00FF); else hw->revision_id = (u8)(pci_cfg &= 0x000F); #endif /* QV_RELEASE || !defined(NO_PCH_LPT_B0_SUPPORT) */ /* check management mode */ mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan; /* ID LED init */ mac->ops.id_led_init = e1000_id_led_init_pchlan; /* setup LED */ mac->ops.setup_led = e1000_setup_led_pchlan; /* cleanup LED */ mac->ops.cleanup_led = e1000_cleanup_led_pchlan; /* turn on/off LED */ mac->ops.led_on = e1000_led_on_pchlan; mac->ops.led_off = e1000_led_off_pchlan; break; default: break; } if (mac->type >= e1000_pch_lpt) { mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES; mac->ops.rar_set = e1000_rar_set_pch_lpt; mac->ops.setup_physical_interface = e1000_setup_copper_link_pch_lpt; } /* Enable PCS Lock-loss workaround for ICH8 */ if (mac->type == e1000_ich8lan) e1000_set_kmrn_lock_loss_workaround_ich8lan(hw, true); return E1000_SUCCESS; } /** * __e1000_access_emi_reg_locked - Read/write EMI register * @hw: pointer to the HW structure * @addr: EMI address to program * @data: pointer to value to read/write from/to the EMI address * @read: boolean flag to indicate read or write * * This helper function assumes the SW/FW/HW Semaphore is already acquired. **/ STATIC s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address, u16 *data, bool read) { s32 ret_val; DEBUGFUNC("__e1000_access_emi_reg_locked"); ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR, address); if (ret_val) return ret_val; if (read) ret_val = hw->phy.ops.read_reg_locked(hw, I82579_EMI_DATA, data); else ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA, *data); return ret_val; } /** * e1000_read_emi_reg_locked - Read Extended Management Interface register * @hw: pointer to the HW structure * @addr: EMI address to program * @data: value to be read from the EMI address * * Assumes the SW/FW/HW Semaphore is already acquired. **/ s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data) { DEBUGFUNC("e1000_read_emi_reg_locked"); return __e1000_access_emi_reg_locked(hw, addr, data, true); } /** * e1000_write_emi_reg_locked - Write Extended Management Interface register * @hw: pointer to the HW structure * @addr: EMI address to program * @data: value to be written to the EMI address * * Assumes the SW/FW/HW Semaphore is already acquired. **/ s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data) { DEBUGFUNC("e1000_read_emi_reg_locked"); return __e1000_access_emi_reg_locked(hw, addr, &data, false); } /** * e1000_set_eee_pchlan - Enable/disable EEE support * @hw: pointer to the HW structure * * Enable/disable EEE based on setting in dev_spec structure, the duplex of * the link and the EEE capabilities of the link partner. The LPI Control * register bits will remain set only if/when link is up. * * EEE LPI must not be asserted earlier than one second after link is up. * On 82579, EEE LPI should not be enabled until such time otherwise there * can be link issues with some switches. Other devices can have EEE LPI * enabled immediately upon link up since they have a timer in hardware which * prevents LPI from being asserted too early. **/ s32 e1000_set_eee_pchlan(struct e1000_hw *hw) { struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; s32 ret_val; u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data; DEBUGFUNC("e1000_set_eee_pchlan"); switch (hw->phy.type) { case e1000_phy_82579: lpa = I82579_EEE_LP_ABILITY; pcs_status = I82579_EEE_PCS_STATUS; adv_addr = I82579_EEE_ADVERTISEMENT; break; case e1000_phy_i217: lpa = I217_EEE_LP_ABILITY; pcs_status = I217_EEE_PCS_STATUS; adv_addr = I217_EEE_ADVERTISEMENT; break; default: return E1000_SUCCESS; } ret_val = hw->phy.ops.acquire(hw); if (ret_val) return ret_val; ret_val = hw->phy.ops.read_reg_locked(hw, I82579_LPI_CTRL, &lpi_ctrl); if (ret_val) goto release; /* Clear bits that enable EEE in various speeds */ lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK; /* Enable EEE if not disabled by user */ if (!dev_spec->eee_disable) { /* Save off link partner's EEE ability */ ret_val = e1000_read_emi_reg_locked(hw, lpa, &dev_spec->eee_lp_ability); if (ret_val) goto release; /* Read EEE advertisement */ ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv); if (ret_val) goto release; /* Enable EEE only for speeds in which the link partner is * EEE capable and for which we advertise EEE. */ if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED) lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE; if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) { hw->phy.ops.read_reg_locked(hw, PHY_LP_ABILITY, &data); if (data & NWAY_LPAR_100TX_FD_CAPS) lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE; else /* EEE is not supported in 100Half, so ignore * partner's EEE in 100 ability if full-duplex * is not advertised. */ dev_spec->eee_lp_ability &= ~I82579_EEE_100_SUPPORTED; } } if (hw->phy.type == e1000_phy_82579) { ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT, &data); if (ret_val) goto release; data &= ~I82579_LPI_100_PLL_SHUT; ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT, data); } /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */ ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data); if (ret_val) goto release; ret_val = hw->phy.ops.write_reg_locked(hw, I82579_LPI_CTRL, lpi_ctrl); release: hw->phy.ops.release(hw); return ret_val; } /** * e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP * @hw: pointer to the HW structure * @link: link up bool flag * * When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications * preventing further DMA write requests. Workaround the issue by disabling * the de-assertion of the clock request when in 1Gpbs mode. * Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link * speeds in order to avoid Tx hangs. **/ STATIC s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link) { u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6); u32 status = E1000_READ_REG(hw, E1000_STATUS); s32 ret_val = E1000_SUCCESS; u16 reg; if (link && (status & E1000_STATUS_SPEED_1000)) { ret_val = hw->phy.ops.acquire(hw); if (ret_val) return ret_val; ret_val = e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, ®); if (ret_val) goto release; ret_val = e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, reg & ~E1000_KMRNCTRLSTA_K1_ENABLE); if (ret_val) goto release; usec_delay(10); E1000_WRITE_REG(hw, E1000_FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK); ret_val = e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, reg); release: hw->phy.ops.release(hw); } else { /* clear FEXTNVM6 bit 8 on link down or 10/100 */ fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK; if ((hw->phy.revision > 5) || !link || ((status & E1000_STATUS_SPEED_100) && (status & E1000_STATUS_FD))) goto update_fextnvm6; ret_val = hw->phy.ops.read_reg(hw, I217_INBAND_CTRL, ®); if (ret_val) return ret_val; /* Clear link status transmit timeout */ reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK; if (status & E1000_STATUS_SPEED_100) { /* Set inband Tx timeout to 5x10us for 100Half */ reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT; /* Do not extend the K1 entry latency for 100Half */ fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION; } else { /* Set inband Tx timeout to 50x10us for 10Full/Half */ reg |= 50 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT; /* Extend the K1 entry latency for 10 Mbps */ fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION; } ret_val = hw->phy.ops.write_reg(hw, I217_INBAND_CTRL, reg); if (ret_val) return ret_val; update_fextnvm6: E1000_WRITE_REG(hw, E1000_FEXTNVM6, fextnvm6); } return ret_val; } #ifdef ULP_SUPPORT /** * e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP * @hw: pointer to the HW structure * @to_sx: boolean indicating a system power state transition to Sx * * When link is down, configure ULP mode to significantly reduce the power * to the PHY. If on a Manageability Engine (ME) enabled system, tell the * ME firmware to start the ULP configuration. If not on an ME enabled * system, configure the ULP mode by software. */ s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx) { u32 mac_reg; s32 ret_val = E1000_SUCCESS; u16 phy_reg; u16 oem_reg = 0; if ((hw->mac.type < e1000_pch_lpt) || (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) || (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) || (hw->device_id == E1000_DEV_ID_PCH_I218_LM2) || (hw->device_id == E1000_DEV_ID_PCH_I218_V2) || (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on)) return 0; if (!to_sx) { int i = 0; /* Poll up to 5 seconds for Cable Disconnected indication */ while (!(E1000_READ_REG(hw, E1000_FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) { /* Bail if link is re-acquired */ if (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU) return -E1000_ERR_PHY; if (i++ == 100) break; msec_delay(50); } DEBUGOUT2("CABLE_DISCONNECTED %s set after %dmsec\n", (E1000_READ_REG(hw, E1000_FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50); if (!(E1000_READ_REG(hw, E1000_FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) return 0; } if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) { /* Request ME configure ULP mode in the PHY */ mac_reg = E1000_READ_REG(hw, E1000_H2ME); mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS; E1000_WRITE_REG(hw, E1000_H2ME, mac_reg); goto out; } ret_val = hw->phy.ops.acquire(hw); if (ret_val) goto out; /* During S0 Idle keep the phy in PCI-E mode */ if (hw->dev_spec.ich8lan.smbus_disable) goto skip_smbus; /* Force SMBus mode in PHY */ ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg); if (ret_val) goto release; phy_reg |= CV_SMB_CTRL_FORCE_SMBUS; e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg); /* Force SMBus mode in MAC */ mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT); mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS; E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg); /* Si workaround for ULP entry flow on i127/rev6 h/w. Enable * LPLU and disable Gig speed when entering ULP */ if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) { ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS, &oem_reg); if (ret_val) goto release; phy_reg = oem_reg; phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS; ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS, phy_reg); if (ret_val) goto release; } skip_smbus: if (!to_sx) { /* Change the 'Link Status Change' interrupt to trigger * on 'Cable Status Change' */ ret_val = e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_OP_MODES, &phy_reg); if (ret_val) goto release; phy_reg |= E1000_KMRNCTRLSTA_OP_MODES_LSC2CSC; e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_OP_MODES, phy_reg); } /* Set Inband ULP Exit, Reset to SMBus mode and * Disable SMBus Release on PERST# in PHY */ ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg); if (ret_val) goto release; phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS | I218_ULP_CONFIG1_DISABLE_SMB_PERST); if (to_sx) { if (E1000_READ_REG(hw, E1000_WUFC) & E1000_WUFC_LNKC) phy_reg |= I218_ULP_CONFIG1_WOL_HOST; else phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST; phy_reg |= I218_ULP_CONFIG1_STICKY_ULP; phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT; } else { phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT; phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP; phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST; } e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); /* Set Disable SMBus Release on PERST# in MAC */ mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7); mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST; E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg); /* Commit ULP changes in PHY by starting auto ULP configuration */ phy_reg |= I218_ULP_CONFIG1_START; e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); if (!to_sx) { /* Disable Tx so that the MAC doesn't send any (buffered) * packets to the PHY. */ mac_reg = E1000_READ_REG(hw, E1000_TCTL); mac_reg &= ~E1000_TCTL_EN; E1000_WRITE_REG(hw, E1000_TCTL, mac_reg); } if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) && to_sx && (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) { ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS, oem_reg); if (ret_val) goto release; } release: hw->phy.ops.release(hw); out: if (ret_val) DEBUGOUT1("Error in ULP enable flow: %d\n", ret_val); else hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on; return ret_val; } /** * e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP * @hw: pointer to the HW structure * @force: boolean indicating whether or not to force disabling ULP * * Un-configure ULP mode when link is up, the system is transitioned from * Sx or the driver is unloaded. If on a Manageability Engine (ME) enabled * system, poll for an indication from ME that ULP has been un-configured. * If not on an ME enabled system, un-configure the ULP mode by software. * * During nominal operation, this function is called when link is acquired * to disable ULP mode (force=false); otherwise, for example when unloading * the driver or during Sx->S0 transitions, this is called with force=true * to forcibly disable ULP. * When the cable is plugged in while the device is in D0, a Cable Status * Change interrupt is generated which causes this function to be called * to partially disable ULP mode and restart autonegotiation. This function * is then called again due to the resulting Link Status Change interrupt * to finish cleaning up after the ULP flow. */ s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force) { s32 ret_val = E1000_SUCCESS; u32 mac_reg; u16 phy_reg; int i = 0; if ((hw->mac.type < e1000_pch_lpt) || (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) || (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) || (hw->device_id == E1000_DEV_ID_PCH_I218_LM2) || (hw->device_id == E1000_DEV_ID_PCH_I218_V2) || (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off)) return 0; if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) { if (force) { /* Request ME un-configure ULP mode in the PHY */ mac_reg = E1000_READ_REG(hw, E1000_H2ME); mac_reg &= ~E1000_H2ME_ULP; mac_reg |= E1000_H2ME_ENFORCE_SETTINGS; E1000_WRITE_REG(hw, E1000_H2ME, mac_reg); } /* Poll up to 300msec for ME to clear ULP_CFG_DONE. */ while (E1000_READ_REG(hw, E1000_FWSM) & E1000_FWSM_ULP_CFG_DONE) { if (i++ == 30) { ret_val = -E1000_ERR_PHY; goto out; } msec_delay(10); } DEBUGOUT1("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10); if (force) { mac_reg = E1000_READ_REG(hw, E1000_H2ME); mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS; E1000_WRITE_REG(hw, E1000_H2ME, mac_reg); } else { /* Clear H2ME.ULP after ME ULP configuration */ mac_reg = E1000_READ_REG(hw, E1000_H2ME); mac_reg &= ~E1000_H2ME_ULP; E1000_WRITE_REG(hw, E1000_H2ME, mac_reg); /* Restore link speed advertisements and restart * Auto-negotiation */ if (hw->mac.autoneg) { ret_val = e1000_phy_setup_autoneg(hw); if (ret_val) goto out; } else { ret_val = e1000_setup_copper_link_generic(hw); if (ret_val) goto out; } ret_val = e1000_oem_bits_config_ich8lan(hw, true); } goto out; } ret_val = hw->phy.ops.acquire(hw); if (ret_val) goto out; /* Revert the change to the 'Link Status Change' * interrupt to trigger on 'Cable Status Change' */ ret_val = e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_OP_MODES, &phy_reg); if (ret_val) goto release; phy_reg &= ~E1000_KMRNCTRLSTA_OP_MODES_LSC2CSC; e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_OP_MODES, phy_reg); if (force) /* Toggle LANPHYPC Value bit */ e1000_toggle_lanphypc_pch_lpt(hw); /* Unforce SMBus mode in PHY */ ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg); if (ret_val) { /* The MAC might be in PCIe mode, so temporarily force to * SMBus mode in order to access the PHY. */ mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT); mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS; E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg); msec_delay(50); ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg); if (ret_val) goto release; } phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS; e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg); /* Unforce SMBus mode in MAC */ mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT); mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg); /* When ULP mode was previously entered, K1 was disabled by the * hardware. Re-Enable K1 in the PHY when exiting ULP. */ ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg); if (ret_val) goto release; phy_reg |= HV_PM_CTRL_K1_ENABLE; e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg); /* Clear ULP enabled configuration */ ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg); if (ret_val) goto release; /* CSC interrupt received due to ULP Indication */ if ((phy_reg & I218_ULP_CONFIG1_IND) || force) { phy_reg &= ~(I218_ULP_CONFIG1_IND | I218_ULP_CONFIG1_STICKY_ULP | I218_ULP_CONFIG1_RESET_TO_SMBUS | I218_ULP_CONFIG1_WOL_HOST | I218_ULP_CONFIG1_INBAND_EXIT | I218_ULP_CONFIG1_EN_ULP_LANPHYPC | I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST | I218_ULP_CONFIG1_DISABLE_SMB_PERST); e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); /* Commit ULP changes by starting auto ULP configuration */ phy_reg |= I218_ULP_CONFIG1_START; e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); /* Clear Disable SMBus Release on PERST# in MAC */ mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7); mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST; E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg); if (!force) { hw->phy.ops.release(hw); if (hw->mac.autoneg) e1000_phy_setup_autoneg(hw); else e1000_setup_copper_link_generic(hw); e1000_sw_lcd_config_ich8lan(hw); e1000_oem_bits_config_ich8lan(hw, true); /* Set ULP state to unknown and return non-zero to * indicate no link (yet) and re-enter on the next LSC * to finish disabling ULP flow. */ hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown; return 1; } } /* Re-enable Tx */ mac_reg = E1000_READ_REG(hw, E1000_TCTL); mac_reg |= E1000_TCTL_EN; E1000_WRITE_REG(hw, E1000_TCTL, mac_reg); release: hw->phy.ops.release(hw); if (force) { hw->phy.ops.reset(hw); msec_delay(50); } out: if (ret_val) DEBUGOUT1("Error in ULP disable flow: %d\n", ret_val); else hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off; return ret_val; } #endif /* ULP_SUPPORT */ /** * e1000_check_for_copper_link_ich8lan - Check for link (Copper) * @hw: pointer to the HW structure * * Checks to see of the link status of the hardware has changed. If a * change in link status has been detected, then we read the PHY registers * to get the current speed/duplex if link exists. **/ STATIC s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; s32 ret_val, tipg_reg = 0; u16 emi_addr, emi_val = 0; bool link = false; u16 phy_reg; DEBUGFUNC("e1000_check_for_copper_link_ich8lan"); /* We only want to go out to the PHY registers to see if Auto-Neg * has completed and/or if our link status has changed. The * get_link_status flag is set upon receiving a Link Status * Change or Rx Sequence Error interrupt. */ if (!mac->get_link_status) return E1000_SUCCESS; if ((hw->mac.type < e1000_pch_lpt) || (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) || (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V)) { /* First we want to see if the MII Status Register reports * link. If so, then we want to get the current speed/duplex * of the PHY. */ ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); if (ret_val) return ret_val; } else { /* Check the MAC's STATUS register to determine link state * since the PHY could be inaccessible while in ULP mode. */ link = !!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU); if (link) ret_val = e1000_disable_ulp_lpt_lp(hw, false); else ret_val = e1000_enable_ulp_lpt_lp(hw, false); if (ret_val) return ret_val; } if (hw->mac.type == e1000_pchlan) { ret_val = e1000_k1_gig_workaround_hv(hw, link); if (ret_val) return ret_val; } /* When connected at 10Mbps half-duplex, some parts are excessively * aggressive resulting in many collisions. To avoid this, increase * the IPG and reduce Rx latency in the PHY. */ if ((hw->mac.type >= e1000_pch2lan) && link) { u16 speed, duplex; e1000_get_speed_and_duplex_copper_generic(hw, &speed, &duplex); tipg_reg = E1000_READ_REG(hw, E1000_TIPG); tipg_reg &= ~E1000_TIPG_IPGT_MASK; if (duplex == HALF_DUPLEX && speed == SPEED_10) { tipg_reg |= 0xFF; /* Reduce Rx latency in analog PHY */ emi_val = 0; } else if (hw->mac.type >= e1000_pch_spt && duplex == FULL_DUPLEX && speed != SPEED_1000) { tipg_reg |= 0xC; emi_val = 1; } else { /* Roll back the default values */ tipg_reg |= 0x08; emi_val = 1; } E1000_WRITE_REG(hw, E1000_TIPG, tipg_reg); ret_val = hw->phy.ops.acquire(hw); if (ret_val) return ret_val; if (hw->mac.type == e1000_pch2lan) emi_addr = I82579_RX_CONFIG; else emi_addr = I217_RX_CONFIG; ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val); if (hw->mac.type >= e1000_pch_lpt) { u16 phy_reg; hw->phy.ops.read_reg_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg); phy_reg &= ~I217_PLL_CLOCK_GATE_MASK; if (speed == SPEED_100 || speed == SPEED_10) phy_reg |= 0x3E8; else phy_reg |= 0xFA; hw->phy.ops.write_reg_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg); if (speed == SPEED_1000) { hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL, &phy_reg); phy_reg |= HV_PM_CTRL_K1_CLK_REQ; hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL, phy_reg); } } hw->phy.ops.release(hw); if (ret_val) return ret_val; if (hw->mac.type >= e1000_pch_spt) { u16 data; u16 ptr_gap; if (speed == SPEED_1000) { ret_val = hw->phy.ops.acquire(hw); if (ret_val) return ret_val; ret_val = hw->phy.ops.read_reg_locked(hw, PHY_REG(776, 20), &data); if (ret_val) { hw->phy.ops.release(hw); return ret_val; } ptr_gap = (data & (0x3FF << 2)) >> 2; if (ptr_gap < 0x18) { data &= ~(0x3FF << 2); data |= (0x18 << 2); ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(776, 20), data); } hw->phy.ops.release(hw); if (ret_val) return ret_val; } else { ret_val = hw->phy.ops.acquire(hw); if (ret_val) return ret_val; ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(776, 20), 0xC023); hw->phy.ops.release(hw); if (ret_val) return ret_val; } } } /* I217 Packet Loss issue: * ensure that FEXTNVM4 Beacon Duration is set correctly * on power up. * Set the Beacon Duration for I217 to 8 usec */ if (hw->mac.type >= e1000_pch_lpt) { u32 mac_reg; mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4); mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK; mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC; E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg); } /* Work-around I218 hang issue */ if ((hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) || (hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) || (hw->device_id == E1000_DEV_ID_PCH_I218_LM3) || (hw->device_id == E1000_DEV_ID_PCH_I218_V3)) { ret_val = e1000_k1_workaround_lpt_lp(hw, link); if (ret_val) return ret_val; } /* Clear link partner's EEE ability */ hw->dev_spec.ich8lan.eee_lp_ability = 0; /* Configure K0s minimum time */ if (hw->mac.type >= e1000_pch_lpt) { e1000_configure_k0s_lpt(hw, K1_ENTRY_LATENCY, K1_MIN_TIME); } if (hw->mac.type >= e1000_pch_lpt) { u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6); if (hw->mac.type == e1000_pch_spt) { /* FEXTNVM6 K1-off workaround - for SPT only */ u32 pcieanacfg = E1000_READ_REG(hw, E1000_PCIEANACFG); if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE) fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE; else fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE; } if (hw->dev_spec.ich8lan.disable_k1_off == true) fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE; E1000_WRITE_REG(hw, E1000_FEXTNVM6, fextnvm6); } if (!link) return E1000_SUCCESS; /* No link detected */ mac->get_link_status = false; switch (hw->mac.type) { case e1000_pch2lan: ret_val = e1000_k1_workaround_lv(hw); if (ret_val) return ret_val; /* fall-thru */ case e1000_pchlan: if (hw->phy.type == e1000_phy_82578) { ret_val = e1000_link_stall_workaround_hv(hw); if (ret_val) return ret_val; } /* Workaround for PCHx parts in half-duplex: * Set the number of preambles removed from the packet * when it is passed from the PHY to the MAC to prevent * the MAC from misinterpreting the packet type. */ hw->phy.ops.read_reg(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg); phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK; if ((E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD) phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT); hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg); break; default: break; } /* Check if there was DownShift, must be checked * immediately after link-up */ e1000_check_downshift_generic(hw); /* Enable/Disable EEE after link up */ if (hw->phy.type > e1000_phy_82579) { ret_val = e1000_set_eee_pchlan(hw); if (ret_val) return ret_val; } /* If we are forcing speed/duplex, then we simply return since * we have already determined whether we have link or not. */ if (!mac->autoneg) return -E1000_ERR_CONFIG; /* Auto-Neg is enabled. Auto Speed Detection takes care * of MAC speed/duplex configuration. So we only need to * configure Collision Distance in the MAC. */ mac->ops.config_collision_dist(hw); /* Configure Flow Control now that Auto-Neg has completed. * First, we need to restore the desired flow control * settings because we may have had to re-autoneg with a * different link partner. */ ret_val = e1000_config_fc_after_link_up_generic(hw); if (ret_val) DEBUGOUT("Error configuring flow control\n"); return ret_val; } /** * e1000_init_function_pointers_ich8lan - Initialize ICH8 function pointers * @hw: pointer to the HW structure * * Initialize family-specific function pointers for PHY, MAC, and NVM. **/ void e1000_init_function_pointers_ich8lan(struct e1000_hw *hw) { DEBUGFUNC("e1000_init_function_pointers_ich8lan"); hw->mac.ops.init_params = e1000_init_mac_params_ich8lan; hw->nvm.ops.init_params = e1000_init_nvm_params_ich8lan; switch (hw->mac.type) { case e1000_ich8lan: case e1000_ich9lan: case e1000_ich10lan: hw->phy.ops.init_params = e1000_init_phy_params_ich8lan; break; case e1000_pchlan: case e1000_pch2lan: case e1000_pch_lpt: case e1000_pch_spt: case e1000_pch_cnp: hw->phy.ops.init_params = e1000_init_phy_params_pchlan; break; default: break; } } /** * e1000_acquire_nvm_ich8lan - Acquire NVM mutex * @hw: pointer to the HW structure * * Acquires the mutex for performing NVM operations. **/ STATIC s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw) { DEBUGFUNC("e1000_acquire_nvm_ich8lan"); E1000_MUTEX_LOCK(&hw->dev_spec.ich8lan.nvm_mutex); return E1000_SUCCESS; } /** * e1000_release_nvm_ich8lan - Release NVM mutex * @hw: pointer to the HW structure * * Releases the mutex used while performing NVM operations. **/ STATIC void e1000_release_nvm_ich8lan(struct e1000_hw *hw) { DEBUGFUNC("e1000_release_nvm_ich8lan"); E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.nvm_mutex); return; } /** * e1000_acquire_swflag_ich8lan - Acquire software control flag * @hw: pointer to the HW structure * * Acquires the software control flag for performing PHY and select * MAC CSR accesses. **/ STATIC s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw) { u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT; s32 ret_val = E1000_SUCCESS; DEBUGFUNC("e1000_acquire_swflag_ich8lan"); E1000_MUTEX_LOCK(&hw->dev_spec.ich8lan.swflag_mutex); while (timeout) { extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)) break; msec_delay_irq(1); timeout--; } if (!timeout) { DEBUGOUT("SW has already locked the resource.\n"); ret_val = -E1000_ERR_CONFIG; goto out; } timeout = SW_FLAG_TIMEOUT; extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG; E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl); while (timeout) { extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) break; msec_delay_irq(1); timeout--; } if (!timeout) { DEBUGOUT2("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n", E1000_READ_REG(hw, E1000_FWSM), extcnf_ctrl); extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl); ret_val = -E1000_ERR_CONFIG; goto out; } out: if (ret_val) E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex); return ret_val; } /** * e1000_release_swflag_ich8lan - Release software control flag * @hw: pointer to the HW structure * * Releases the software control flag for performing PHY and select * MAC CSR accesses. **/ STATIC void e1000_release_swflag_ich8lan(struct e1000_hw *hw) { u32 extcnf_ctrl; DEBUGFUNC("e1000_release_swflag_ich8lan"); extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) { extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl); } else { DEBUGOUT("Semaphore unexpectedly released by sw/fw/hw\n"); } E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex); return; } /** * e1000_check_mng_mode_ich8lan - Checks management mode * @hw: pointer to the HW structure * * This checks if the adapter has any manageability enabled. * This is a function pointer entry point only called by read/write * routines for the PHY and NVM parts. **/ STATIC bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw) { u32 fwsm; DEBUGFUNC("e1000_check_mng_mode_ich8lan"); fwsm = E1000_READ_REG(hw, E1000_FWSM); return (fwsm & E1000_ICH_FWSM_FW_VALID) && ((fwsm & E1000_FWSM_MODE_MASK) == (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); } /** * e1000_check_mng_mode_pchlan - Checks management mode * @hw: pointer to the HW structure * * This checks if the adapter has iAMT enabled. * This is a function pointer entry point only called by read/write * routines for the PHY and NVM parts. **/ STATIC bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw) { u32 fwsm; DEBUGFUNC("e1000_check_mng_mode_pchlan"); fwsm = E1000_READ_REG(hw, E1000_FWSM); return (fwsm & E1000_ICH_FWSM_FW_VALID) && (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); } /** * e1000_rar_set_pch2lan - Set receive address register * @hw: pointer to the HW structure * @addr: pointer to the receive address * @index: receive address array register * * Sets the receive address array register at index to the address passed * in by addr. For 82579, RAR[0] is the base address register that is to * contain the MAC address but RAR[1-6] are reserved for manageability (ME). * Use SHRA[0-3] in place of those reserved for ME. **/ STATIC int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index) { u32 rar_low, rar_high; DEBUGFUNC("e1000_rar_set_pch2lan"); /* HW expects these in little endian so we reverse the byte order * from network order (big endian) to little endian */ rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) | ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); /* If MAC address zero, no need to set the AV bit */ if (rar_low || rar_high) rar_high |= E1000_RAH_AV; if (index == 0) { E1000_WRITE_REG(hw, E1000_RAL(index), rar_low); E1000_WRITE_FLUSH(hw); E1000_WRITE_REG(hw, E1000_RAH(index), rar_high); E1000_WRITE_FLUSH(hw); return E1000_SUCCESS; } /* RAR[1-6] are owned by manageability. Skip those and program the * next address into the SHRA register array. */ if (index < (u32) (hw->mac.rar_entry_count)) { s32 ret_val; ret_val = e1000_acquire_swflag_ich8lan(hw); if (ret_val) goto out; E1000_WRITE_REG(hw, E1000_SHRAL(index - 1), rar_low); E1000_WRITE_FLUSH(hw); E1000_WRITE_REG(hw, E1000_SHRAH(index - 1), rar_high); E1000_WRITE_FLUSH(hw); e1000_release_swflag_ich8lan(hw); /* verify the register updates */ if ((E1000_READ_REG(hw, E1000_SHRAL(index - 1)) == rar_low) && (E1000_READ_REG(hw, E1000_SHRAH(index - 1)) == rar_high)) return E1000_SUCCESS; DEBUGOUT2("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n", (index - 1), E1000_READ_REG(hw, E1000_FWSM)); } out: DEBUGOUT1("Failed to write receive address at index %d\n", index); return -E1000_ERR_CONFIG; } /** * e1000_rar_set_pch_lpt - Set receive address registers * @hw: pointer to the HW structure * @addr: pointer to the receive address * @index: receive address array register * * Sets the receive address register array at index to the address passed * in by addr. For LPT, RAR[0] is the base address register that is to * contain the MAC address. SHRA[0-10] are the shared receive address * registers that are shared between the Host and manageability engine (ME). **/ STATIC int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index) { u32 rar_low, rar_high; u32 wlock_mac; DEBUGFUNC("e1000_rar_set_pch_lpt"); /* HW expects these in little endian so we reverse the byte order * from network order (big endian) to little endian */ rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) | ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); /* If MAC address zero, no need to set the AV bit */ if (rar_low || rar_high) rar_high |= E1000_RAH_AV; if (index == 0) { E1000_WRITE_REG(hw, E1000_RAL(index), rar_low); E1000_WRITE_FLUSH(hw); E1000_WRITE_REG(hw, E1000_RAH(index), rar_high); E1000_WRITE_FLUSH(hw); return E1000_SUCCESS; } /* The manageability engine (ME) can lock certain SHRAR registers that * it is using - those registers are unavailable for use. */ if (index < hw->mac.rar_entry_count) { wlock_mac = E1000_READ_REG(hw, E1000_FWSM) & E1000_FWSM_WLOCK_MAC_MASK; wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT; /* Check if all SHRAR registers are locked */ if (wlock_mac == 1) goto out; if ((wlock_mac == 0) || (index <= wlock_mac)) { s32 ret_val; ret_val = e1000_acquire_swflag_ich8lan(hw); if (ret_val) goto out; E1000_WRITE_REG(hw, E1000_SHRAL_PCH_LPT(index - 1), rar_low); E1000_WRITE_FLUSH(hw); E1000_WRITE_REG(hw, E1000_SHRAH_PCH_LPT(index - 1), rar_high); E1000_WRITE_FLUSH(hw); e1000_release_swflag_ich8lan(hw); /* verify the register updates */ if ((E1000_READ_REG(hw, E1000_SHRAL_PCH_LPT(index - 1)) == rar_low) && (E1000_READ_REG(hw, E1000_SHRAH_PCH_LPT(index - 1)) == rar_high)) return E1000_SUCCESS; } } out: DEBUGOUT1("Failed to write receive address at index %d\n", index); return -E1000_ERR_CONFIG; } #ifndef NO_NON_BLOCKING_PHY_MTA_UPDATE_SUPPORT /** * e1000_update_mc_addr_list_pch2lan - Update Multicast addresses * @hw: pointer to the HW structure * @mc_addr_list: array of multicast addresses to program * @mc_addr_count: number of multicast addresses to program * * Updates entire Multicast Table Array of the PCH2 MAC and PHY. * The caller must have a packed mc_addr_list of multicast addresses. **/ STATIC void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw, u8 *mc_addr_list, u32 mc_addr_count) { u16 phy_reg = 0; int i; s32 ret_val; DEBUGFUNC("e1000_update_mc_addr_list_pch2lan"); e1000_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count); ret_val = hw->phy.ops.acquire(hw); if (ret_val) return; ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg); if (ret_val) goto release; for (i = 0; i < hw->mac.mta_reg_count; i++) { hw->phy.ops.write_reg_page(hw, BM_MTA(i), (u16)(hw->mac.mta_shadow[i] & 0xFFFF)); hw->phy.ops.write_reg_page(hw, (BM_MTA(i) + 1), (u16)((hw->mac.mta_shadow[i] >> 16) & 0xFFFF)); } e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg); release: hw->phy.ops.release(hw); } #endif /* NO_NON_BLOCKING_PHY_MTA_UPDATE_SUPPORT */ /** * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked * @hw: pointer to the HW structure * * Checks if firmware is blocking the reset of the PHY. * This is a function pointer entry point only called by * reset routines. **/ STATIC s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw) { u32 fwsm; bool blocked = false; int i = 0; DEBUGFUNC("e1000_check_reset_block_ich8lan"); do { fwsm = E1000_READ_REG(hw, E1000_FWSM); if (!(fwsm & E1000_ICH_FWSM_RSPCIPHY)) { blocked = true; msec_delay(10); continue; } blocked = false; } while (blocked && (i++ < 30)); return blocked ? E1000_BLK_PHY_RESET : E1000_SUCCESS; } /** * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states * @hw: pointer to the HW structure * * Assumes semaphore already acquired. * **/ STATIC s32 e1000_write_smbus_addr(struct e1000_hw *hw) { u16 phy_data; u32 strap = E1000_READ_REG(hw, E1000_STRAP); u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >> E1000_STRAP_SMT_FREQ_SHIFT; s32 ret_val; strap &= E1000_STRAP_SMBUS_ADDRESS_MASK; ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data); if (ret_val) return ret_val; phy_data &= ~HV_SMB_ADDR_MASK; phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT); phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID; if (hw->phy.type == e1000_phy_i217) { /* Restore SMBus frequency */ if (freq--) { phy_data &= ~HV_SMB_ADDR_FREQ_MASK; phy_data |= (freq & (1 << 0)) << HV_SMB_ADDR_FREQ_LOW_SHIFT; phy_data |= (freq & (1 << 1)) << (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1); } else { DEBUGOUT("Unsupported SMB frequency in PHY\n"); } } return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data); } /** * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration * @hw: pointer to the HW structure * * SW should configure the LCD from the NVM extended configuration region * as a workaround for certain parts. **/ STATIC s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask; s32 ret_val = E1000_SUCCESS; u16 word_addr, reg_data, reg_addr, phy_page = 0; DEBUGFUNC("e1000_sw_lcd_config_ich8lan"); /* Initialize the PHY from the NVM on ICH platforms. This * is needed due to an issue where the NVM configuration is * not properly autoloaded after power transitions. * Therefore, after each PHY reset, we will load the * configuration data out of the NVM manually. */ switch (hw->mac.type) { case e1000_ich8lan: if (phy->type != e1000_phy_igp_3) return ret_val; if ((hw->device_id == E1000_DEV_ID_ICH8_IGP_AMT) || (hw->device_id == E1000_DEV_ID_ICH8_IGP_C)) { sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG; break; } /* Fall-thru */ case e1000_pchlan: case e1000_pch2lan: case e1000_pch_lpt: case e1000_pch_spt: case e1000_pch_cnp: sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M; break; default: return ret_val; } ret_val = hw->phy.ops.acquire(hw); if (ret_val) return ret_val; data = E1000_READ_REG(hw, E1000_FEXTNVM); if (!(data & sw_cfg_mask)) goto release; /* Make sure HW does not configure LCD from PHY * extended configuration before SW configuration */ data = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); if ((hw->mac.type < e1000_pch2lan) && (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)) goto release; cnf_size = E1000_READ_REG(hw, E1000_EXTCNF_SIZE); cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK; cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT; if (!cnf_size) goto release; cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK; cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT; if (((hw->mac.type == e1000_pchlan) && !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) || (hw->mac.type > e1000_pchlan)) { /* HW configures the SMBus address and LEDs when the * OEM and LCD Write Enable bits are set in the NVM. * When both NVM bits are cleared, SW will configure * them instead. */ ret_val = e1000_write_smbus_addr(hw); if (ret_val) goto release; data = E1000_READ_REG(hw, E1000_LEDCTL); ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG, (u16)data); if (ret_val) goto release; } /* Configure LCD from extended configuration region. */ /* cnf_base_addr is in DWORD */ word_addr = (u16)(cnf_base_addr << 1); for (i = 0; i < cnf_size; i++) { ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2), 1, ®_data); if (ret_val) goto release; ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2 + 1), 1, ®_addr); if (ret_val) goto release; /* Save off the PHY page for future writes. */ if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) { phy_page = reg_data; continue; } reg_addr &= PHY_REG_MASK; reg_addr |= phy_page; ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr, reg_data); if (ret_val) goto release; } release: hw->phy.ops.release(hw); return ret_val; } /** * e1000_k1_gig_workaround_hv - K1 Si workaround * @hw: pointer to the HW structure * @link: link up bool flag * * If K1 is enabled for 1Gbps, the MAC might stall when transitioning * from a lower speed. This workaround disables K1 whenever link is at 1Gig * If link is down, the function will restore the default K1 setting located * in the NVM. **/ STATIC s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link) { s32 ret_val = E1000_SUCCESS; u16 status_reg = 0; bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled; DEBUGFUNC("e1000_k1_gig_workaround_hv"); if (hw->mac.type != e1000_pchlan) return E1000_SUCCESS; /* Wrap the whole flow with the sw flag */ ret_val = hw->phy.ops.acquire(hw); if (ret_val) return ret_val; /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */ if (link) { if (hw->phy.type == e1000_phy_82578) { ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS, &status_reg); if (ret_val) goto release; status_reg &= (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED | BM_CS_STATUS_SPEED_MASK); if (status_reg == (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED | BM_CS_STATUS_SPEED_1000)) k1_enable = false; } if (hw->phy.type == e1000_phy_82577) { ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS, &status_reg); if (ret_val) goto release; status_reg &= (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE | HV_M_STATUS_SPEED_MASK); if (status_reg == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE | HV_M_STATUS_SPEED_1000)) k1_enable = false; } /* Link stall fix for link up */ ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19), 0x0100); if (ret_val) goto release; } else { /* Link stall fix for link down */ ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19), 0x4100); if (ret_val) goto release; } ret_val = e1000_configure_k1_ich8lan(hw, k1_enable); release: hw->phy.ops.release(hw); return ret_val; } /** * e1000_configure_k1_ich8lan - Configure K1 power state * @hw: pointer to the HW structure * @enable: K1 state to configure * * Configure the K1 power state based on the provided parameter. * Assumes semaphore already acquired. * * Success returns 0, Failure returns -E1000_ERR_PHY (-2) **/ s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable) { s32 ret_val; u32 ctrl_reg = 0; u32 ctrl_ext = 0; u32 reg = 0; u16 kmrn_reg = 0; DEBUGFUNC("e1000_configure_k1_ich8lan"); ret_val = e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, &kmrn_reg); if (ret_val) return ret_val; if (k1_enable) kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE; else kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE; ret_val = e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, kmrn_reg); if (ret_val) return ret_val; usec_delay(20); ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); ctrl_reg = E1000_READ_REG(hw, E1000_CTRL); reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); reg |= E1000_CTRL_FRCSPD; E1000_WRITE_REG(hw, E1000_CTRL, reg); E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS); E1000_WRITE_FLUSH(hw); usec_delay(20); E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg); E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); E1000_WRITE_FLUSH(hw); usec_delay(20); return E1000_SUCCESS; } /** * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration * @hw: pointer to the HW structure * @d0_state: boolean if entering d0 or d3 device state * * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are * collectively called OEM bits. The OEM Write Enable bit and SW Config bit * in NVM determines whether HW should configure LPLU and Gbe Disable. **/ STATIC s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state) { s32 ret_val = 0; u32 mac_reg; u16 oem_reg; DEBUGFUNC("e1000_oem_bits_config_ich8lan"); if (hw->mac.type < e1000_pchlan) return ret_val; ret_val = hw->phy.ops.acquire(hw); if (ret_val) return ret_val; if (hw->mac.type == e1000_pchlan) { mac_reg = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) goto release; } mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM); if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M)) goto release; mac_reg = E1000_READ_REG(hw, E1000_PHY_CTRL); ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg); if (ret_val) goto release; oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU); if (d0_state) { if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE) oem_reg |= HV_OEM_BITS_GBE_DIS; if (mac_reg & E1000_PHY_CTRL_D0A_LPLU) oem_reg |= HV_OEM_BITS_LPLU; } else { if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE | E1000_PHY_CTRL_NOND0A_GBE_DISABLE)) oem_reg |= HV_OEM_BITS_GBE_DIS; if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU | E1000_PHY_CTRL_NOND0A_LPLU)) oem_reg |= HV_OEM_BITS_LPLU; } /* Set Restart auto-neg to activate the bits */ if ((d0_state || (hw->mac.type != e1000_pchlan)) && !hw->phy.ops.check_reset_block(hw)) oem_reg |= HV_OEM_BITS_RESTART_AN; ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg); release: hw->phy.ops.release(hw); return ret_val; } /** * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode * @hw: pointer to the HW structure **/ STATIC s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw) { s32 ret_val; u16 data; DEBUGFUNC("e1000_set_mdio_slow_mode_hv"); ret_val = hw->phy.ops.read_reg(hw, HV_KMRN_MODE_CTRL, &data); if (ret_val) return ret_val; data |= HV_KMRN_MDIO_SLOW; ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_MODE_CTRL, data); return ret_val; } /** * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be * done after every PHY reset. **/ STATIC s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw) { s32 ret_val = E1000_SUCCESS; u16 phy_data; DEBUGFUNC("e1000_hv_phy_workarounds_ich8lan"); if (hw->mac.type != e1000_pchlan) return E1000_SUCCESS; /* Set MDIO slow mode before any other MDIO access */ if (hw->phy.type == e1000_phy_82577) { ret_val = e1000_set_mdio_slow_mode_hv(hw); if (ret_val) return ret_val; } if (((hw->phy.type == e1000_phy_82577) && ((hw->phy.revision == 1) || (hw->phy.revision == 2))) || ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) { /* Disable generation of early preamble */ ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 25), 0x4431); if (ret_val) return ret_val; /* Preamble tuning for SSC */ ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204); if (ret_val) return ret_val; } if (hw->phy.type == e1000_phy_82578) { /* Return registers to default by doing a soft reset then * writing 0x3140 to the control register. */ if (hw->phy.revision < 2) { e1000_phy_sw_reset_generic(hw); ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, 0x3140); } } /* Select page 0 */ ret_val = hw->phy.ops.acquire(hw); if (ret_val) return ret_val; hw->phy.addr = 1; ret_val = e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0); hw->phy.ops.release(hw); if (ret_val) return ret_val; /* Configure the K1 Si workaround during phy reset assuming there is * link so that it disables K1 if link is in 1Gbps. */ ret_val = e1000_k1_gig_workaround_hv(hw, true); if (ret_val) return ret_val; /* Workaround for link disconnects on a busy hub in half duplex */ ret_val = hw->phy.ops.acquire(hw); if (ret_val) return ret_val; ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data); if (ret_val) goto release; ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF); if (ret_val) goto release; /* set MSE higher to enable link to stay up when noise is high */ ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034); release: hw->phy.ops.release(hw); return ret_val; } /** * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY * @hw: pointer to the HW structure **/ void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw) { u32 mac_reg; u16 i, phy_reg = 0; s32 ret_val; DEBUGFUNC("e1000_copy_rx_addrs_to_phy_ich8lan"); ret_val = hw->phy.ops.acquire(hw); if (ret_val) return; ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg); if (ret_val) goto release; /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */ for (i = 0; i < (hw->mac.rar_entry_count); i++) { mac_reg = E1000_READ_REG(hw, E1000_RAL(i)); hw->phy.ops.write_reg_page(hw, BM_RAR_L(i), (u16)(mac_reg & 0xFFFF)); hw->phy.ops.write_reg_page(hw, BM_RAR_M(i), (u16)((mac_reg >> 16) & 0xFFFF)); mac_reg = E1000_READ_REG(hw, E1000_RAH(i)); hw->phy.ops.write_reg_page(hw, BM_RAR_H(i), (u16)(mac_reg & 0xFFFF)); hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i), (u16)((mac_reg & E1000_RAH_AV) >> 16)); } e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg); release: hw->phy.ops.release(hw); } #ifndef CRC32_OS_SUPPORT STATIC u32 e1000_calc_rx_da_crc(u8 mac[]) { u32 poly = 0xEDB88320; /* Polynomial for 802.3 CRC calculation */ u32 i, j, mask, crc; DEBUGFUNC("e1000_calc_rx_da_crc"); crc = 0xffffffff; for (i = 0; i < 6; i++) { crc = crc ^ mac[i]; for (j = 8; j > 0; j--) { mask = (crc & 1) * (-1); crc = (crc >> 1) ^ (poly & mask); } } return ~crc; } #endif /* CRC32_OS_SUPPORT */ /** * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation * with 82579 PHY * @hw: pointer to the HW structure * @enable: flag to enable/disable workaround when enabling/disabling jumbos **/ s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable) { s32 ret_val = E1000_SUCCESS; u16 phy_reg, data; u32 mac_reg; u16 i; DEBUGFUNC("e1000_lv_jumbo_workaround_ich8lan"); if (hw->mac.type < e1000_pch2lan) return E1000_SUCCESS; /* disable Rx path while enabling/disabling workaround */ hw->phy.ops.read_reg(hw, PHY_REG(769, 20), &phy_reg); ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 20), phy_reg | (1 << 14)); if (ret_val) return ret_val; if (enable) { /* Write Rx addresses (rar_entry_count for RAL/H, and * SHRAL/H) and initial CRC values to the MAC */ for (i = 0; i < hw->mac.rar_entry_count; i++) { u8 mac_addr[ETH_ADDR_LEN] = {0}; u32 addr_high, addr_low; addr_high = E1000_READ_REG(hw, E1000_RAH(i)); if (!(addr_high & E1000_RAH_AV)) continue; addr_low = E1000_READ_REG(hw, E1000_RAL(i)); mac_addr[0] = (addr_low & 0xFF); mac_addr[1] = ((addr_low >> 8) & 0xFF); mac_addr[2] = ((addr_low >> 16) & 0xFF); mac_addr[3] = ((addr_low >> 24) & 0xFF); mac_addr[4] = (addr_high & 0xFF); mac_addr[5] = ((addr_high >> 8) & 0xFF); #ifndef CRC32_OS_SUPPORT E1000_WRITE_REG(hw, E1000_PCH_RAICC(i), e1000_calc_rx_da_crc(mac_addr)); #else /* CRC32_OS_SUPPORT */ E1000_WRITE_REG(hw, E1000_PCH_RAICC(i), E1000_CRC32(ETH_ADDR_LEN, mac_addr)); #endif /* CRC32_OS_SUPPORT */ } /* Write Rx addresses to the PHY */ e1000_copy_rx_addrs_to_phy_ich8lan(hw); /* Enable jumbo frame workaround in the MAC */ mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG); mac_reg &= ~(1 << 14); mac_reg |= (7 << 15); E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg); mac_reg = E1000_READ_REG(hw, E1000_RCTL); mac_reg |= E1000_RCTL_SECRC; E1000_WRITE_REG(hw, E1000_RCTL, mac_reg); ret_val = e1000_read_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_CTRL_OFFSET, &data); if (ret_val) return ret_val; ret_val = e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_CTRL_OFFSET, data | (1 << 0)); if (ret_val) return ret_val; ret_val = e1000_read_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_HD_CTRL, &data); if (ret_val) return ret_val; data &= ~(0xF << 8); data |= (0xB << 8); ret_val = e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_HD_CTRL, data); if (ret_val) return ret_val; /* Enable jumbo frame workaround in the PHY */ hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data); data &= ~(0x7F << 5); data |= (0x37 << 5); ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data); if (ret_val) return ret_val; hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data); data &= ~(1 << 13); ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data); if (ret_val) return ret_val; hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data); data &= ~(0x3FF << 2); data |= (E1000_TX_PTR_GAP << 2); ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data); if (ret_val) return ret_val; ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0xF100); if (ret_val) return ret_val; hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data); ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data | (1 << 10)); if (ret_val) return ret_val; } else { /* Write MAC register values back to h/w defaults */ mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG); mac_reg &= ~(0xF << 14); E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg); mac_reg = E1000_READ_REG(hw, E1000_RCTL); mac_reg &= ~E1000_RCTL_SECRC; E1000_WRITE_REG(hw, E1000_RCTL, mac_reg); ret_val = e1000_read_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_CTRL_OFFSET, &data); if (ret_val) return ret_val; ret_val = e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_CTRL_OFFSET, data & ~(1 << 0)); if (ret_val) return ret_val; ret_val = e1000_read_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_HD_CTRL, &data); if (ret_val) return ret_val; data &= ~(0xF << 8); data |= (0xB << 8); ret_val = e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_HD_CTRL, data); if (ret_val) return ret_val; /* Write PHY register values back to h/w defaults */ hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data); data &= ~(0x7F << 5); ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data); if (ret_val) return ret_val; hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data); data |= (1 << 13); ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data); if (ret_val) return ret_val; hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data); data &= ~(0x3FF << 2); data |= (0x8 << 2); ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data); if (ret_val) return ret_val; ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0x7E00); if (ret_val) return ret_val; hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data); ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data & ~(1 << 10)); if (ret_val) return ret_val; } /* re-enable Rx path after enabling/disabling workaround */ return hw->phy.ops.write_reg(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14)); } /** * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be * done after every PHY reset. **/ STATIC s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw) { s32 ret_val = E1000_SUCCESS; DEBUGFUNC("e1000_lv_phy_workarounds_ich8lan"); if (hw->mac.type != e1000_pch2lan) return E1000_SUCCESS; /* Set MDIO slow mode before any other MDIO access */ ret_val = e1000_set_mdio_slow_mode_hv(hw); if (ret_val) return ret_val; ret_val = hw->phy.ops.acquire(hw); if (ret_val) return ret_val; /* set MSE higher to enable link to stay up when noise is high */ ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034); if (ret_val) goto release; /* drop link after 5 times MSE threshold was reached */ ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005); release: hw->phy.ops.release(hw); return ret_val; } /** * e1000_k1_gig_workaround_lv - K1 Si workaround * @hw: pointer to the HW structure * * Workaround to set the K1 beacon duration for 82579 parts in 10Mbps * Disable K1 for 1000 and 100 speeds **/ STATIC s32 e1000_k1_workaround_lv(struct e1000_hw *hw) { s32 ret_val = E1000_SUCCESS; u16 status_reg = 0; DEBUGFUNC("e1000_k1_workaround_lv"); if (hw->mac.type != e1000_pch2lan) return E1000_SUCCESS; /* Set K1 beacon duration based on 10Mbs speed */ ret_val = hw->phy.ops.read_reg(hw, HV_M_STATUS, &status_reg); if (ret_val) return ret_val; if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) { if (status_reg & (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) { u16 pm_phy_reg; /* LV 1G/100 Packet drop issue wa */ ret_val = hw->phy.ops.read_reg(hw, HV_PM_CTRL, &pm_phy_reg); if (ret_val) return ret_val; pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE; ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, pm_phy_reg); if (ret_val) return ret_val; } else { u32 mac_reg; mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4); mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK; mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC; E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg); } } return ret_val; } /** * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware * @hw: pointer to the HW structure * @gate: boolean set to true to gate, false to ungate * * Gate/ungate the automatic PHY configuration via hardware; perform * the configuration via software instead. **/ STATIC void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate) { u32 extcnf_ctrl; DEBUGFUNC("e1000_gate_hw_phy_config_ich8lan"); if (hw->mac.type < e1000_pch2lan) return; extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); if (gate) extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG; else extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG; E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl); } /** * e1000_lan_init_done_ich8lan - Check for PHY config completion * @hw: pointer to the HW structure * * Check the appropriate indication the MAC has finished configuring the * PHY after a software reset. **/ STATIC void e1000_lan_init_done_ich8lan(struct e1000_hw *hw) { u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT; DEBUGFUNC("e1000_lan_init_done_ich8lan"); /* Wait for basic configuration completes before proceeding */ do { data = E1000_READ_REG(hw, E1000_STATUS); data &= E1000_STATUS_LAN_INIT_DONE; usec_delay(100); } while ((!data) && --loop); /* If basic configuration is incomplete before the above loop * count reaches 0, loading the configuration from NVM will * leave the PHY in a bad state possibly resulting in no link. */ if (loop == 0) DEBUGOUT("LAN_INIT_DONE not set, increase timeout\n"); /* Clear the Init Done bit for the next init event */ data = E1000_READ_REG(hw, E1000_STATUS); data &= ~E1000_STATUS_LAN_INIT_DONE; E1000_WRITE_REG(hw, E1000_STATUS, data); } /** * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset * @hw: pointer to the HW structure **/ STATIC s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw) { s32 ret_val = E1000_SUCCESS; u16 reg; DEBUGFUNC("e1000_post_phy_reset_ich8lan"); if (hw->phy.ops.check_reset_block(hw)) return E1000_SUCCESS; /* Allow time for h/w to get to quiescent state after reset */ msec_delay(10); /* Perform any necessary post-reset workarounds */ switch (hw->mac.type) { case e1000_pchlan: ret_val = e1000_hv_phy_workarounds_ich8lan(hw); if (ret_val) return ret_val; break; case e1000_pch2lan: ret_val = e1000_lv_phy_workarounds_ich8lan(hw); if (ret_val) return ret_val; break; default: break; } /* Clear the host wakeup bit after lcd reset */ if (hw->mac.type >= e1000_pchlan) { hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, ®); reg &= ~BM_WUC_HOST_WU_BIT; hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, reg); } /* Configure the LCD with the extended configuration region in NVM */ ret_val = e1000_sw_lcd_config_ich8lan(hw); if (ret_val) return ret_val; /* Configure the LCD with the OEM bits in NVM */ ret_val = e1000_oem_bits_config_ich8lan(hw, true); if (hw->mac.type == e1000_pch2lan) { /* Ungate automatic PHY configuration on non-managed 82579 */ if (!(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID)) { msec_delay(10); e1000_gate_hw_phy_config_ich8lan(hw, false); } /* Set EEE LPI Update Timer to 200usec */ ret_val = hw->phy.ops.acquire(hw); if (ret_val) return ret_val; ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_UPDATE_TIMER, 0x1387); hw->phy.ops.release(hw); } return ret_val; } /** * e1000_phy_hw_reset_ich8lan - Performs a PHY reset * @hw: pointer to the HW structure * * Resets the PHY * This is a function pointer entry point called by drivers * or other shared routines. **/ STATIC s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw) { s32 ret_val = E1000_SUCCESS; DEBUGFUNC("e1000_phy_hw_reset_ich8lan"); /* Gate automatic PHY configuration by hardware on non-managed 82579 */ if ((hw->mac.type == e1000_pch2lan) && !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID)) e1000_gate_hw_phy_config_ich8lan(hw, true); ret_val = e1000_phy_hw_reset_generic(hw); if (ret_val) return ret_val; return e1000_post_phy_reset_ich8lan(hw); } /** * e1000_set_lplu_state_pchlan - Set Low Power Link Up state * @hw: pointer to the HW structure * @active: true to enable LPLU, false to disable * * Sets the LPLU state according to the active flag. For PCH, if OEM write * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set * the phy speed. This function will manually set the LPLU bit and restart * auto-neg as hw would do. D3 and D0 LPLU will call the same function * since it configures the same bit. **/ STATIC s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active) { s32 ret_val; u16 oem_reg; DEBUGFUNC("e1000_set_lplu_state_pchlan"); ret_val = hw->phy.ops.read_reg(hw, HV_OEM_BITS, &oem_reg); if (ret_val) return ret_val; if (active) oem_reg |= HV_OEM_BITS_LPLU; else oem_reg &= ~HV_OEM_BITS_LPLU; if (!hw->phy.ops.check_reset_block(hw)) oem_reg |= HV_OEM_BITS_RESTART_AN; return hw->phy.ops.write_reg(hw, HV_OEM_BITS, oem_reg); } /** * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state * @hw: pointer to the HW structure * @active: true to enable LPLU, false to disable * * Sets the LPLU D0 state according to the active flag. When * activating LPLU this function also disables smart speed * and vice versa. LPLU will not be activated unless the * device autonegotiation advertisement meets standards of * either 10 or 10/100 or 10/100/1000 at all duplexes. * This is a function pointer entry point only called by * PHY setup routines. **/ STATIC s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active) { struct e1000_phy_info *phy = &hw->phy; u32 phy_ctrl; s32 ret_val = E1000_SUCCESS; u16 data; DEBUGFUNC("e1000_set_d0_lplu_state_ich8lan"); if (phy->type == e1000_phy_ife) return E1000_SUCCESS; phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL); if (active) { phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU; E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl); if (phy->type != e1000_phy_igp_3) return E1000_SUCCESS; /* Call gig speed drop workaround on LPLU before accessing * any PHY registers */ if (hw->mac.type == e1000_ich8lan) e1000_gig_downshift_workaround_ich8lan(hw); /* When LPLU is enabled, we should disable SmartSpeed */ ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &data); if (ret_val) return ret_val; data &= ~IGP01E1000_PSCFR_SMART_SPEED; ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, data); if (ret_val) return ret_val; } else { phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl); if (phy->type != e1000_phy_igp_3) return E1000_SUCCESS; /* LPLU and SmartSpeed are mutually exclusive. LPLU is used * during Dx states where the power conservation is most * important. During driver activity we should enable * SmartSpeed, so performance is maintained. */ if (phy->smart_speed == e1000_smart_speed_on) { ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &data); if (ret_val) return ret_val; data |= IGP01E1000_PSCFR_SMART_SPEED; ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, data); if (ret_val) return ret_val; } else if (phy->smart_speed == e1000_smart_speed_off) { ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &data); if (ret_val) return ret_val; data &= ~IGP01E1000_PSCFR_SMART_SPEED; ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, data); if (ret_val) return ret_val; } } return E1000_SUCCESS; } /** * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state * @hw: pointer to the HW structure * @active: true to enable LPLU, false to disable * * Sets the LPLU D3 state according to the active flag. When * activating LPLU this function also disables smart speed * and vice versa. LPLU will not be activated unless the * device autonegotiation advertisement meets standards of * either 10 or 10/100 or 10/100/1000 at all duplexes. * This is a function pointer entry point only called by * PHY setup routines. **/ STATIC s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active) { struct e1000_phy_info *phy = &hw->phy; u32 phy_ctrl; s32 ret_val = E1000_SUCCESS; u16 data; DEBUGFUNC("e1000_set_d3_lplu_state_ich8lan"); phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL); if (!active) { phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU; E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl); if (phy->type != e1000_phy_igp_3) return E1000_SUCCESS; /* LPLU and SmartSpeed are mutually exclusive. LPLU is used * during Dx states where the power conservation is most * important. During driver activity we should enable * SmartSpeed, so performance is maintained. */ if (phy->smart_speed == e1000_smart_speed_on) { ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &data); if (ret_val) return ret_val; data |= IGP01E1000_PSCFR_SMART_SPEED; ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, data); if (ret_val) return ret_val; } else if (phy->smart_speed == e1000_smart_speed_off) { ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &data); if (ret_val) return ret_val; data &= ~IGP01E1000_PSCFR_SMART_SPEED; ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, data); if (ret_val) return ret_val; } } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU; E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl); if (phy->type != e1000_phy_igp_3) return E1000_SUCCESS; /* Call gig speed drop workaround on LPLU before accessing * any PHY registers */ if (hw->mac.type == e1000_ich8lan) e1000_gig_downshift_workaround_ich8lan(hw); /* When LPLU is enabled, we should disable SmartSpeed */ ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &data); if (ret_val) return ret_val; data &= ~IGP01E1000_PSCFR_SMART_SPEED; ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, data); } return ret_val; } /** * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1 * @hw: pointer to the HW structure * @bank: pointer to the variable that returns the active bank * * Reads signature byte from the NVM using the flash access registers. * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank. **/ STATIC s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank) { u32 eecd; struct e1000_nvm_info *nvm = &hw->nvm; u32 bank1_offset = nvm->flash_bank_size * sizeof(u16); u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1; u32 nvm_dword = 0; u8 sig_byte = 0; s32 ret_val; DEBUGFUNC("e1000_valid_nvm_bank_detect_ich8lan"); switch (hw->mac.type) { case e1000_pch_spt: case e1000_pch_cnp: bank1_offset = nvm->flash_bank_size; act_offset = E1000_ICH_NVM_SIG_WORD; /* set bank to 0 in case flash read fails */ *bank = 0; /* Check bank 0 */ ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &nvm_dword); if (ret_val) return ret_val; sig_byte = (u8)((nvm_dword & 0xFF00) >> 8); if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == E1000_ICH_NVM_SIG_VALUE) { *bank = 0; return E1000_SUCCESS; } /* Check bank 1 */ ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset + bank1_offset, &nvm_dword); if (ret_val) return ret_val; sig_byte = (u8)((nvm_dword & 0xFF00) >> 8); if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == E1000_ICH_NVM_SIG_VALUE) { *bank = 1; return E1000_SUCCESS; } DEBUGOUT("ERROR: No valid NVM bank present\n"); return -E1000_ERR_NVM; case e1000_ich8lan: case e1000_ich9lan: eecd = E1000_READ_REG(hw, E1000_EECD); if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) == E1000_EECD_SEC1VAL_VALID_MASK) { if (eecd & E1000_EECD_SEC1VAL) *bank = 1; else *bank = 0; return E1000_SUCCESS; } DEBUGOUT("Unable to determine valid NVM bank via EEC - reading flash signature\n"); /* fall-thru */ default: /* set bank to 0 in case flash read fails */ *bank = 0; /* Check bank 0 */ ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset, &sig_byte); if (ret_val) return ret_val; if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == E1000_ICH_NVM_SIG_VALUE) { *bank = 0; return E1000_SUCCESS; } /* Check bank 1 */ ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset + bank1_offset, &sig_byte); if (ret_val) return ret_val; if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == E1000_ICH_NVM_SIG_VALUE) { *bank = 1; return E1000_SUCCESS; } DEBUGOUT("ERROR: No valid NVM bank present\n"); return -E1000_ERR_NVM; } } /** * e1000_read_nvm_spt - NVM access for SPT * @hw: pointer to the HW structure * @offset: The offset (in bytes) of the word(s) to read. * @words: Size of data to read in words. * @data: pointer to the word(s) to read at offset. * * Reads a word(s) from the NVM **/ STATIC s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) { struct e1000_nvm_info *nvm = &hw->nvm; struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; u32 act_offset; s32 ret_val = E1000_SUCCESS; u32 bank = 0; u32 dword = 0; u16 offset_to_read; u16 i; DEBUGFUNC("e1000_read_nvm_spt"); if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || (words == 0)) { DEBUGOUT("nvm parameter(s) out of bounds\n"); ret_val = -E1000_ERR_NVM; goto out; } nvm->ops.acquire(hw); ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); if (ret_val != E1000_SUCCESS) { DEBUGOUT("Could not detect valid bank, assuming bank 0\n"); bank = 0; } act_offset = (bank) ? nvm->flash_bank_size : 0; act_offset += offset; ret_val = E1000_SUCCESS; for (i = 0; i < words; i += 2) { if (words - i == 1) { if (dev_spec->shadow_ram[offset+i].modified) { data[i] = dev_spec->shadow_ram[offset+i].value; } else { offset_to_read = act_offset + i - ((act_offset + i) % 2); ret_val = e1000_read_flash_dword_ich8lan(hw, offset_to_read, &dword); if (ret_val) break; if ((act_offset + i) % 2 == 0) data[i] = (u16)(dword & 0xFFFF); else data[i] = (u16)((dword >> 16) & 0xFFFF); } } else { offset_to_read = act_offset + i; if (!(dev_spec->shadow_ram[offset+i].modified) || !(dev_spec->shadow_ram[offset+i+1].modified)) { ret_val = e1000_read_flash_dword_ich8lan(hw, offset_to_read, &dword); if (ret_val) break; } if (dev_spec->shadow_ram[offset+i].modified) data[i] = dev_spec->shadow_ram[offset+i].value; else data[i] = (u16) (dword & 0xFFFF); if (dev_spec->shadow_ram[offset+i].modified) data[i+1] = dev_spec->shadow_ram[offset+i+1].value; else data[i+1] = (u16) (dword >> 16 & 0xFFFF); } } nvm->ops.release(hw); out: if (ret_val) DEBUGOUT1("NVM read error: %d\n", ret_val); return ret_val; } /** * e1000_read_nvm_ich8lan - Read word(s) from the NVM * @hw: pointer to the HW structure * @offset: The offset (in bytes) of the word(s) to read. * @words: Size of data to read in words * @data: Pointer to the word(s) to read at offset. * * Reads a word(s) from the NVM using the flash access registers. **/ STATIC s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) { struct e1000_nvm_info *nvm = &hw->nvm; struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; u32 act_offset; s32 ret_val = E1000_SUCCESS; u32 bank = 0; u16 i, word; DEBUGFUNC("e1000_read_nvm_ich8lan"); if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || (words == 0)) { DEBUGOUT("nvm parameter(s) out of bounds\n"); ret_val = -E1000_ERR_NVM; goto out; } nvm->ops.acquire(hw); ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); if (ret_val != E1000_SUCCESS) { DEBUGOUT("Could not detect valid bank, assuming bank 0\n"); bank = 0; } act_offset = (bank) ? nvm->flash_bank_size : 0; act_offset += offset; ret_val = E1000_SUCCESS; for (i = 0; i < words; i++) { if (dev_spec->shadow_ram[offset+i].modified) { data[i] = dev_spec->shadow_ram[offset+i].value; } else { ret_val = e1000_read_flash_word_ich8lan(hw, act_offset + i, &word); if (ret_val) break; data[i] = word; } } nvm->ops.release(hw); out: if (ret_val) DEBUGOUT1("NVM read error: %d\n", ret_val); return ret_val; } /** * e1000_flash_cycle_init_ich8lan - Initialize flash * @hw: pointer to the HW structure * * This function does initial flash setup so that a new read/write/erase cycle * can be started. **/ STATIC s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw) { union ich8_hws_flash_status hsfsts; s32 ret_val = -E1000_ERR_NVM; DEBUGFUNC("e1000_flash_cycle_init_ich8lan"); hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS); /* Check if the flash descriptor is valid */ if (!hsfsts.hsf_status.fldesvalid) { DEBUGOUT("Flash descriptor invalid. SW Sequencing must be used.\n"); return -E1000_ERR_NVM; } /* Clear FCERR and DAEL in hw status by writing 1 */ hsfsts.hsf_status.flcerr = 1; hsfsts.hsf_status.dael = 1; if (hw->mac.type >= e1000_pch_spt) E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF); else E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval); /* Either we should have a hardware SPI cycle in progress * bit to check against, in order to start a new cycle or * FDONE bit should be changed in the hardware so that it * is 1 after hardware reset, which can then be used as an * indication whether a cycle is in progress or has been * completed. */ if (!hsfsts.hsf_status.flcinprog) { /* There is no cycle running at present, * so we can start a cycle. * Begin by setting Flash Cycle Done. */ hsfsts.hsf_status.flcdone = 1; if (hw->mac.type >= e1000_pch_spt) E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF); else E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval); ret_val = E1000_SUCCESS; } else { s32 i; /* Otherwise poll for sometime so the current * cycle has a chance to end before giving up. */ for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) { hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS); if (!hsfsts.hsf_status.flcinprog) { ret_val = E1000_SUCCESS; break; } usec_delay(1); } if (ret_val == E1000_SUCCESS) { /* Successful in waiting for previous cycle to timeout, * now set the Flash Cycle Done. */ hsfsts.hsf_status.flcdone = 1; if (hw->mac.type >= e1000_pch_spt) E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF); else E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval); } else { DEBUGOUT("Flash controller busy, cannot get access\n"); } } return ret_val; } /** * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase) * @hw: pointer to the HW structure * @timeout: maximum time to wait for completion * * This function starts a flash cycle and waits for its completion. **/ STATIC s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout) { union ich8_hws_flash_ctrl hsflctl; union ich8_hws_flash_status hsfsts; u32 i = 0; DEBUGFUNC("e1000_flash_cycle_ich8lan"); /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */ if (hw->mac.type >= e1000_pch_spt) hsflctl.regval = E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16; else hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL); hsflctl.hsf_ctrl.flcgo = 1; if (hw->mac.type >= e1000_pch_spt) E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS, hsflctl.regval << 16); else E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); /* wait till FDONE bit is set to 1 */ do { hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS); if (hsfsts.hsf_status.flcdone) break; usec_delay(1); } while (i++ < timeout); if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr) return E1000_SUCCESS; return -E1000_ERR_NVM; } /** * e1000_read_flash_dword_ich8lan - Read dword from flash * @hw: pointer to the HW structure * @offset: offset to data location * @data: pointer to the location for storing the data * * Reads the flash dword at offset into data. Offset is converted * to bytes before read. **/ STATIC s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset, u32 *data) { DEBUGFUNC("e1000_read_flash_dword_ich8lan"); if (!data) return -E1000_ERR_NVM; /* Must convert word offset into bytes. */ offset <<= 1; return e1000_read_flash_data32_ich8lan(hw, offset, data); } /** * e1000_read_flash_word_ich8lan - Read word from flash * @hw: pointer to the HW structure * @offset: offset to data location * @data: pointer to the location for storing the data * * Reads the flash word at offset into data. Offset is converted * to bytes before read. **/ STATIC s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, u16 *data) { DEBUGFUNC("e1000_read_flash_word_ich8lan"); if (!data) return -E1000_ERR_NVM; /* Must convert offset into bytes. */ offset <<= 1; return e1000_read_flash_data_ich8lan(hw, offset, 2, data); } /** * e1000_read_flash_byte_ich8lan - Read byte from flash * @hw: pointer to the HW structure * @offset: The offset of the byte to read. * @data: Pointer to a byte to store the value read. * * Reads a single byte from the NVM using the flash access registers. **/ STATIC s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, u8 *data) { s32 ret_val; u16 word = 0; /* In SPT, only 32 bits access is supported, * so this function should not be called. */ if (hw->mac.type >= e1000_pch_spt) return -E1000_ERR_NVM; else ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word); if (ret_val) return ret_val; *data = (u8)word; return E1000_SUCCESS; } /** * e1000_read_flash_data_ich8lan - Read byte or word from NVM * @hw: pointer to the HW structure * @offset: The offset (in bytes) of the byte or word to read. * @size: Size of data to read, 1=byte 2=word * @data: Pointer to the word to store the value read. * * Reads a byte or word from the NVM using the flash access registers. **/ STATIC s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, u8 size, u16 *data) { union ich8_hws_flash_status hsfsts; union ich8_hws_flash_ctrl hsflctl; u32 flash_linear_addr; u32 flash_data = 0; s32 ret_val = -E1000_ERR_NVM; u8 count = 0; DEBUGFUNC("e1000_read_flash_data_ich8lan"); if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK) return -E1000_ERR_NVM; flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + hw->nvm.flash_base_addr); do { usec_delay(1); /* Steps */ ret_val = e1000_flash_cycle_init_ich8lan(hw); if (ret_val != E1000_SUCCESS) break; hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL); /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ hsflctl.hsf_ctrl.fldbcount = size - 1; hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr); ret_val = e1000_flash_cycle_ich8lan(hw, ICH_FLASH_READ_COMMAND_TIMEOUT); /* Check if FCERR is set to 1, if set to 1, clear it * and try the whole sequence a few more times, else * read in (shift in) the Flash Data0, the order is * least significant byte first msb to lsb */ if (ret_val == E1000_SUCCESS) { flash_data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0); if (size == 1) *data = (u8)(flash_data & 0x000000FF); else if (size == 2) *data = (u16)(flash_data & 0x0000FFFF); break; } else { /* If we've gotten here, then things are probably * completely hosed, but if the error condition is * detected, it won't hurt to give it another try... * ICH_FLASH_CYCLE_REPEAT_COUNT times. */ hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS); if (hsfsts.hsf_status.flcerr) { /* Repeat for some time before giving up. */ continue; } else if (!hsfsts.hsf_status.flcdone) { DEBUGOUT("Timeout error - flash cycle did not complete.\n"); break; } } } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); return ret_val; } /** * e1000_read_flash_data32_ich8lan - Read dword from NVM * @hw: pointer to the HW structure * @offset: The offset (in bytes) of the dword to read. * @data: Pointer to the dword to store the value read. * * Reads a byte or word from the NVM using the flash access registers. **/ STATIC s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset, u32 *data) { union ich8_hws_flash_status hsfsts; union ich8_hws_flash_ctrl hsflctl; u32 flash_linear_addr; s32 ret_val = -E1000_ERR_NVM; u8 count = 0; DEBUGFUNC("e1000_read_flash_data_ich8lan"); if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt) return -E1000_ERR_NVM; flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + hw->nvm.flash_base_addr); do { usec_delay(1); /* Steps */ ret_val = e1000_flash_cycle_init_ich8lan(hw); if (ret_val != E1000_SUCCESS) break; /* In SPT, This register is in Lan memory space, not flash. * Therefore, only 32 bit access is supported */ hsflctl.regval = E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16; /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1; hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; /* In SPT, This register is in Lan memory space, not flash. * Therefore, only 32 bit access is supported */ E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16); E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr); ret_val = e1000_flash_cycle_ich8lan(hw, ICH_FLASH_READ_COMMAND_TIMEOUT); /* Check if FCERR is set to 1, if set to 1, clear it * and try the whole sequence a few more times, else * read in (shift in) the Flash Data0, the order is * least significant byte first msb to lsb */ if (ret_val == E1000_SUCCESS) { *data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0); break; } else { /* If we've gotten here, then things are probably * completely hosed, but if the error condition is * detected, it won't hurt to give it another try... * ICH_FLASH_CYCLE_REPEAT_COUNT times. */ hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS); if (hsfsts.hsf_status.flcerr) { /* Repeat for some time before giving up. */ continue; } else if (!hsfsts.hsf_status.flcdone) { DEBUGOUT("Timeout error - flash cycle did not complete.\n"); break; } } } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); return ret_val; } /** * e1000_write_nvm_ich8lan - Write word(s) to the NVM * @hw: pointer to the HW structure * @offset: The offset (in bytes) of the word(s) to write. * @words: Size of data to write in words * @data: Pointer to the word(s) to write at offset. * * Writes a byte or word to the NVM using the flash access registers. **/ STATIC s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) { struct e1000_nvm_info *nvm = &hw->nvm; struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; u16 i; DEBUGFUNC("e1000_write_nvm_ich8lan"); if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || (words == 0)) { DEBUGOUT("nvm parameter(s) out of bounds\n"); return -E1000_ERR_NVM; } nvm->ops.acquire(hw); for (i = 0; i < words; i++) { dev_spec->shadow_ram[offset+i].modified = true; dev_spec->shadow_ram[offset+i].value = data[i]; } nvm->ops.release(hw); return E1000_SUCCESS; } /** * e1000_update_nvm_checksum_spt - Update the checksum for NVM * @hw: pointer to the HW structure * * The NVM checksum is updated by calling the generic update_nvm_checksum, * which writes the checksum to the shadow ram. The changes in the shadow * ram are then committed to the EEPROM by processing each bank at a time * checking for the modified bit and writing only the pending changes. * After a successful commit, the shadow ram is cleared and is ready for * future writes. **/ STATIC s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw) { struct e1000_nvm_info *nvm = &hw->nvm; struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; u32 i, act_offset, new_bank_offset, old_bank_offset, bank; s32 ret_val; u32 dword = 0; DEBUGFUNC("e1000_update_nvm_checksum_spt"); ret_val = e1000_update_nvm_checksum_generic(hw); if (ret_val) goto out; if (nvm->type != e1000_nvm_flash_sw) goto out; nvm->ops.acquire(hw); /* We're writing to the opposite bank so if we're on bank 1, * write to bank 0 etc. We also need to erase the segment that * is going to be written */ ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); if (ret_val != E1000_SUCCESS) { DEBUGOUT("Could not detect valid bank, assuming bank 0\n"); bank = 0; } if (bank == 0) { new_bank_offset = nvm->flash_bank_size; old_bank_offset = 0; ret_val = e1000_erase_flash_bank_ich8lan(hw, 1); if (ret_val) goto release; } else { old_bank_offset = nvm->flash_bank_size; new_bank_offset = 0; ret_val = e1000_erase_flash_bank_ich8lan(hw, 0); if (ret_val) goto release; } for (i = 0; i < E1000_SHADOW_RAM_WORDS; i += 2) { /* Determine whether to write the value stored * in the other NVM bank or a modified value stored * in the shadow RAM */ ret_val = e1000_read_flash_dword_ich8lan(hw, i + old_bank_offset, &dword); if (dev_spec->shadow_ram[i].modified) { dword &= 0xffff0000; dword |= (dev_spec->shadow_ram[i].value & 0xffff); } if (dev_spec->shadow_ram[i + 1].modified) { dword &= 0x0000ffff; dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff) << 16); } if (ret_val) break; /* If the word is 0x13, then make sure the signature bits * (15:14) are 11b until the commit has completed. * This will allow us to write 10b which indicates the * signature is valid. We want to do this after the write * has completed so that we don't mark the segment valid * while the write is still in progress */ if (i == E1000_ICH_NVM_SIG_WORD - 1) dword |= E1000_ICH_NVM_SIG_MASK << 16; /* Convert offset to bytes. */ act_offset = (i + new_bank_offset) << 1; usec_delay(100); /* Write the data to the new bank. Offset in words*/ act_offset = i + new_bank_offset; ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword); if (ret_val) break; } /* Don't bother writing the segment valid bits if sector * programming failed. */ if (ret_val) { DEBUGOUT("Flash commit failed.\n"); goto release; } /* Finally validate the new segment by setting bit 15:14 * to 10b in word 0x13 , this can be done without an * erase as well since these bits are 11 to start with * and we need to change bit 14 to 0b */ act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD; /*offset in words but we read dword*/ --act_offset; ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword); if (ret_val) goto release; dword &= 0xBFFFFFFF; ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword); if (ret_val) goto release; /* And invalidate the previously valid segment by setting * its signature word (0x13) high_byte to 0b. This can be * done without an erase because flash erase sets all bits * to 1's. We can write 1's to 0's without an erase */ act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1; /* offset in words but we read dword*/ act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1; ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword); if (ret_val) goto release; dword &= 0x00FFFFFF; ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword); if (ret_val) goto release; /* Great! Everything worked, we can now clear the cached entries. */ for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { dev_spec->shadow_ram[i].modified = false; dev_spec->shadow_ram[i].value = 0xFFFF; } release: nvm->ops.release(hw); /* Reload the EEPROM, or else modifications will not appear * until after the next adapter reset. */ if (!ret_val) { nvm->ops.reload(hw); msec_delay(10); } out: if (ret_val) DEBUGOUT1("NVM update error: %d\n", ret_val); return ret_val; } /** * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM * @hw: pointer to the HW structure * * The NVM checksum is updated by calling the generic update_nvm_checksum, * which writes the checksum to the shadow ram. The changes in the shadow * ram are then committed to the EEPROM by processing each bank at a time * checking for the modified bit and writing only the pending changes. * After a successful commit, the shadow ram is cleared and is ready for * future writes. **/ STATIC s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw) { struct e1000_nvm_info *nvm = &hw->nvm; struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; u32 i, act_offset, new_bank_offset, old_bank_offset, bank; s32 ret_val; u16 data = 0; DEBUGFUNC("e1000_update_nvm_checksum_ich8lan"); ret_val = e1000_update_nvm_checksum_generic(hw); if (ret_val) goto out; if (nvm->type != e1000_nvm_flash_sw) goto out; nvm->ops.acquire(hw); /* We're writing to the opposite bank so if we're on bank 1, * write to bank 0 etc. We also need to erase the segment that * is going to be written */ ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); if (ret_val != E1000_SUCCESS) { DEBUGOUT("Could not detect valid bank, assuming bank 0\n"); bank = 0; } if (bank == 0) { new_bank_offset = nvm->flash_bank_size; old_bank_offset = 0; ret_val = e1000_erase_flash_bank_ich8lan(hw, 1); if (ret_val) goto release; } else { old_bank_offset = nvm->flash_bank_size; new_bank_offset = 0; ret_val = e1000_erase_flash_bank_ich8lan(hw, 0); if (ret_val) goto release; } for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { if (dev_spec->shadow_ram[i].modified) { data = dev_spec->shadow_ram[i].value; } else { ret_val = e1000_read_flash_word_ich8lan(hw, i + old_bank_offset, &data); if (ret_val) break; } /* If the word is 0x13, then make sure the signature bits * (15:14) are 11b until the commit has completed. * This will allow us to write 10b which indicates the * signature is valid. We want to do this after the write * has completed so that we don't mark the segment valid * while the write is still in progress */ if (i == E1000_ICH_NVM_SIG_WORD) data |= E1000_ICH_NVM_SIG_MASK; /* Convert offset to bytes. */ act_offset = (i + new_bank_offset) << 1; usec_delay(100); /* Write the bytes to the new bank. */ ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, (u8)data); if (ret_val) break; usec_delay(100); ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset + 1, (u8)(data >> 8)); if (ret_val) break; } /* Don't bother writing the segment valid bits if sector * programming failed. */ if (ret_val) { DEBUGOUT("Flash commit failed.\n"); goto release; } /* Finally validate the new segment by setting bit 15:14 * to 10b in word 0x13 , this can be done without an * erase as well since these bits are 11 to start with * and we need to change bit 14 to 0b */ act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD; ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data); if (ret_val) goto release; data &= 0xBFFF; ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset * 2 + 1, (u8)(data >> 8)); if (ret_val) goto release; /* And invalidate the previously valid segment by setting * its signature word (0x13) high_byte to 0b. This can be * done without an erase because flash erase sets all bits * to 1's. We can write 1's to 0's without an erase */ act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1; ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0); if (ret_val) goto release; /* Great! Everything worked, we can now clear the cached entries. */ for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { dev_spec->shadow_ram[i].modified = false; dev_spec->shadow_ram[i].value = 0xFFFF; } release: nvm->ops.release(hw); /* Reload the EEPROM, or else modifications will not appear * until after the next adapter reset. */ if (!ret_val) { nvm->ops.reload(hw); msec_delay(10); } out: if (ret_val) DEBUGOUT1("NVM update error: %d\n", ret_val); return ret_val; } /** * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum * @hw: pointer to the HW structure * * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19. * If the bit is 0, that the EEPROM had been modified, but the checksum was not * calculated, in which case we need to calculate the checksum and set bit 6. **/ STATIC s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw) { s32 ret_val; u16 data; u16 word; u16 valid_csum_mask; DEBUGFUNC("e1000_validate_nvm_checksum_ich8lan"); /* Read NVM and check Invalid Image CSUM bit. If this bit is 0, * the checksum needs to be fixed. This bit is an indication that * the NVM was prepared by OEM software and did not calculate * the checksum...a likely scenario. */ switch (hw->mac.type) { case e1000_pch_lpt: case e1000_pch_spt: case e1000_pch_cnp: word = NVM_COMPAT; valid_csum_mask = NVM_COMPAT_VALID_CSUM; break; default: word = NVM_FUTURE_INIT_WORD1; valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM; break; } ret_val = hw->nvm.ops.read(hw, word, 1, &data); if (ret_val) return ret_val; if (!(data & valid_csum_mask)) { data |= valid_csum_mask; ret_val = hw->nvm.ops.write(hw, word, 1, &data); if (ret_val) return ret_val; ret_val = hw->nvm.ops.update(hw); if (ret_val) return ret_val; } return e1000_validate_nvm_checksum_generic(hw); } /** * e1000_write_flash_data_ich8lan - Writes bytes to the NVM * @hw: pointer to the HW structure * @offset: The offset (in bytes) of the byte/word to read. * @size: Size of data to read, 1=byte 2=word * @data: The byte(s) to write to the NVM. * * Writes one/two bytes to the NVM using the flash access registers. **/ STATIC s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, u8 size, u16 data) { union ich8_hws_flash_status hsfsts; union ich8_hws_flash_ctrl hsflctl; u32 flash_linear_addr; u32 flash_data = 0; s32 ret_val; u8 count = 0; DEBUGFUNC("e1000_write_ich8_data"); if (hw->mac.type >= e1000_pch_spt) { if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK) return -E1000_ERR_NVM; } else { if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK) return -E1000_ERR_NVM; } flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + hw->nvm.flash_base_addr); do { usec_delay(1); /* Steps */ ret_val = e1000_flash_cycle_init_ich8lan(hw); if (ret_val != E1000_SUCCESS) break; /* In SPT, This register is in Lan memory space, not * flash. Therefore, only 32 bit access is supported */ if (hw->mac.type >= e1000_pch_spt) hsflctl.regval = E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16; else hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL); /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ hsflctl.hsf_ctrl.fldbcount = size - 1; hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; /* In SPT, This register is in Lan memory space, * not flash. Therefore, only 32 bit access is * supported */ if (hw->mac.type >= e1000_pch_spt) E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS, hsflctl.regval << 16); else E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr); if (size == 1) flash_data = (u32)data & 0x00FF; else flash_data = (u32)data; E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data); /* check if FCERR is set to 1 , if set to 1, clear it * and try the whole sequence a few more times else done */ ret_val = e1000_flash_cycle_ich8lan(hw, ICH_FLASH_WRITE_COMMAND_TIMEOUT); if (ret_val == E1000_SUCCESS) break; /* If we're here, then things are most likely * completely hosed, but if the error condition * is detected, it won't hurt to give it another * try...ICH_FLASH_CYCLE_REPEAT_COUNT times. */ hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS); if (hsfsts.hsf_status.flcerr) /* Repeat for some time before giving up. */ continue; if (!hsfsts.hsf_status.flcdone) { DEBUGOUT("Timeout error - flash cycle did not complete.\n"); break; } } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); return ret_val; } /** * e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM * @hw: pointer to the HW structure * @offset: The offset (in bytes) of the dwords to read. * @data: The 4 bytes to write to the NVM. * * Writes one/two/four bytes to the NVM using the flash access registers. **/ STATIC s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset, u32 data) { union ich8_hws_flash_status hsfsts; union ich8_hws_flash_ctrl hsflctl; u32 flash_linear_addr; s32 ret_val; u8 count = 0; DEBUGFUNC("e1000_write_flash_data32_ich8lan"); if (hw->mac.type >= e1000_pch_spt) { if (offset > ICH_FLASH_LINEAR_ADDR_MASK) return -E1000_ERR_NVM; } flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + hw->nvm.flash_base_addr); do { usec_delay(1); /* Steps */ ret_val = e1000_flash_cycle_init_ich8lan(hw); if (ret_val != E1000_SUCCESS) break; /* In SPT, This register is in Lan memory space, not * flash. Therefore, only 32 bit access is supported */ if (hw->mac.type >= e1000_pch_spt) hsflctl.regval = E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS) >> 16; else hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL); hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1; hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; /* In SPT, This register is in Lan memory space, * not flash. Therefore, only 32 bit access is * supported */ if (hw->mac.type >= e1000_pch_spt) E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS, hsflctl.regval << 16); else E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr); E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, data); /* check if FCERR is set to 1 , if set to 1, clear it * and try the whole sequence a few more times else done */ ret_val = e1000_flash_cycle_ich8lan(hw, ICH_FLASH_WRITE_COMMAND_TIMEOUT); if (ret_val == E1000_SUCCESS) break; /* If we're here, then things are most likely * completely hosed, but if the error condition * is detected, it won't hurt to give it another * try...ICH_FLASH_CYCLE_REPEAT_COUNT times. */ hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS); if (hsfsts.hsf_status.flcerr) /* Repeat for some time before giving up. */ continue; if (!hsfsts.hsf_status.flcdone) { DEBUGOUT("Timeout error - flash cycle did not complete.\n"); break; } } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); return ret_val; } /** * e1000_write_flash_byte_ich8lan - Write a single byte to NVM * @hw: pointer to the HW structure * @offset: The index of the byte to read. * @data: The byte to write to the NVM. * * Writes a single byte to the NVM using the flash access registers. **/ STATIC s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, u8 data) { u16 word = (u16)data; DEBUGFUNC("e1000_write_flash_byte_ich8lan"); return e1000_write_flash_data_ich8lan(hw, offset, 1, word); } /** * e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM * @hw: pointer to the HW structure * @offset: The offset of the word to write. * @dword: The dword to write to the NVM. * * Writes a single dword to the NVM using the flash access registers. * Goes through a retry algorithm before giving up. **/ STATIC s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset, u32 dword) { s32 ret_val; u16 program_retries; DEBUGFUNC("e1000_retry_write_flash_dword_ich8lan"); /* Must convert word offset into bytes. */ offset <<= 1; ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword); if (!ret_val) return ret_val; for (program_retries = 0; program_retries < 100; program_retries++) { DEBUGOUT2("Retrying Byte %8.8X at offset %u\n", dword, offset); usec_delay(100); ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword); if (ret_val == E1000_SUCCESS) break; } if (program_retries == 100) return -E1000_ERR_NVM; return E1000_SUCCESS; } /** * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM * @hw: pointer to the HW structure * @offset: The offset of the byte to write. * @byte: The byte to write to the NVM. * * Writes a single byte to the NVM using the flash access registers. * Goes through a retry algorithm before giving up. **/ STATIC s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, u8 byte) { s32 ret_val; u16 program_retries; DEBUGFUNC("e1000_retry_write_flash_byte_ich8lan"); ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); if (!ret_val) return ret_val; for (program_retries = 0; program_retries < 100; program_retries++) { DEBUGOUT2("Retrying Byte %2.2X at offset %u\n", byte, offset); usec_delay(100); ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); if (ret_val == E1000_SUCCESS) break; } if (program_retries == 100) return -E1000_ERR_NVM; return E1000_SUCCESS; } /** * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM * @hw: pointer to the HW structure * @bank: 0 for first bank, 1 for second bank, etc. * * Erases the bank specified. Each bank is a 4k block. Banks are 0 based. * bank N is 4096 * N + flash_reg_addr. **/ STATIC s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank) { struct e1000_nvm_info *nvm = &hw->nvm; union ich8_hws_flash_status hsfsts; union ich8_hws_flash_ctrl hsflctl; u32 flash_linear_addr; /* bank size is in 16bit words - adjust to bytes */ u32 flash_bank_size = nvm->flash_bank_size * 2; s32 ret_val; s32 count = 0; s32 j, iteration, sector_size; DEBUGFUNC("e1000_erase_flash_bank_ich8lan"); hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS); /* Determine HW Sector size: Read BERASE bits of hw flash status * register * 00: The Hw sector is 256 bytes, hence we need to erase 16 * consecutive sectors. The start index for the nth Hw sector * can be calculated as = bank * 4096 + n * 256 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector. * The start index for the nth Hw sector can be calculated * as = bank * 4096 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192 * (ich9 only, otherwise error condition) * 11: The Hw sector is 64K bytes, nth sector = bank * 65536 */ switch (hsfsts.hsf_status.berasesz) { case 0: /* Hw sector size 256 */ sector_size = ICH_FLASH_SEG_SIZE_256; iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256; break; case 1: sector_size = ICH_FLASH_SEG_SIZE_4K; iteration = 1; break; case 2: sector_size = ICH_FLASH_SEG_SIZE_8K; iteration = 1; break; case 3: sector_size = ICH_FLASH_SEG_SIZE_64K; iteration = 1; break; default: return -E1000_ERR_NVM; } /* Start with the base address, then add the sector offset. */ flash_linear_addr = hw->nvm.flash_base_addr; flash_linear_addr += (bank) ? flash_bank_size : 0; for (j = 0; j < iteration; j++) { do { u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT; /* Steps */ ret_val = e1000_flash_cycle_init_ich8lan(hw); if (ret_val) return ret_val; /* Write a value 11 (block Erase) in Flash * Cycle field in hw flash control */ if (hw->mac.type >= e1000_pch_spt) hsflctl.regval = E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16; else hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL); hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE; if (hw->mac.type >= e1000_pch_spt) E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS, hsflctl.regval << 16); else E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); /* Write the last 24 bits of an index within the * block into Flash Linear address field in Flash * Address. */ flash_linear_addr += (j * sector_size); E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr); ret_val = e1000_flash_cycle_ich8lan(hw, timeout); if (ret_val == E1000_SUCCESS) break; /* Check if FCERR is set to 1. If 1, * clear it and try the whole sequence * a few more times else Done */ hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS); if (hsfsts.hsf_status.flcerr) /* repeat for some time before giving up */ continue; else if (!hsfsts.hsf_status.flcdone) return ret_val; } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT); } return E1000_SUCCESS; } /** * e1000_valid_led_default_ich8lan - Set the default LED settings * @hw: pointer to the HW structure * @data: Pointer to the LED settings * * Reads the LED default settings from the NVM to data. If the NVM LED * settings is all 0's or F's, set the LED default to a valid LED default * setting. **/ STATIC s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data) { s32 ret_val; DEBUGFUNC("e1000_valid_led_default_ich8lan"); ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data); if (ret_val) { DEBUGOUT("NVM Read Error\n"); return ret_val; } if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) *data = ID_LED_DEFAULT_ICH8LAN; return E1000_SUCCESS; } /** * e1000_id_led_init_pchlan - store LED configurations * @hw: pointer to the HW structure * * PCH does not control LEDs via the LEDCTL register, rather it uses * the PHY LED configuration register. * * PCH also does not have an "always on" or "always off" mode which * complicates the ID feature. Instead of using the "on" mode to indicate * in ledctl_mode2 the LEDs to use for ID (see e1000_id_led_init_generic()), * use "link_up" mode. The LEDs will still ID on request if there is no * link based on logic in e1000_led_[on|off]_pchlan(). **/ STATIC s32 e1000_id_led_init_pchlan(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; s32 ret_val; const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP; const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT; u16 data, i, temp, shift; DEBUGFUNC("e1000_id_led_init_pchlan"); /* Get default ID LED modes */ ret_val = hw->nvm.ops.valid_led_default(hw, &data); if (ret_val) return ret_val; mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL); mac->ledctl_mode1 = mac->ledctl_default; mac->ledctl_mode2 = mac->ledctl_default; for (i = 0; i < 4; i++) { temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK; shift = (i * 5); switch (temp) { case ID_LED_ON1_DEF2: case ID_LED_ON1_ON2: case ID_LED_ON1_OFF2: mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); mac->ledctl_mode1 |= (ledctl_on << shift); break; case ID_LED_OFF1_DEF2: case ID_LED_OFF1_ON2: case ID_LED_OFF1_OFF2: mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); mac->ledctl_mode1 |= (ledctl_off << shift); break; default: /* Do nothing */ break; } switch (temp) { case ID_LED_DEF1_ON2: case ID_LED_ON1_ON2: case ID_LED_OFF1_ON2: mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); mac->ledctl_mode2 |= (ledctl_on << shift); break; case ID_LED_DEF1_OFF2: case ID_LED_ON1_OFF2: case ID_LED_OFF1_OFF2: mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); mac->ledctl_mode2 |= (ledctl_off << shift); break; default: /* Do nothing */ break; } } return E1000_SUCCESS; } /** * e1000_get_bus_info_ich8lan - Get/Set the bus type and width * @hw: pointer to the HW structure * * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability * register, so the bus width is hard coded. **/ STATIC s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw) { struct e1000_bus_info *bus = &hw->bus; s32 ret_val; DEBUGFUNC("e1000_get_bus_info_ich8lan"); ret_val = e1000_get_bus_info_pcie_generic(hw); /* ICH devices are "PCI Express"-ish. They have * a configuration space, but do not contain * PCI Express Capability registers, so bus width * must be hardcoded. */ if (bus->width == e1000_bus_width_unknown) bus->width = e1000_bus_width_pcie_x1; return ret_val; } /** * e1000_reset_hw_ich8lan - Reset the hardware * @hw: pointer to the HW structure * * Does a full reset of the hardware which includes a reset of the PHY and * MAC. **/ STATIC s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw) { struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; u16 kum_cfg; u32 ctrl, reg; s32 ret_val; DEBUGFUNC("e1000_reset_hw_ich8lan"); /* Prevent the PCI-E bus from sticking if there is no TLP connection * on the last TLP read/write transaction when MAC is reset. */ ret_val = e1000_disable_pcie_master_generic(hw); if (ret_val) DEBUGOUT("PCI-E Master disable polling has failed.\n"); DEBUGOUT("Masking off all interrupts\n"); E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); /* Disable the Transmit and Receive units. Then delay to allow * any pending transactions to complete before we hit the MAC * with the global reset. */ E1000_WRITE_REG(hw, E1000_RCTL, 0); E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP); E1000_WRITE_FLUSH(hw); msec_delay(10); /* Workaround for ICH8 bit corruption issue in FIFO memory */ if (hw->mac.type == e1000_ich8lan) { /* Set Tx and Rx buffer allocation to 8k apiece. */ E1000_WRITE_REG(hw, E1000_PBA, E1000_PBA_8K); /* Set Packet Buffer Size to 16k. */ E1000_WRITE_REG(hw, E1000_PBS, E1000_PBS_16K); } if (hw->mac.type == e1000_pchlan) { /* Save the NVM K1 bit setting*/ ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg); if (ret_val) return ret_val; if (kum_cfg & E1000_NVM_K1_ENABLE) dev_spec->nvm_k1_enabled = true; else dev_spec->nvm_k1_enabled = false; } ctrl = E1000_READ_REG(hw, E1000_CTRL); if (!hw->phy.ops.check_reset_block(hw)) { /* Full-chip reset requires MAC and PHY reset at the same * time to make sure the interface between MAC and the * external PHY is reset. */ ctrl |= E1000_CTRL_PHY_RST; /* Gate automatic PHY configuration by hardware on * non-managed 82579 */ if ((hw->mac.type == e1000_pch2lan) && !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID)) e1000_gate_hw_phy_config_ich8lan(hw, true); } ret_val = e1000_acquire_swflag_ich8lan(hw); DEBUGOUT("Issuing a global reset to ich8lan\n"); E1000_WRITE_REG(hw, E1000_CTRL, (ctrl | E1000_CTRL_RST)); /* cannot issue a flush here because it hangs the hardware */ msec_delay(20); /* Set Phy Config Counter to 50msec */ if (hw->mac.type == e1000_pch2lan) { reg = E1000_READ_REG(hw, E1000_FEXTNVM3); reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK; reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC; E1000_WRITE_REG(hw, E1000_FEXTNVM3, reg); } if (!ret_val) E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex); if (ctrl & E1000_CTRL_PHY_RST) { ret_val = hw->phy.ops.get_cfg_done(hw); if (ret_val) return ret_val; ret_val = e1000_post_phy_reset_ich8lan(hw); if (ret_val) return ret_val; } /* For PCH, this write will make sure that any noise * will be detected as a CRC error and be dropped rather than show up * as a bad packet to the DMA engine. */ if (hw->mac.type == e1000_pchlan) E1000_WRITE_REG(hw, E1000_CRC_OFFSET, 0x65656565); E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); E1000_READ_REG(hw, E1000_ICR); reg = E1000_READ_REG(hw, E1000_KABGTXD); reg |= E1000_KABGTXD_BGSQLBIAS; E1000_WRITE_REG(hw, E1000_KABGTXD, reg); return E1000_SUCCESS; } /** * e1000_init_hw_ich8lan - Initialize the hardware * @hw: pointer to the HW structure * * Prepares the hardware for transmit and receive by doing the following: * - initialize hardware bits * - initialize LED identification * - setup receive address registers * - setup flow control * - setup transmit descriptors * - clear statistics **/ STATIC s32 e1000_init_hw_ich8lan(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; u32 ctrl_ext, txdctl, snoop; s32 ret_val; u16 i; DEBUGFUNC("e1000_init_hw_ich8lan"); e1000_initialize_hw_bits_ich8lan(hw); /* Initialize identification LED */ ret_val = mac->ops.id_led_init(hw); /* An error is not fatal and we should not stop init due to this */ if (ret_val) DEBUGOUT("Error initializing identification LED\n"); /* Setup the receive address. */ e1000_init_rx_addrs_generic(hw, mac->rar_entry_count); /* Zero out the Multicast HASH table */ DEBUGOUT("Zeroing the MTA\n"); for (i = 0; i < mac->mta_reg_count; i++) E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); /* The 82578 Rx buffer will stall if wakeup is enabled in host and * the ME. Disable wakeup by clearing the host wakeup bit. * Reset the phy after disabling host wakeup to reset the Rx buffer. */ if (hw->phy.type == e1000_phy_82578) { hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &i); i &= ~BM_WUC_HOST_WU_BIT; hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, i); ret_val = e1000_phy_hw_reset_ich8lan(hw); if (ret_val) return ret_val; } /* Setup link and flow control */ ret_val = mac->ops.setup_link(hw); /* Set the transmit descriptor write-back policy for both queues */ txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0)); txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB); txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) | E1000_TXDCTL_MAX_TX_DESC_PREFETCH); E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl); txdctl = E1000_READ_REG(hw, E1000_TXDCTL(1)); txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB); txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) | E1000_TXDCTL_MAX_TX_DESC_PREFETCH); E1000_WRITE_REG(hw, E1000_TXDCTL(1), txdctl); /* ICH8 has opposite polarity of no_snoop bits. * By default, we should use snoop behavior. */ if (mac->type == e1000_ich8lan) snoop = PCIE_ICH8_SNOOP_ALL; else snoop = (u32) ~(PCIE_NO_SNOOP_ALL); e1000_set_pcie_no_snoop_generic(hw, snoop); ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); ctrl_ext |= E1000_CTRL_EXT_RO_DIS; E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); /* Clear all of the statistics registers (clear on read). It is * important that we do this after we have tried to establish link * because the symbol error count will increment wildly if there * is no link. */ e1000_clear_hw_cntrs_ich8lan(hw); return ret_val; } /** * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits * @hw: pointer to the HW structure * * Sets/Clears required hardware bits necessary for correctly setting up the * hardware for transmit and receive. **/ STATIC void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw) { u32 reg; DEBUGFUNC("e1000_initialize_hw_bits_ich8lan"); /* Extended Device Control */ reg = E1000_READ_REG(hw, E1000_CTRL_EXT); reg |= (1 << 22); /* Enable PHY low-power state when MAC is at D3 w/o WoL */ if (hw->mac.type >= e1000_pchlan) reg |= E1000_CTRL_EXT_PHYPDEN; E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg); /* Transmit Descriptor Control 0 */ reg = E1000_READ_REG(hw, E1000_TXDCTL(0)); reg |= (1 << 22); E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg); /* Transmit Descriptor Control 1 */ reg = E1000_READ_REG(hw, E1000_TXDCTL(1)); reg |= (1 << 22); E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg); /* Transmit Arbitration Control 0 */ reg = E1000_READ_REG(hw, E1000_TARC(0)); if (hw->mac.type == e1000_ich8lan) reg |= (1 << 28) | (1 << 29); reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27); E1000_WRITE_REG(hw, E1000_TARC(0), reg); /* Transmit Arbitration Control 1 */ reg = E1000_READ_REG(hw, E1000_TARC(1)); if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR) reg &= ~(1 << 28); else reg |= (1 << 28); reg |= (1 << 24) | (1 << 26) | (1 << 30); E1000_WRITE_REG(hw, E1000_TARC(1), reg); /* Device Status */ if (hw->mac.type == e1000_ich8lan) { reg = E1000_READ_REG(hw, E1000_STATUS); reg &= ~(1U << 31); E1000_WRITE_REG(hw, E1000_STATUS, reg); } /* work-around descriptor data corruption issue during nfs v2 udp * traffic, just disable the nfs filtering capability */ reg = E1000_READ_REG(hw, E1000_RFCTL); reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS); /* Disable IPv6 extension header parsing because some malformed * IPv6 headers can hang the Rx. */ if (hw->mac.type == e1000_ich8lan) reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS); E1000_WRITE_REG(hw, E1000_RFCTL, reg); /* Enable ECC on Lynxpoint */ if (hw->mac.type >= e1000_pch_lpt) { reg = E1000_READ_REG(hw, E1000_PBECCSTS); reg |= E1000_PBECCSTS_ECC_ENABLE; E1000_WRITE_REG(hw, E1000_PBECCSTS, reg); reg = E1000_READ_REG(hw, E1000_CTRL); reg |= E1000_CTRL_MEHE; E1000_WRITE_REG(hw, E1000_CTRL, reg); } return; } /** * e1000_setup_link_ich8lan - Setup flow control and link settings * @hw: pointer to the HW structure * * Determines which flow control settings to use, then configures flow * control. Calls the appropriate media-specific link configuration * function. Assuming the adapter has a valid link partner, a valid link * should be established. Assumes the hardware has previously been reset * and the transmitter and receiver are not enabled. **/ STATIC s32 e1000_setup_link_ich8lan(struct e1000_hw *hw) { s32 ret_val; DEBUGFUNC("e1000_setup_link_ich8lan"); if (hw->phy.ops.check_reset_block(hw)) return E1000_SUCCESS; /* ICH parts do not have a word in the NVM to determine * the default flow control setting, so we explicitly * set it to full. */ if (hw->fc.requested_mode == e1000_fc_default) hw->fc.requested_mode = e1000_fc_full; /* Save off the requested flow control mode for use later. Depending * on the link partner's capabilities, we may or may not use this mode. */ hw->fc.current_mode = hw->fc.requested_mode; DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode); /* Continue to configure the copper link. */ ret_val = hw->mac.ops.setup_physical_interface(hw); if (ret_val) return ret_val; E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time); if ((hw->phy.type == e1000_phy_82578) || (hw->phy.type == e1000_phy_82579) || (hw->phy.type == e1000_phy_i217) || (hw->phy.type == e1000_phy_82577)) { E1000_WRITE_REG(hw, E1000_FCRTV_PCH, hw->fc.refresh_time); ret_val = hw->phy.ops.write_reg(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27), hw->fc.pause_time); if (ret_val) return ret_val; } return e1000_set_fc_watermarks_generic(hw); } /** * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface * @hw: pointer to the HW structure * * Configures the kumeran interface to the PHY to wait the appropriate time * when polling the PHY, then call the generic setup_copper_link to finish * configuring the copper link. **/ STATIC s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw) { u32 ctrl; s32 ret_val; u16 reg_data; DEBUGFUNC("e1000_setup_copper_link_ich8lan"); ctrl = E1000_READ_REG(hw, E1000_CTRL); ctrl |= E1000_CTRL_SLU; ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); E1000_WRITE_REG(hw, E1000_CTRL, ctrl); /* Set the mac to wait the maximum time between each iteration * and increase the max iterations when polling the phy; * this fixes erroneous timeouts at 10Mbps. */ ret_val = e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF); if (ret_val) return ret_val; ret_val = e1000_read_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, ®_data); if (ret_val) return ret_val; reg_data |= 0x3F; ret_val = e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, reg_data); if (ret_val) return ret_val; switch (hw->phy.type) { case e1000_phy_igp_3: ret_val = e1000_copper_link_setup_igp(hw); if (ret_val) return ret_val; break; case e1000_phy_bm: case e1000_phy_82578: ret_val = e1000_copper_link_setup_m88(hw); if (ret_val) return ret_val; break; case e1000_phy_82577: case e1000_phy_82579: ret_val = e1000_copper_link_setup_82577(hw); if (ret_val) return ret_val; break; case e1000_phy_ife: ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, ®_data); if (ret_val) return ret_val; reg_data &= ~IFE_PMC_AUTO_MDIX; switch (hw->phy.mdix) { case 1: reg_data &= ~IFE_PMC_FORCE_MDIX; break; case 2: reg_data |= IFE_PMC_FORCE_MDIX; break; case 0: default: reg_data |= IFE_PMC_AUTO_MDIX; break; } ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL, reg_data); if (ret_val) return ret_val; break; default: break; } return e1000_setup_copper_link_generic(hw); } /** * e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface * @hw: pointer to the HW structure * * Calls the PHY specific link setup function and then calls the * generic setup_copper_link to finish configuring the link for * Lynxpoint PCH devices **/ STATIC s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw) { u32 ctrl; s32 ret_val; DEBUGFUNC("e1000_setup_copper_link_pch_lpt"); ctrl = E1000_READ_REG(hw, E1000_CTRL); ctrl |= E1000_CTRL_SLU; ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); E1000_WRITE_REG(hw, E1000_CTRL, ctrl); ret_val = e1000_copper_link_setup_82577(hw); if (ret_val) return ret_val; return e1000_setup_copper_link_generic(hw); } /** * e1000_get_link_up_info_ich8lan - Get current link speed and duplex * @hw: pointer to the HW structure * @speed: pointer to store current link speed * @duplex: pointer to store the current link duplex * * Calls the generic get_speed_and_duplex to retrieve the current link * information and then calls the Kumeran lock loss workaround for links at * gigabit speeds. **/ STATIC s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed, u16 *duplex) { s32 ret_val; DEBUGFUNC("e1000_get_link_up_info_ich8lan"); ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex); if (ret_val) return ret_val; if ((hw->mac.type == e1000_ich8lan) && (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) { ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw); } return ret_val; } /** * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround * @hw: pointer to the HW structure * * Work-around for 82566 Kumeran PCS lock loss: * On link status change (i.e. PCI reset, speed change) and link is up and * speed is gigabit- * 0) if workaround is optionally disabled do nothing * 1) wait 1ms for Kumeran link to come up * 2) check Kumeran Diagnostic register PCS lock loss bit * 3) if not set the link is locked (all is good), otherwise... * 4) reset the PHY * 5) repeat up to 10 times * Note: this is only called for IGP3 copper when speed is 1gb. **/ STATIC s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw) { struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; u32 phy_ctrl; s32 ret_val; u16 i, data; bool link; DEBUGFUNC("e1000_kmrn_lock_loss_workaround_ich8lan"); if (!dev_spec->kmrn_lock_loss_workaround_enabled) return E1000_SUCCESS; /* Make sure link is up before proceeding. If not just return. * Attempting this while link is negotiating fouled up link * stability */ ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); if (!link) return E1000_SUCCESS; for (i = 0; i < 10; i++) { /* read once to clear */ ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data); if (ret_val) return ret_val; /* and again to get new status */ ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data); if (ret_val) return ret_val; /* check for PCS lock */ if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS)) return E1000_SUCCESS; /* Issue PHY reset */ hw->phy.ops.reset(hw); msec_delay_irq(5); } /* Disable GigE link negotiation */ phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL); phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE | E1000_PHY_CTRL_NOND0A_GBE_DISABLE); E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl); /* Call gig speed drop workaround on Gig disable before accessing * any PHY registers */ e1000_gig_downshift_workaround_ich8lan(hw); /* unable to acquire PCS lock */ return -E1000_ERR_PHY; } /** * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state * @hw: pointer to the HW structure * @state: boolean value used to set the current Kumeran workaround state * * If ICH8, set the current Kumeran workaround state (enabled - true * /disabled - false). **/ void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw, bool state) { struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; DEBUGFUNC("e1000_set_kmrn_lock_loss_workaround_ich8lan"); if (hw->mac.type != e1000_ich8lan) { DEBUGOUT("Workaround applies to ICH8 only.\n"); return; } dev_spec->kmrn_lock_loss_workaround_enabled = state; return; } /** * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3 * @hw: pointer to the HW structure * * Workaround for 82566 power-down on D3 entry: * 1) disable gigabit link * 2) write VR power-down enable * 3) read it back * Continue if successful, else issue LCD reset and repeat **/ void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw) { u32 reg; u16 data; u8 retry = 0; DEBUGFUNC("e1000_igp3_phy_powerdown_workaround_ich8lan"); if (hw->phy.type != e1000_phy_igp_3) return; /* Try the workaround twice (if needed) */ do { /* Disable link */ reg = E1000_READ_REG(hw, E1000_PHY_CTRL); reg |= (E1000_PHY_CTRL_GBE_DISABLE | E1000_PHY_CTRL_NOND0A_GBE_DISABLE); E1000_WRITE_REG(hw, E1000_PHY_CTRL, reg); /* Call gig speed drop workaround on Gig disable before * accessing any PHY registers */ if (hw->mac.type == e1000_ich8lan) e1000_gig_downshift_workaround_ich8lan(hw); /* Write VR power-down enable */ hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data); data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; hw->phy.ops.write_reg(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN); /* Read it back and test */ hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data); data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry) break; /* Issue PHY reset and repeat at most one more time */ reg = E1000_READ_REG(hw, E1000_CTRL); E1000_WRITE_REG(hw, E1000_CTRL, reg | E1000_CTRL_PHY_RST); retry++; } while (retry); } /** * e1000_gig_downshift_workaround_ich8lan - WoL from S5 stops working * @hw: pointer to the HW structure * * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC), * LPLU, Gig disable, MDIC PHY reset): * 1) Set Kumeran Near-end loopback * 2) Clear Kumeran Near-end loopback * Should only be called for ICH8[m] devices with any 1G Phy. **/ void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw) { s32 ret_val; u16 reg_data = 0; DEBUGFUNC("e1000_gig_downshift_workaround_ich8lan"); if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife)) return; ret_val = e1000_read_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, ®_data); if (ret_val) return; reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK; ret_val = e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data); if (ret_val) return; reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK; e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data); } /** * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx * @hw: pointer to the HW structure * * During S0 to Sx transition, it is possible the link remains at gig * instead of negotiating to a lower speed. Before going to Sx, set * 'Gig Disable' to force link speed negotiation to a lower speed based on * the LPLU setting in the NVM or custom setting. For PCH and newer parts, * the OEM bits PHY register (LED, GbE disable and LPLU configurations) also * needs to be written. * Parts that support (and are linked to a partner which support) EEE in * 100Mbps should disable LPLU since 100Mbps w/ EEE requires less power * than 10Mbps w/o EEE. **/ void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw) { struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; u32 phy_ctrl; s32 ret_val; DEBUGFUNC("e1000_suspend_workarounds_ich8lan"); phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL); phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE; if (hw->phy.type == e1000_phy_i217) { u16 phy_reg, device_id = hw->device_id; if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) || (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) || (device_id == E1000_DEV_ID_PCH_I218_LM3) || (device_id == E1000_DEV_ID_PCH_I218_V3) || (hw->mac.type >= e1000_pch_spt)) { u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6); E1000_WRITE_REG(hw, E1000_FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK); } ret_val = hw->phy.ops.acquire(hw); if (ret_val) goto out; if (!dev_spec->eee_disable) { u16 eee_advert; ret_val = e1000_read_emi_reg_locked(hw, I217_EEE_ADVERTISEMENT, &eee_advert); if (ret_val) goto release; /* Disable LPLU if both link partners support 100BaseT * EEE and 100Full is advertised on both ends of the * link, and enable Auto Enable LPI since there will * be no driver to enable LPI while in Sx. */ if ((eee_advert & I82579_EEE_100_SUPPORTED) && (dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) && (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) { phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU | E1000_PHY_CTRL_NOND0A_LPLU); /* Set Auto Enable LPI after link up */ hw->phy.ops.read_reg_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg); phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI; hw->phy.ops.write_reg_locked(hw, I217_LPI_GPIO_CTRL, phy_reg); } } /* For i217 Intel Rapid Start Technology support, * when the system is going into Sx and no manageability engine * is present, the driver must configure proxy to reset only on * power good. LPI (Low Power Idle) state must also reset only * on power good, as well as the MTA (Multicast table array). * The SMBus release must also be disabled on LCD reset. */ if (!(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID)) { /* Enable proxy to reset only on power good. */ hw->phy.ops.read_reg_locked(hw, I217_PROXY_CTRL, &phy_reg); phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE; hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL, phy_reg); /* Set bit enable LPI (EEE) to reset only on * power good. */ hw->phy.ops.read_reg_locked(hw, I217_SxCTRL, &phy_reg); phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET; hw->phy.ops.write_reg_locked(hw, I217_SxCTRL, phy_reg); /* Disable the SMB release on LCD reset. */ hw->phy.ops.read_reg_locked(hw, I217_MEMPWR, &phy_reg); phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE; hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg); } /* Enable MTA to reset for Intel Rapid Start Technology * Support */ hw->phy.ops.read_reg_locked(hw, I217_CGFREG, &phy_reg); phy_reg |= I217_CGFREG_ENABLE_MTA_RESET; hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg); release: hw->phy.ops.release(hw); } out: E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl); if (hw->mac.type == e1000_ich8lan) e1000_gig_downshift_workaround_ich8lan(hw); if (hw->mac.type >= e1000_pchlan) { e1000_oem_bits_config_ich8lan(hw, false); /* Reset PHY to activate OEM bits on 82577/8 */ if (hw->mac.type == e1000_pchlan) e1000_phy_hw_reset_generic(hw); ret_val = hw->phy.ops.acquire(hw); if (ret_val) return; e1000_write_smbus_addr(hw); hw->phy.ops.release(hw); } return; } /** * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0 * @hw: pointer to the HW structure * * During Sx to S0 transitions on non-managed devices or managed devices * on which PHY resets are not blocked, if the PHY registers cannot be * accessed properly by the s/w toggle the LANPHYPC value to power cycle * the PHY. * On i217, setup Intel Rapid Start Technology. **/ u32 e1000_resume_workarounds_pchlan(struct e1000_hw *hw) { s32 ret_val; DEBUGFUNC("e1000_resume_workarounds_pchlan"); if (hw->mac.type < e1000_pch2lan) return E1000_SUCCESS; ret_val = e1000_init_phy_workarounds_pchlan(hw); if (ret_val) { DEBUGOUT1("Failed to init PHY flow ret_val=%d\n", ret_val); return ret_val; } /* For i217 Intel Rapid Start Technology support when the system * is transitioning from Sx and no manageability engine is present * configure SMBus to restore on reset, disable proxy, and enable * the reset on MTA (Multicast table array). */ if (hw->phy.type == e1000_phy_i217) { u16 phy_reg; ret_val = hw->phy.ops.acquire(hw); if (ret_val) { DEBUGOUT("Failed to setup iRST\n"); return ret_val; } /* Clear Auto Enable LPI after link up */ hw->phy.ops.read_reg_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg); phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI; hw->phy.ops.write_reg_locked(hw, I217_LPI_GPIO_CTRL, phy_reg); if (!(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID)) { /* Restore clear on SMB if no manageability engine * is present */ ret_val = hw->phy.ops.read_reg_locked(hw, I217_MEMPWR, &phy_reg); if (ret_val) goto release; phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE; hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg); /* Disable Proxy */ hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL, 0); } /* Enable reset on MTA */ ret_val = hw->phy.ops.read_reg_locked(hw, I217_CGFREG, &phy_reg); if (ret_val) goto release; phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET; hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg); release: if (ret_val) DEBUGOUT1("Error %d in resume workarounds\n", ret_val); hw->phy.ops.release(hw); return ret_val; } return E1000_SUCCESS; } /** * e1000_cleanup_led_ich8lan - Restore the default LED operation * @hw: pointer to the HW structure * * Return the LED back to the default configuration. **/ STATIC s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw) { DEBUGFUNC("e1000_cleanup_led_ich8lan"); if (hw->phy.type == e1000_phy_ife) return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default); return E1000_SUCCESS; } /** * e1000_led_on_ich8lan - Turn LEDs on * @hw: pointer to the HW structure * * Turn on the LEDs. **/ STATIC s32 e1000_led_on_ich8lan(struct e1000_hw *hw) { DEBUGFUNC("e1000_led_on_ich8lan"); if (hw->phy.type == e1000_phy_ife) return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON)); E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2); return E1000_SUCCESS; } /** * e1000_led_off_ich8lan - Turn LEDs off * @hw: pointer to the HW structure * * Turn off the LEDs. **/ STATIC s32 e1000_led_off_ich8lan(struct e1000_hw *hw) { DEBUGFUNC("e1000_led_off_ich8lan"); if (hw->phy.type == e1000_phy_ife) return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF)); E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1); return E1000_SUCCESS; } /** * e1000_setup_led_pchlan - Configures SW controllable LED * @hw: pointer to the HW structure * * This prepares the SW controllable LED for use. **/ STATIC s32 e1000_setup_led_pchlan(struct e1000_hw *hw) { DEBUGFUNC("e1000_setup_led_pchlan"); return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1); } /** * e1000_cleanup_led_pchlan - Restore the default LED operation * @hw: pointer to the HW structure * * Return the LED back to the default configuration. **/ STATIC s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw) { DEBUGFUNC("e1000_cleanup_led_pchlan"); return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default); } /** * e1000_led_on_pchlan - Turn LEDs on * @hw: pointer to the HW structure * * Turn on the LEDs. **/ STATIC s32 e1000_led_on_pchlan(struct e1000_hw *hw) { u16 data = (u16)hw->mac.ledctl_mode2; u32 i, led; DEBUGFUNC("e1000_led_on_pchlan"); /* If no link, then turn LED on by setting the invert bit * for each LED that's mode is "link_up" in ledctl_mode2. */ if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) { for (i = 0; i < 3; i++) { led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; if ((led & E1000_PHY_LED0_MODE_MASK) != E1000_LEDCTL_MODE_LINK_UP) continue; if (led & E1000_PHY_LED0_IVRT) data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); else data |= (E1000_PHY_LED0_IVRT << (i * 5)); } } return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data); } /** * e1000_led_off_pchlan - Turn LEDs off * @hw: pointer to the HW structure * * Turn off the LEDs. **/ STATIC s32 e1000_led_off_pchlan(struct e1000_hw *hw) { u16 data = (u16)hw->mac.ledctl_mode1; u32 i, led; DEBUGFUNC("e1000_led_off_pchlan"); /* If no link, then turn LED off by clearing the invert bit * for each LED that's mode is "link_up" in ledctl_mode1. */ if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) { for (i = 0; i < 3; i++) { led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; if ((led & E1000_PHY_LED0_MODE_MASK) != E1000_LEDCTL_MODE_LINK_UP) continue; if (led & E1000_PHY_LED0_IVRT) data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); else data |= (E1000_PHY_LED0_IVRT << (i * 5)); } } return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data); } /** * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset * @hw: pointer to the HW structure * * Read appropriate register for the config done bit for completion status * and configure the PHY through s/w for EEPROM-less parts. * * NOTE: some silicon which is EEPROM-less will fail trying to read the * config done bit, so only an error is logged and continues. If we were * to return with error, EEPROM-less silicon would not be able to be reset * or change link. **/ STATIC s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw) { s32 ret_val = E1000_SUCCESS; u32 bank = 0; u32 status; DEBUGFUNC("e1000_get_cfg_done_ich8lan"); e1000_get_cfg_done_generic(hw); /* Wait for indication from h/w that it has completed basic config */ if (hw->mac.type >= e1000_ich10lan) { e1000_lan_init_done_ich8lan(hw); } else { ret_val = e1000_get_auto_rd_done_generic(hw); if (ret_val) { /* When auto config read does not complete, do not * return with an error. This can happen in situations * where there is no eeprom and prevents getting link. */ DEBUGOUT("Auto Read Done did not complete\n"); ret_val = E1000_SUCCESS; } } /* Clear PHY Reset Asserted bit */ status = E1000_READ_REG(hw, E1000_STATUS); if (status & E1000_STATUS_PHYRA) E1000_WRITE_REG(hw, E1000_STATUS, status & ~E1000_STATUS_PHYRA); else DEBUGOUT("PHY Reset Asserted not set - needs delay\n"); /* If EEPROM is not marked present, init the IGP 3 PHY manually */ if (hw->mac.type <= e1000_ich9lan) { if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) && (hw->phy.type == e1000_phy_igp_3)) { e1000_phy_init_script_igp3(hw); } } else { if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) { /* Maybe we should do a basic PHY config */ DEBUGOUT("EEPROM not present\n"); ret_val = -E1000_ERR_CONFIG; } } return ret_val; } /** * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down * @hw: pointer to the HW structure * * In the case of a PHY power down to save power, or to turn off link during a * driver unload, or wake on lan is not enabled, remove the link. **/ STATIC void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw) { /* If the management interface is not enabled, then power down */ if (!(hw->mac.ops.check_mng_mode(hw) || hw->phy.ops.check_reset_block(hw))) e1000_power_down_phy_copper(hw); return; } /** * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters * @hw: pointer to the HW structure * * Clears hardware counters specific to the silicon family and calls * clear_hw_cntrs_generic to clear all general purpose counters. **/ STATIC void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw) { u16 phy_data; s32 ret_val; DEBUGFUNC("e1000_clear_hw_cntrs_ich8lan"); e1000_clear_hw_cntrs_base_generic(hw); E1000_READ_REG(hw, E1000_ALGNERRC); E1000_READ_REG(hw, E1000_RXERRC); E1000_READ_REG(hw, E1000_TNCRS); E1000_READ_REG(hw, E1000_CEXTERR); E1000_READ_REG(hw, E1000_TSCTC); E1000_READ_REG(hw, E1000_TSCTFC); E1000_READ_REG(hw, E1000_MGTPRC); E1000_READ_REG(hw, E1000_MGTPDC); E1000_READ_REG(hw, E1000_MGTPTC); E1000_READ_REG(hw, E1000_IAC); E1000_READ_REG(hw, E1000_ICRXOC); /* Clear PHY statistics registers */ if ((hw->phy.type == e1000_phy_82578) || (hw->phy.type == e1000_phy_82579) || (hw->phy.type == e1000_phy_i217) || (hw->phy.type == e1000_phy_82577)) { ret_val = hw->phy.ops.acquire(hw); if (ret_val) return; ret_val = hw->phy.ops.set_page(hw, HV_STATS_PAGE << IGP_PAGE_SHIFT); if (ret_val) goto release; hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data); hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data); hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data); hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data); hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data); hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data); hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data); hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data); hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data); hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data); hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data); hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data); hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data); hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data); release: hw->phy.ops.release(hw); } } /** * e1000_configure_k0s_lpt - Configure K0s power state * @hw: pointer to the HW structure * @entry_latency: Tx idle period for entering K0s - valid values are 0 to 3. * 0 corresponds to 128ns, each value over 0 doubles the duration. * @min_time: Minimum Tx idle period allowed - valid values are 0 to 4. * 0 corresponds to 128ns, each value over 0 doubles the duration. * * Configure the K1 power state based on the provided parameter. * Assumes semaphore already acquired. * * Success returns 0, Failure returns: * -E1000_ERR_PHY (-2) in case of access error * -E1000_ERR_PARAM (-4) in case of parameters error **/ s32 e1000_configure_k0s_lpt(struct e1000_hw *hw, u8 entry_latency, u8 min_time) { s32 ret_val; u16 kmrn_reg = 0; DEBUGFUNC("e1000_configure_k0s_lpt"); if (entry_latency > 3 || min_time > 4) return -E1000_ERR_PARAM; ret_val = e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K0S_CTRL, &kmrn_reg); if (ret_val) return ret_val; /* for now don't touch the latency */ kmrn_reg &= ~(E1000_KMRNCTRLSTA_K0S_CTRL_MIN_TIME_MASK); kmrn_reg |= ((min_time << E1000_KMRNCTRLSTA_K0S_CTRL_MIN_TIME_SHIFT)); ret_val = e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K0S_CTRL, kmrn_reg); if (ret_val) return ret_val; return E1000_SUCCESS; }