/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2014 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include #include "rte_sched.h" #include "rte_sched_common.h" #include "rte_approx.h" #ifdef __INTEL_COMPILER #pragma warning(disable:2259) /* conversion may lose significant bits */ #endif #ifdef RTE_SCHED_VECTOR #include #ifdef RTE_ARCH_X86 #define SCHED_VECTOR_SSE4 #elif defined(RTE_MACHINE_CPUFLAG_NEON) #define SCHED_VECTOR_NEON #endif #endif #define RTE_SCHED_TB_RATE_CONFIG_ERR (1e-7) #define RTE_SCHED_WRR_SHIFT 3 #define RTE_SCHED_MAX_QUEUES_PER_TC RTE_SCHED_BE_QUEUES_PER_PIPE #define RTE_SCHED_GRINDER_PCACHE_SIZE (64 / RTE_SCHED_QUEUES_PER_PIPE) #define RTE_SCHED_PIPE_INVALID UINT32_MAX #define RTE_SCHED_BMP_POS_INVALID UINT32_MAX /* Scaling for cycles_per_byte calculation * Chosen so that minimum rate is 480 bit/sec */ #define RTE_SCHED_TIME_SHIFT 8 struct rte_sched_pipe_profile { /* Token bucket (TB) */ uint64_t tb_period; uint64_t tb_credits_per_period; uint64_t tb_size; /* Pipe traffic classes */ uint64_t tc_period; uint64_t tc_credits_per_period[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE]; uint8_t tc_ov_weight; /* Pipe best-effort traffic class queues */ uint8_t wrr_cost[RTE_SCHED_BE_QUEUES_PER_PIPE]; }; struct rte_sched_pipe { /* Token bucket (TB) */ uint64_t tb_time; /* time of last update */ uint64_t tb_credits; /* Pipe profile and flags */ uint32_t profile; /* Traffic classes (TCs) */ uint64_t tc_time; /* time of next update */ uint64_t tc_credits[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE]; /* Weighted Round Robin (WRR) */ uint8_t wrr_tokens[RTE_SCHED_BE_QUEUES_PER_PIPE]; /* TC oversubscription */ uint64_t tc_ov_credits; uint8_t tc_ov_period_id; } __rte_cache_aligned; struct rte_sched_queue { uint16_t qw; uint16_t qr; }; struct rte_sched_queue_extra { struct rte_sched_queue_stats stats; #ifdef RTE_SCHED_RED struct rte_red red; #endif }; enum grinder_state { e_GRINDER_PREFETCH_PIPE = 0, e_GRINDER_PREFETCH_TC_QUEUE_ARRAYS, e_GRINDER_PREFETCH_MBUF, e_GRINDER_READ_MBUF }; struct rte_sched_grinder { /* Pipe cache */ uint16_t pcache_qmask[RTE_SCHED_GRINDER_PCACHE_SIZE]; uint32_t pcache_qindex[RTE_SCHED_GRINDER_PCACHE_SIZE]; uint32_t pcache_w; uint32_t pcache_r; /* Current pipe */ enum grinder_state state; uint32_t productive; uint32_t pindex; struct rte_sched_subport *subport; struct rte_sched_pipe *pipe; struct rte_sched_pipe_profile *pipe_params; /* TC cache */ uint8_t tccache_qmask[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE]; uint32_t tccache_qindex[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE]; uint32_t tccache_w; uint32_t tccache_r; /* Current TC */ uint32_t tc_index; struct rte_sched_queue *queue[RTE_SCHED_MAX_QUEUES_PER_TC]; struct rte_mbuf **qbase[RTE_SCHED_MAX_QUEUES_PER_TC]; uint32_t qindex[RTE_SCHED_MAX_QUEUES_PER_TC]; uint16_t qsize; uint32_t qmask; uint32_t qpos; struct rte_mbuf *pkt; /* WRR */ uint16_t wrr_tokens[RTE_SCHED_BE_QUEUES_PER_PIPE]; uint16_t wrr_mask[RTE_SCHED_BE_QUEUES_PER_PIPE]; uint8_t wrr_cost[RTE_SCHED_BE_QUEUES_PER_PIPE]; }; struct rte_sched_subport { /* Token bucket (TB) */ uint64_t tb_time; /* time of last update */ uint64_t tb_period; uint64_t tb_credits_per_period; uint64_t tb_size; uint64_t tb_credits; /* Traffic classes (TCs) */ uint64_t tc_time; /* time of next update */ uint64_t tc_credits_per_period[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE]; uint64_t tc_credits[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE]; uint64_t tc_period; /* TC oversubscription */ uint64_t tc_ov_wm; uint64_t tc_ov_wm_min; uint64_t tc_ov_wm_max; uint8_t tc_ov_period_id; uint8_t tc_ov; uint32_t tc_ov_n; double tc_ov_rate; /* Statistics */ struct rte_sched_subport_stats stats __rte_cache_aligned; /* Subport pipes */ uint32_t n_pipes_per_subport_enabled; uint32_t n_pipe_profiles; uint32_t n_max_pipe_profiles; /* Pipe best-effort TC rate */ uint64_t pipe_tc_be_rate_max; /* Pipe queues size */ uint16_t qsize[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE]; #ifdef RTE_SCHED_RED struct rte_red_config red_config[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE][RTE_COLORS]; #endif /* Scheduling loop detection */ uint32_t pipe_loop; uint32_t pipe_exhaustion; /* Bitmap */ struct rte_bitmap *bmp; uint32_t grinder_base_bmp_pos[RTE_SCHED_PORT_N_GRINDERS] __rte_aligned_16; /* Grinders */ struct rte_sched_grinder grinder[RTE_SCHED_PORT_N_GRINDERS]; uint32_t busy_grinders; /* Queue base calculation */ uint32_t qsize_add[RTE_SCHED_QUEUES_PER_PIPE]; uint32_t qsize_sum; struct rte_sched_pipe *pipe; struct rte_sched_queue *queue; struct rte_sched_queue_extra *queue_extra; struct rte_sched_pipe_profile *pipe_profiles; uint8_t *bmp_array; struct rte_mbuf **queue_array; uint8_t memory[0] __rte_cache_aligned; } __rte_cache_aligned; struct rte_sched_port { /* User parameters */ uint32_t n_subports_per_port; uint32_t n_pipes_per_subport; uint32_t n_pipes_per_subport_log2; uint16_t pipe_queue[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE]; uint8_t pipe_tc[RTE_SCHED_QUEUES_PER_PIPE]; uint8_t tc_queue[RTE_SCHED_QUEUES_PER_PIPE]; uint64_t rate; uint32_t mtu; uint32_t frame_overhead; int socket; /* Timing */ uint64_t time_cpu_cycles; /* Current CPU time measured in CPU cyles */ uint64_t time_cpu_bytes; /* Current CPU time measured in bytes */ uint64_t time; /* Current NIC TX time measured in bytes */ struct rte_reciprocal inv_cycles_per_byte; /* CPU cycles per byte */ uint64_t cycles_per_byte; /* Grinders */ struct rte_mbuf **pkts_out; uint32_t n_pkts_out; uint32_t subport_id; /* Large data structures */ struct rte_sched_subport *subports[0] __rte_cache_aligned; } __rte_cache_aligned; enum rte_sched_subport_array { e_RTE_SCHED_SUBPORT_ARRAY_PIPE = 0, e_RTE_SCHED_SUBPORT_ARRAY_QUEUE, e_RTE_SCHED_SUBPORT_ARRAY_QUEUE_EXTRA, e_RTE_SCHED_SUBPORT_ARRAY_PIPE_PROFILES, e_RTE_SCHED_SUBPORT_ARRAY_BMP_ARRAY, e_RTE_SCHED_SUBPORT_ARRAY_QUEUE_ARRAY, e_RTE_SCHED_SUBPORT_ARRAY_TOTAL, }; static inline uint32_t rte_sched_subport_pipe_queues(struct rte_sched_subport *subport) { return RTE_SCHED_QUEUES_PER_PIPE * subport->n_pipes_per_subport_enabled; } static inline struct rte_mbuf ** rte_sched_subport_pipe_qbase(struct rte_sched_subport *subport, uint32_t qindex) { uint32_t pindex = qindex >> 4; uint32_t qpos = qindex & (RTE_SCHED_QUEUES_PER_PIPE - 1); return (subport->queue_array + pindex * subport->qsize_sum + subport->qsize_add[qpos]); } static inline uint16_t rte_sched_subport_pipe_qsize(struct rte_sched_port *port, struct rte_sched_subport *subport, uint32_t qindex) { uint32_t tc = port->pipe_tc[qindex & (RTE_SCHED_QUEUES_PER_PIPE - 1)]; return subport->qsize[tc]; } static inline uint32_t rte_sched_port_queues_per_port(struct rte_sched_port *port) { uint32_t n_queues = 0, i; for (i = 0; i < port->n_subports_per_port; i++) n_queues += rte_sched_subport_pipe_queues(port->subports[i]); return n_queues; } static inline uint16_t rte_sched_port_pipe_queue(struct rte_sched_port *port, uint32_t traffic_class) { uint16_t pipe_queue = port->pipe_queue[traffic_class]; return pipe_queue; } static inline uint8_t rte_sched_port_pipe_tc(struct rte_sched_port *port, uint32_t qindex) { uint8_t pipe_tc = port->pipe_tc[qindex & (RTE_SCHED_QUEUES_PER_PIPE - 1)]; return pipe_tc; } static inline uint8_t rte_sched_port_tc_queue(struct rte_sched_port *port, uint32_t qindex) { uint8_t tc_queue = port->tc_queue[qindex & (RTE_SCHED_QUEUES_PER_PIPE - 1)]; return tc_queue; } static int pipe_profile_check(struct rte_sched_pipe_params *params, uint64_t rate, uint16_t *qsize) { uint32_t i; /* Pipe parameters */ if (params == NULL) { RTE_LOG(ERR, SCHED, "%s: Incorrect value for parameter params\n", __func__); return -EINVAL; } /* TB rate: non-zero, not greater than port rate */ if (params->tb_rate == 0 || params->tb_rate > rate) { RTE_LOG(ERR, SCHED, "%s: Incorrect value for tb rate\n", __func__); return -EINVAL; } /* TB size: non-zero */ if (params->tb_size == 0) { RTE_LOG(ERR, SCHED, "%s: Incorrect value for tb size\n", __func__); return -EINVAL; } /* TC rate: non-zero if qsize non-zero, less than pipe rate */ for (i = 0; i < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; i++) { if ((qsize[i] == 0 && params->tc_rate[i] != 0) || (qsize[i] != 0 && (params->tc_rate[i] == 0 || params->tc_rate[i] > params->tb_rate))) { RTE_LOG(ERR, SCHED, "%s: Incorrect value for qsize or tc_rate\n", __func__); return -EINVAL; } } if (params->tc_rate[RTE_SCHED_TRAFFIC_CLASS_BE] == 0 || qsize[RTE_SCHED_TRAFFIC_CLASS_BE] == 0) { RTE_LOG(ERR, SCHED, "%s: Incorrect value for be traffic class rate\n", __func__); return -EINVAL; } /* TC period: non-zero */ if (params->tc_period == 0) { RTE_LOG(ERR, SCHED, "%s: Incorrect value for tc period\n", __func__); return -EINVAL; } /* Best effort tc oversubscription weight: non-zero */ if (params->tc_ov_weight == 0) { RTE_LOG(ERR, SCHED, "%s: Incorrect value for tc ov weight\n", __func__); return -EINVAL; } /* Queue WRR weights: non-zero */ for (i = 0; i < RTE_SCHED_BE_QUEUES_PER_PIPE; i++) { if (params->wrr_weights[i] == 0) { RTE_LOG(ERR, SCHED, "%s: Incorrect value for wrr weight\n", __func__); return -EINVAL; } } return 0; } static int rte_sched_port_check_params(struct rte_sched_port_params *params) { if (params == NULL) { RTE_LOG(ERR, SCHED, "%s: Incorrect value for parameter params\n", __func__); return -EINVAL; } /* socket */ if (params->socket < 0) { RTE_LOG(ERR, SCHED, "%s: Incorrect value for socket id\n", __func__); return -EINVAL; } /* rate */ if (params->rate == 0) { RTE_LOG(ERR, SCHED, "%s: Incorrect value for rate\n", __func__); return -EINVAL; } /* mtu */ if (params->mtu == 0) { RTE_LOG(ERR, SCHED, "%s: Incorrect value for mtu\n", __func__); return -EINVAL; } /* n_subports_per_port: non-zero, limited to 16 bits, power of 2 */ if (params->n_subports_per_port == 0 || params->n_subports_per_port > 1u << 16 || !rte_is_power_of_2(params->n_subports_per_port)) { RTE_LOG(ERR, SCHED, "%s: Incorrect value for number of subports\n", __func__); return -EINVAL; } /* n_pipes_per_subport: non-zero, power of 2 */ if (params->n_pipes_per_subport == 0 || !rte_is_power_of_2(params->n_pipes_per_subport)) { RTE_LOG(ERR, SCHED, "%s: Incorrect value for maximum pipes number\n", __func__); return -EINVAL; } return 0; } static uint32_t rte_sched_subport_get_array_base(struct rte_sched_subport_params *params, enum rte_sched_subport_array array) { uint32_t n_pipes_per_subport = params->n_pipes_per_subport_enabled; uint32_t n_subport_pipe_queues = RTE_SCHED_QUEUES_PER_PIPE * n_pipes_per_subport; uint32_t size_pipe = n_pipes_per_subport * sizeof(struct rte_sched_pipe); uint32_t size_queue = n_subport_pipe_queues * sizeof(struct rte_sched_queue); uint32_t size_queue_extra = n_subport_pipe_queues * sizeof(struct rte_sched_queue_extra); uint32_t size_pipe_profiles = params->n_max_pipe_profiles * sizeof(struct rte_sched_pipe_profile); uint32_t size_bmp_array = rte_bitmap_get_memory_footprint(n_subport_pipe_queues); uint32_t size_per_pipe_queue_array, size_queue_array; uint32_t base, i; size_per_pipe_queue_array = 0; for (i = 0; i < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; i++) { if (i < RTE_SCHED_TRAFFIC_CLASS_BE) size_per_pipe_queue_array += params->qsize[i] * sizeof(struct rte_mbuf *); else size_per_pipe_queue_array += RTE_SCHED_MAX_QUEUES_PER_TC * params->qsize[i] * sizeof(struct rte_mbuf *); } size_queue_array = n_pipes_per_subport * size_per_pipe_queue_array; base = 0; if (array == e_RTE_SCHED_SUBPORT_ARRAY_PIPE) return base; base += RTE_CACHE_LINE_ROUNDUP(size_pipe); if (array == e_RTE_SCHED_SUBPORT_ARRAY_QUEUE) return base; base += RTE_CACHE_LINE_ROUNDUP(size_queue); if (array == e_RTE_SCHED_SUBPORT_ARRAY_QUEUE_EXTRA) return base; base += RTE_CACHE_LINE_ROUNDUP(size_queue_extra); if (array == e_RTE_SCHED_SUBPORT_ARRAY_PIPE_PROFILES) return base; base += RTE_CACHE_LINE_ROUNDUP(size_pipe_profiles); if (array == e_RTE_SCHED_SUBPORT_ARRAY_BMP_ARRAY) return base; base += RTE_CACHE_LINE_ROUNDUP(size_bmp_array); if (array == e_RTE_SCHED_SUBPORT_ARRAY_QUEUE_ARRAY) return base; base += RTE_CACHE_LINE_ROUNDUP(size_queue_array); return base; } static void rte_sched_subport_config_qsize(struct rte_sched_subport *subport) { uint32_t i; subport->qsize_add[0] = 0; /* Strict prority traffic class */ for (i = 1; i < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; i++) subport->qsize_add[i] = subport->qsize_add[i-1] + subport->qsize[i-1]; /* Best-effort traffic class */ subport->qsize_add[RTE_SCHED_TRAFFIC_CLASS_BE + 1] = subport->qsize_add[RTE_SCHED_TRAFFIC_CLASS_BE] + subport->qsize[RTE_SCHED_TRAFFIC_CLASS_BE]; subport->qsize_add[RTE_SCHED_TRAFFIC_CLASS_BE + 2] = subport->qsize_add[RTE_SCHED_TRAFFIC_CLASS_BE + 1] + subport->qsize[RTE_SCHED_TRAFFIC_CLASS_BE]; subport->qsize_add[RTE_SCHED_TRAFFIC_CLASS_BE + 3] = subport->qsize_add[RTE_SCHED_TRAFFIC_CLASS_BE + 2] + subport->qsize[RTE_SCHED_TRAFFIC_CLASS_BE]; subport->qsize_sum = subport->qsize_add[RTE_SCHED_TRAFFIC_CLASS_BE + 3] + subport->qsize[RTE_SCHED_TRAFFIC_CLASS_BE]; } static void rte_sched_port_log_pipe_profile(struct rte_sched_subport *subport, uint32_t i) { struct rte_sched_pipe_profile *p = subport->pipe_profiles + i; RTE_LOG(DEBUG, SCHED, "Low level config for pipe profile %u:\n" " Token bucket: period = %"PRIu64", credits per period = %"PRIu64", size = %"PRIu64"\n" " Traffic classes: period = %"PRIu64",\n" " credits per period = [%"PRIu64", %"PRIu64", %"PRIu64", %"PRIu64 ", %"PRIu64", %"PRIu64", %"PRIu64", %"PRIu64", %"PRIu64", %"PRIu64 ", %"PRIu64", %"PRIu64", %"PRIu64"]\n" " Best-effort traffic class oversubscription: weight = %hhu\n" " WRR cost: [%hhu, %hhu, %hhu, %hhu]\n", i, /* Token bucket */ p->tb_period, p->tb_credits_per_period, p->tb_size, /* Traffic classes */ p->tc_period, p->tc_credits_per_period[0], p->tc_credits_per_period[1], p->tc_credits_per_period[2], p->tc_credits_per_period[3], p->tc_credits_per_period[4], p->tc_credits_per_period[5], p->tc_credits_per_period[6], p->tc_credits_per_period[7], p->tc_credits_per_period[8], p->tc_credits_per_period[9], p->tc_credits_per_period[10], p->tc_credits_per_period[11], p->tc_credits_per_period[12], /* Best-effort traffic class oversubscription */ p->tc_ov_weight, /* WRR */ p->wrr_cost[0], p->wrr_cost[1], p->wrr_cost[2], p->wrr_cost[3]); } static inline uint64_t rte_sched_time_ms_to_bytes(uint64_t time_ms, uint64_t rate) { uint64_t time = time_ms; time = (time * rate) / 1000; return time; } static void rte_sched_pipe_profile_convert(struct rte_sched_subport *subport, struct rte_sched_pipe_params *src, struct rte_sched_pipe_profile *dst, uint64_t rate) { uint32_t wrr_cost[RTE_SCHED_BE_QUEUES_PER_PIPE]; uint32_t lcd1, lcd2, lcd; uint32_t i; /* Token Bucket */ if (src->tb_rate == rate) { dst->tb_credits_per_period = 1; dst->tb_period = 1; } else { double tb_rate = (double) src->tb_rate / (double) rate; double d = RTE_SCHED_TB_RATE_CONFIG_ERR; rte_approx_64(tb_rate, d, &dst->tb_credits_per_period, &dst->tb_period); } dst->tb_size = src->tb_size; /* Traffic Classes */ dst->tc_period = rte_sched_time_ms_to_bytes(src->tc_period, rate); for (i = 0; i < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; i++) if (subport->qsize[i]) dst->tc_credits_per_period[i] = rte_sched_time_ms_to_bytes(src->tc_period, src->tc_rate[i]); dst->tc_ov_weight = src->tc_ov_weight; /* WRR queues */ wrr_cost[0] = src->wrr_weights[0]; wrr_cost[1] = src->wrr_weights[1]; wrr_cost[2] = src->wrr_weights[2]; wrr_cost[3] = src->wrr_weights[3]; lcd1 = rte_get_lcd(wrr_cost[0], wrr_cost[1]); lcd2 = rte_get_lcd(wrr_cost[2], wrr_cost[3]); lcd = rte_get_lcd(lcd1, lcd2); wrr_cost[0] = lcd / wrr_cost[0]; wrr_cost[1] = lcd / wrr_cost[1]; wrr_cost[2] = lcd / wrr_cost[2]; wrr_cost[3] = lcd / wrr_cost[3]; dst->wrr_cost[0] = (uint8_t) wrr_cost[0]; dst->wrr_cost[1] = (uint8_t) wrr_cost[1]; dst->wrr_cost[2] = (uint8_t) wrr_cost[2]; dst->wrr_cost[3] = (uint8_t) wrr_cost[3]; } static void rte_sched_subport_config_pipe_profile_table(struct rte_sched_subport *subport, struct rte_sched_subport_params *params, uint64_t rate) { uint32_t i; for (i = 0; i < subport->n_pipe_profiles; i++) { struct rte_sched_pipe_params *src = params->pipe_profiles + i; struct rte_sched_pipe_profile *dst = subport->pipe_profiles + i; rte_sched_pipe_profile_convert(subport, src, dst, rate); rte_sched_port_log_pipe_profile(subport, i); } subport->pipe_tc_be_rate_max = 0; for (i = 0; i < subport->n_pipe_profiles; i++) { struct rte_sched_pipe_params *src = params->pipe_profiles + i; uint64_t pipe_tc_be_rate = src->tc_rate[RTE_SCHED_TRAFFIC_CLASS_BE]; if (subport->pipe_tc_be_rate_max < pipe_tc_be_rate) subport->pipe_tc_be_rate_max = pipe_tc_be_rate; } } static int rte_sched_subport_check_params(struct rte_sched_subport_params *params, uint32_t n_max_pipes_per_subport, uint64_t rate) { uint32_t i; /* Check user parameters */ if (params == NULL) { RTE_LOG(ERR, SCHED, "%s: Incorrect value for parameter params\n", __func__); return -EINVAL; } if (params->tb_rate == 0 || params->tb_rate > rate) { RTE_LOG(ERR, SCHED, "%s: Incorrect value for tb rate\n", __func__); return -EINVAL; } if (params->tb_size == 0) { RTE_LOG(ERR, SCHED, "%s: Incorrect value for tb size\n", __func__); return -EINVAL; } /* qsize: if non-zero, power of 2, * no bigger than 32K (due to 16-bit read/write pointers) */ for (i = 0; i < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; i++) { uint16_t qsize = params->qsize[i]; if (qsize != 0 && !rte_is_power_of_2(qsize)) { RTE_LOG(ERR, SCHED, "%s: Incorrect value for qsize\n", __func__); return -EINVAL; } } for (i = 0; i < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; i++) { uint64_t tc_rate = params->tc_rate[i]; uint16_t qsize = params->qsize[i]; if ((qsize == 0 && tc_rate != 0) || (qsize != 0 && tc_rate == 0) || (tc_rate > params->tb_rate)) { RTE_LOG(ERR, SCHED, "%s: Incorrect value for tc rate\n", __func__); return -EINVAL; } } if (params->qsize[RTE_SCHED_TRAFFIC_CLASS_BE] == 0 || params->tc_rate[RTE_SCHED_TRAFFIC_CLASS_BE] == 0) { RTE_LOG(ERR, SCHED, "%s: Incorrect qsize or tc rate(best effort)\n", __func__); return -EINVAL; } if (params->tc_period == 0) { RTE_LOG(ERR, SCHED, "%s: Incorrect value for tc period\n", __func__); return -EINVAL; } /* n_pipes_per_subport: non-zero, power of 2 */ if (params->n_pipes_per_subport_enabled == 0 || params->n_pipes_per_subport_enabled > n_max_pipes_per_subport || !rte_is_power_of_2(params->n_pipes_per_subport_enabled)) { RTE_LOG(ERR, SCHED, "%s: Incorrect value for pipes number\n", __func__); return -EINVAL; } /* pipe_profiles and n_pipe_profiles */ if (params->pipe_profiles == NULL || params->n_pipe_profiles == 0 || params->n_max_pipe_profiles == 0 || params->n_pipe_profiles > params->n_max_pipe_profiles) { RTE_LOG(ERR, SCHED, "%s: Incorrect value for pipe profiles\n", __func__); return -EINVAL; } for (i = 0; i < params->n_pipe_profiles; i++) { struct rte_sched_pipe_params *p = params->pipe_profiles + i; int status; status = pipe_profile_check(p, rate, ¶ms->qsize[0]); if (status != 0) { RTE_LOG(ERR, SCHED, "%s: Pipe profile check failed(%d)\n", __func__, status); return -EINVAL; } } return 0; } uint32_t rte_sched_port_get_memory_footprint(struct rte_sched_port_params *port_params, struct rte_sched_subport_params **subport_params) { uint32_t size0 = 0, size1 = 0, i; int status; status = rte_sched_port_check_params(port_params); if (status != 0) { RTE_LOG(ERR, SCHED, "%s: Port scheduler port params check failed (%d)\n", __func__, status); return 0; } for (i = 0; i < port_params->n_subports_per_port; i++) { struct rte_sched_subport_params *sp = subport_params[i]; status = rte_sched_subport_check_params(sp, port_params->n_pipes_per_subport, port_params->rate); if (status != 0) { RTE_LOG(ERR, SCHED, "%s: Port scheduler subport params check failed (%d)\n", __func__, status); return 0; } } size0 = sizeof(struct rte_sched_port); for (i = 0; i < port_params->n_subports_per_port; i++) { struct rte_sched_subport_params *sp = subport_params[i]; size1 += rte_sched_subport_get_array_base(sp, e_RTE_SCHED_SUBPORT_ARRAY_TOTAL); } return size0 + size1; } struct rte_sched_port * rte_sched_port_config(struct rte_sched_port_params *params) { struct rte_sched_port *port = NULL; uint32_t size0, size1; uint32_t cycles_per_byte; uint32_t i, j; int status; status = rte_sched_port_check_params(params); if (status != 0) { RTE_LOG(ERR, SCHED, "%s: Port scheduler params check failed (%d)\n", __func__, status); return NULL; } size0 = sizeof(struct rte_sched_port); size1 = params->n_subports_per_port * sizeof(struct rte_sched_subport *); /* Allocate memory to store the data structures */ port = rte_zmalloc_socket("qos_params", size0 + size1, RTE_CACHE_LINE_SIZE, params->socket); if (port == NULL) { RTE_LOG(ERR, SCHED, "%s: Memory allocation fails\n", __func__); return NULL; } /* User parameters */ port->n_subports_per_port = params->n_subports_per_port; port->n_pipes_per_subport = params->n_pipes_per_subport; port->n_pipes_per_subport_log2 = __builtin_ctz(params->n_pipes_per_subport); port->socket = params->socket; for (i = 0; i < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; i++) port->pipe_queue[i] = i; for (i = 0, j = 0; i < RTE_SCHED_QUEUES_PER_PIPE; i++) { port->pipe_tc[i] = j; if (j < RTE_SCHED_TRAFFIC_CLASS_BE) j++; } for (i = 0, j = 0; i < RTE_SCHED_QUEUES_PER_PIPE; i++) { port->tc_queue[i] = j; if (i >= RTE_SCHED_TRAFFIC_CLASS_BE) j++; } port->rate = params->rate; port->mtu = params->mtu + params->frame_overhead; port->frame_overhead = params->frame_overhead; /* Timing */ port->time_cpu_cycles = rte_get_tsc_cycles(); port->time_cpu_bytes = 0; port->time = 0; cycles_per_byte = (rte_get_tsc_hz() << RTE_SCHED_TIME_SHIFT) / params->rate; port->inv_cycles_per_byte = rte_reciprocal_value(cycles_per_byte); port->cycles_per_byte = cycles_per_byte; /* Grinders */ port->pkts_out = NULL; port->n_pkts_out = 0; port->subport_id = 0; return port; } static inline void rte_sched_subport_free(struct rte_sched_port *port, struct rte_sched_subport *subport) { uint32_t n_subport_pipe_queues; uint32_t qindex; if (subport == NULL) return; n_subport_pipe_queues = rte_sched_subport_pipe_queues(subport); /* Free enqueued mbufs */ for (qindex = 0; qindex < n_subport_pipe_queues; qindex++) { struct rte_mbuf **mbufs = rte_sched_subport_pipe_qbase(subport, qindex); uint16_t qsize = rte_sched_subport_pipe_qsize(port, subport, qindex); if (qsize != 0) { struct rte_sched_queue *queue = subport->queue + qindex; uint16_t qr = queue->qr & (qsize - 1); uint16_t qw = queue->qw & (qsize - 1); for (; qr != qw; qr = (qr + 1) & (qsize - 1)) rte_pktmbuf_free(mbufs[qr]); } } rte_free(subport); } void rte_sched_port_free(struct rte_sched_port *port) { uint32_t i; /* Check user parameters */ if (port == NULL) return; for (i = 0; i < port->n_subports_per_port; i++) rte_sched_subport_free(port, port->subports[i]); rte_free(port); } static void rte_sched_port_log_subport_config(struct rte_sched_port *port, uint32_t i) { struct rte_sched_subport *s = port->subports[i]; RTE_LOG(DEBUG, SCHED, "Low level config for subport %u:\n" " Token bucket: period = %"PRIu64", credits per period = %"PRIu64 ", size = %"PRIu64"\n" " Traffic classes: period = %"PRIu64"\n" " credits per period = [%"PRIu64", %"PRIu64", %"PRIu64", %"PRIu64 ", %"PRIu64", %"PRIu64", %"PRIu64", %"PRIu64", %"PRIu64", %"PRIu64 ", %"PRIu64", %"PRIu64", %"PRIu64"]\n" " Best effort traffic class oversubscription: wm min = %"PRIu64 ", wm max = %"PRIu64"\n", i, /* Token bucket */ s->tb_period, s->tb_credits_per_period, s->tb_size, /* Traffic classes */ s->tc_period, s->tc_credits_per_period[0], s->tc_credits_per_period[1], s->tc_credits_per_period[2], s->tc_credits_per_period[3], s->tc_credits_per_period[4], s->tc_credits_per_period[5], s->tc_credits_per_period[6], s->tc_credits_per_period[7], s->tc_credits_per_period[8], s->tc_credits_per_period[9], s->tc_credits_per_period[10], s->tc_credits_per_period[11], s->tc_credits_per_period[12], /* Best effort traffic class oversubscription */ s->tc_ov_wm_min, s->tc_ov_wm_max); } static void rte_sched_free_memory(struct rte_sched_port *port, uint32_t n_subports) { uint32_t i; for (i = 0; i < n_subports; i++) { struct rte_sched_subport *subport = port->subports[i]; rte_sched_subport_free(port, subport); } rte_free(port); } int rte_sched_subport_config(struct rte_sched_port *port, uint32_t subport_id, struct rte_sched_subport_params *params) { struct rte_sched_subport *s = NULL; uint32_t n_subports = subport_id; uint32_t n_subport_pipe_queues, i; uint32_t size0, size1, bmp_mem_size; int status; /* Check user parameters */ if (port == NULL) { RTE_LOG(ERR, SCHED, "%s: Incorrect value for parameter port\n", __func__); return 0; } if (subport_id >= port->n_subports_per_port) { RTE_LOG(ERR, SCHED, "%s: Incorrect value for subport id\n", __func__); rte_sched_free_memory(port, n_subports); return -EINVAL; } status = rte_sched_subport_check_params(params, port->n_pipes_per_subport, port->rate); if (status != 0) { RTE_LOG(NOTICE, SCHED, "%s: Port scheduler params check failed (%d)\n", __func__, status); rte_sched_free_memory(port, n_subports); return -EINVAL; } /* Determine the amount of memory to allocate */ size0 = sizeof(struct rte_sched_subport); size1 = rte_sched_subport_get_array_base(params, e_RTE_SCHED_SUBPORT_ARRAY_TOTAL); /* Allocate memory to store the data structures */ s = rte_zmalloc_socket("subport_params", size0 + size1, RTE_CACHE_LINE_SIZE, port->socket); if (s == NULL) { RTE_LOG(ERR, SCHED, "%s: Memory allocation fails\n", __func__); rte_sched_free_memory(port, n_subports); return -ENOMEM; } n_subports++; /* Port */ port->subports[subport_id] = s; /* Token Bucket (TB) */ if (params->tb_rate == port->rate) { s->tb_credits_per_period = 1; s->tb_period = 1; } else { double tb_rate = ((double) params->tb_rate) / ((double) port->rate); double d = RTE_SCHED_TB_RATE_CONFIG_ERR; rte_approx_64(tb_rate, d, &s->tb_credits_per_period, &s->tb_period); } s->tb_size = params->tb_size; s->tb_time = port->time; s->tb_credits = s->tb_size / 2; /* Traffic Classes (TCs) */ s->tc_period = rte_sched_time_ms_to_bytes(params->tc_period, port->rate); for (i = 0; i < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; i++) { if (params->qsize[i]) s->tc_credits_per_period[i] = rte_sched_time_ms_to_bytes(params->tc_period, params->tc_rate[i]); } s->tc_time = port->time + s->tc_period; for (i = 0; i < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; i++) if (params->qsize[i]) s->tc_credits[i] = s->tc_credits_per_period[i]; /* compile time checks */ RTE_BUILD_BUG_ON(RTE_SCHED_PORT_N_GRINDERS == 0); RTE_BUILD_BUG_ON(RTE_SCHED_PORT_N_GRINDERS & (RTE_SCHED_PORT_N_GRINDERS - 1)); /* User parameters */ s->n_pipes_per_subport_enabled = params->n_pipes_per_subport_enabled; memcpy(s->qsize, params->qsize, sizeof(params->qsize)); s->n_pipe_profiles = params->n_pipe_profiles; s->n_max_pipe_profiles = params->n_max_pipe_profiles; #ifdef RTE_SCHED_RED for (i = 0; i < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; i++) { uint32_t j; for (j = 0; j < RTE_COLORS; j++) { /* if min/max are both zero, then RED is disabled */ if ((params->red_params[i][j].min_th | params->red_params[i][j].max_th) == 0) { continue; } if (rte_red_config_init(&s->red_config[i][j], params->red_params[i][j].wq_log2, params->red_params[i][j].min_th, params->red_params[i][j].max_th, params->red_params[i][j].maxp_inv) != 0) { rte_sched_free_memory(port, n_subports); RTE_LOG(NOTICE, SCHED, "%s: RED configuration init fails\n", __func__); return -EINVAL; } } } #endif /* Scheduling loop detection */ s->pipe_loop = RTE_SCHED_PIPE_INVALID; s->pipe_exhaustion = 0; /* Grinders */ s->busy_grinders = 0; /* Queue base calculation */ rte_sched_subport_config_qsize(s); /* Large data structures */ s->pipe = (struct rte_sched_pipe *) (s->memory + rte_sched_subport_get_array_base(params, e_RTE_SCHED_SUBPORT_ARRAY_PIPE)); s->queue = (struct rte_sched_queue *) (s->memory + rte_sched_subport_get_array_base(params, e_RTE_SCHED_SUBPORT_ARRAY_QUEUE)); s->queue_extra = (struct rte_sched_queue_extra *) (s->memory + rte_sched_subport_get_array_base(params, e_RTE_SCHED_SUBPORT_ARRAY_QUEUE_EXTRA)); s->pipe_profiles = (struct rte_sched_pipe_profile *) (s->memory + rte_sched_subport_get_array_base(params, e_RTE_SCHED_SUBPORT_ARRAY_PIPE_PROFILES)); s->bmp_array = s->memory + rte_sched_subport_get_array_base(params, e_RTE_SCHED_SUBPORT_ARRAY_BMP_ARRAY); s->queue_array = (struct rte_mbuf **) (s->memory + rte_sched_subport_get_array_base(params, e_RTE_SCHED_SUBPORT_ARRAY_QUEUE_ARRAY)); /* Pipe profile table */ rte_sched_subport_config_pipe_profile_table(s, params, port->rate); /* Bitmap */ n_subport_pipe_queues = rte_sched_subport_pipe_queues(s); bmp_mem_size = rte_bitmap_get_memory_footprint(n_subport_pipe_queues); s->bmp = rte_bitmap_init(n_subport_pipe_queues, s->bmp_array, bmp_mem_size); if (s->bmp == NULL) { RTE_LOG(ERR, SCHED, "%s: Subport bitmap init error\n", __func__); rte_sched_free_memory(port, n_subports); return -EINVAL; } for (i = 0; i < RTE_SCHED_PORT_N_GRINDERS; i++) s->grinder_base_bmp_pos[i] = RTE_SCHED_PIPE_INVALID; #ifdef RTE_SCHED_SUBPORT_TC_OV /* TC oversubscription */ s->tc_ov_wm_min = port->mtu; s->tc_ov_wm_max = rte_sched_time_ms_to_bytes(params->tc_period, s->pipe_tc_be_rate_max); s->tc_ov_wm = s->tc_ov_wm_max; s->tc_ov_period_id = 0; s->tc_ov = 0; s->tc_ov_n = 0; s->tc_ov_rate = 0; #endif rte_sched_port_log_subport_config(port, subport_id); return 0; } int rte_sched_pipe_config(struct rte_sched_port *port, uint32_t subport_id, uint32_t pipe_id, int32_t pipe_profile) { struct rte_sched_subport *s; struct rte_sched_pipe *p; struct rte_sched_pipe_profile *params; uint32_t n_subports = subport_id + 1; uint32_t deactivate, profile, i; /* Check user parameters */ profile = (uint32_t) pipe_profile; deactivate = (pipe_profile < 0); if (port == NULL) { RTE_LOG(ERR, SCHED, "%s: Incorrect value for parameter port\n", __func__); return -EINVAL; } if (subport_id >= port->n_subports_per_port) { RTE_LOG(ERR, SCHED, "%s: Incorrect value for parameter subport id\n", __func__); rte_sched_free_memory(port, n_subports); return -EINVAL; } s = port->subports[subport_id]; if (pipe_id >= s->n_pipes_per_subport_enabled) { RTE_LOG(ERR, SCHED, "%s: Incorrect value for parameter pipe id\n", __func__); rte_sched_free_memory(port, n_subports); return -EINVAL; } if (!deactivate && profile >= s->n_pipe_profiles) { RTE_LOG(ERR, SCHED, "%s: Incorrect value for parameter pipe profile\n", __func__); rte_sched_free_memory(port, n_subports); return -EINVAL; } /* Handle the case when pipe already has a valid configuration */ p = s->pipe + pipe_id; if (p->tb_time) { params = s->pipe_profiles + p->profile; double subport_tc_be_rate = (double) s->tc_credits_per_period[RTE_SCHED_TRAFFIC_CLASS_BE] / (double) s->tc_period; double pipe_tc_be_rate = (double) params->tc_credits_per_period[RTE_SCHED_TRAFFIC_CLASS_BE] / (double) params->tc_period; uint32_t tc_be_ov = s->tc_ov; /* Unplug pipe from its subport */ s->tc_ov_n -= params->tc_ov_weight; s->tc_ov_rate -= pipe_tc_be_rate; s->tc_ov = s->tc_ov_rate > subport_tc_be_rate; if (s->tc_ov != tc_be_ov) { RTE_LOG(DEBUG, SCHED, "Subport %u Best-effort TC oversubscription is OFF (%.4lf >= %.4lf)\n", subport_id, subport_tc_be_rate, s->tc_ov_rate); } /* Reset the pipe */ memset(p, 0, sizeof(struct rte_sched_pipe)); } if (deactivate) return 0; /* Apply the new pipe configuration */ p->profile = profile; params = s->pipe_profiles + p->profile; /* Token Bucket (TB) */ p->tb_time = port->time; p->tb_credits = params->tb_size / 2; /* Traffic Classes (TCs) */ p->tc_time = port->time + params->tc_period; for (i = 0; i < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; i++) if (s->qsize[i]) p->tc_credits[i] = params->tc_credits_per_period[i]; { /* Subport best effort tc oversubscription */ double subport_tc_be_rate = (double) s->tc_credits_per_period[RTE_SCHED_TRAFFIC_CLASS_BE] / (double) s->tc_period; double pipe_tc_be_rate = (double) params->tc_credits_per_period[RTE_SCHED_TRAFFIC_CLASS_BE] / (double) params->tc_period; uint32_t tc_be_ov = s->tc_ov; s->tc_ov_n += params->tc_ov_weight; s->tc_ov_rate += pipe_tc_be_rate; s->tc_ov = s->tc_ov_rate > subport_tc_be_rate; if (s->tc_ov != tc_be_ov) { RTE_LOG(DEBUG, SCHED, "Subport %u Best effort TC oversubscription is ON (%.4lf < %.4lf)\n", subport_id, subport_tc_be_rate, s->tc_ov_rate); } p->tc_ov_period_id = s->tc_ov_period_id; p->tc_ov_credits = s->tc_ov_wm; } return 0; } int rte_sched_subport_pipe_profile_add(struct rte_sched_port *port, uint32_t subport_id, struct rte_sched_pipe_params *params, uint32_t *pipe_profile_id) { struct rte_sched_subport *s; struct rte_sched_pipe_profile *pp; uint32_t i; int status; /* Port */ if (port == NULL) { RTE_LOG(ERR, SCHED, "%s: Incorrect value for parameter port\n", __func__); return -EINVAL; } /* Subport id not exceeds the max limit */ if (subport_id > port->n_subports_per_port) { RTE_LOG(ERR, SCHED, "%s: Incorrect value for subport id\n", __func__); return -EINVAL; } s = port->subports[subport_id]; /* Pipe profiles exceeds the max limit */ if (s->n_pipe_profiles >= s->n_max_pipe_profiles) { RTE_LOG(ERR, SCHED, "%s: Number of pipe profiles exceeds the max limit\n", __func__); return -EINVAL; } /* Pipe params */ status = pipe_profile_check(params, port->rate, &s->qsize[0]); if (status != 0) { RTE_LOG(ERR, SCHED, "%s: Pipe profile check failed(%d)\n", __func__, status); return -EINVAL; } pp = &s->pipe_profiles[s->n_pipe_profiles]; rte_sched_pipe_profile_convert(s, params, pp, port->rate); /* Pipe profile should not exists */ for (i = 0; i < s->n_pipe_profiles; i++) if (memcmp(s->pipe_profiles + i, pp, sizeof(*pp)) == 0) { RTE_LOG(ERR, SCHED, "%s: Pipe profile exists\n", __func__); return -EINVAL; } /* Pipe profile commit */ *pipe_profile_id = s->n_pipe_profiles; s->n_pipe_profiles++; if (s->pipe_tc_be_rate_max < params->tc_rate[RTE_SCHED_TRAFFIC_CLASS_BE]) s->pipe_tc_be_rate_max = params->tc_rate[RTE_SCHED_TRAFFIC_CLASS_BE]; rte_sched_port_log_pipe_profile(s, *pipe_profile_id); return 0; } static inline uint32_t rte_sched_port_qindex(struct rte_sched_port *port, uint32_t subport, uint32_t pipe, uint32_t traffic_class, uint32_t queue) { return ((subport & (port->n_subports_per_port - 1)) << (port->n_pipes_per_subport_log2 + 4)) | ((pipe & (port->subports[subport]->n_pipes_per_subport_enabled - 1)) << 4) | ((rte_sched_port_pipe_queue(port, traffic_class) + queue) & (RTE_SCHED_QUEUES_PER_PIPE - 1)); } void rte_sched_port_pkt_write(struct rte_sched_port *port, struct rte_mbuf *pkt, uint32_t subport, uint32_t pipe, uint32_t traffic_class, uint32_t queue, enum rte_color color) { uint32_t queue_id = rte_sched_port_qindex(port, subport, pipe, traffic_class, queue); rte_mbuf_sched_set(pkt, queue_id, traffic_class, (uint8_t)color); } void rte_sched_port_pkt_read_tree_path(struct rte_sched_port *port, const struct rte_mbuf *pkt, uint32_t *subport, uint32_t *pipe, uint32_t *traffic_class, uint32_t *queue) { uint32_t queue_id = rte_mbuf_sched_queue_get(pkt); *subport = queue_id >> (port->n_pipes_per_subport_log2 + 4); *pipe = (queue_id >> 4) & (port->subports[*subport]->n_pipes_per_subport_enabled - 1); *traffic_class = rte_sched_port_pipe_tc(port, queue_id); *queue = rte_sched_port_tc_queue(port, queue_id); } enum rte_color rte_sched_port_pkt_read_color(const struct rte_mbuf *pkt) { return (enum rte_color)rte_mbuf_sched_color_get(pkt); } int rte_sched_subport_read_stats(struct rte_sched_port *port, uint32_t subport_id, struct rte_sched_subport_stats *stats, uint32_t *tc_ov) { struct rte_sched_subport *s; /* Check user parameters */ if (port == NULL) { RTE_LOG(ERR, SCHED, "%s: Incorrect value for parameter port\n", __func__); return -EINVAL; } if (subport_id >= port->n_subports_per_port) { RTE_LOG(ERR, SCHED, "%s: Incorrect value for subport id\n", __func__); return -EINVAL; } if (stats == NULL) { RTE_LOG(ERR, SCHED, "%s: Incorrect value for parameter stats\n", __func__); return -EINVAL; } if (tc_ov == NULL) { RTE_LOG(ERR, SCHED, "%s: Incorrect value for tc_ov\n", __func__); return -EINVAL; } s = port->subports[subport_id]; /* Copy subport stats and clear */ memcpy(stats, &s->stats, sizeof(struct rte_sched_subport_stats)); memset(&s->stats, 0, sizeof(struct rte_sched_subport_stats)); /* Subport TC oversubscription status */ *tc_ov = s->tc_ov; return 0; } int rte_sched_queue_read_stats(struct rte_sched_port *port, uint32_t queue_id, struct rte_sched_queue_stats *stats, uint16_t *qlen) { struct rte_sched_subport *s; struct rte_sched_queue *q; struct rte_sched_queue_extra *qe; uint32_t subport_id, subport_qmask, subport_qindex; /* Check user parameters */ if (port == NULL) { RTE_LOG(ERR, SCHED, "%s: Incorrect value for parameter port\n", __func__); return -EINVAL; } if (queue_id >= rte_sched_port_queues_per_port(port)) { RTE_LOG(ERR, SCHED, "%s: Incorrect value for queue id\n", __func__); return -EINVAL; } if (stats == NULL) { RTE_LOG(ERR, SCHED, "%s: Incorrect value for parameter stats\n", __func__); return -EINVAL; } if (qlen == NULL) { RTE_LOG(ERR, SCHED, "%s: Incorrect value for parameter qlen\n", __func__); return -EINVAL; } subport_qmask = port->n_pipes_per_subport_log2 + 4; subport_id = (queue_id >> subport_qmask) & (port->n_subports_per_port - 1); s = port->subports[subport_id]; subport_qindex = ((1 << subport_qmask) - 1) & queue_id; q = s->queue + subport_qindex; qe = s->queue_extra + subport_qindex; /* Copy queue stats and clear */ memcpy(stats, &qe->stats, sizeof(struct rte_sched_queue_stats)); memset(&qe->stats, 0, sizeof(struct rte_sched_queue_stats)); /* Queue length */ *qlen = q->qw - q->qr; return 0; } #ifdef RTE_SCHED_DEBUG static inline int rte_sched_port_queue_is_empty(struct rte_sched_subport *subport, uint32_t qindex) { struct rte_sched_queue *queue = subport->queue + qindex; return queue->qr == queue->qw; } #endif /* RTE_SCHED_DEBUG */ #ifdef RTE_SCHED_COLLECT_STATS static inline void rte_sched_port_update_subport_stats(struct rte_sched_port *port, struct rte_sched_subport *subport, uint32_t qindex, struct rte_mbuf *pkt) { uint32_t tc_index = rte_sched_port_pipe_tc(port, qindex); uint32_t pkt_len = pkt->pkt_len; subport->stats.n_pkts_tc[tc_index] += 1; subport->stats.n_bytes_tc[tc_index] += pkt_len; } #ifdef RTE_SCHED_RED static inline void rte_sched_port_update_subport_stats_on_drop(struct rte_sched_port *port, struct rte_sched_subport *subport, uint32_t qindex, struct rte_mbuf *pkt, uint32_t red) #else static inline void rte_sched_port_update_subport_stats_on_drop(struct rte_sched_port *port, struct rte_sched_subport *subport, uint32_t qindex, struct rte_mbuf *pkt, __rte_unused uint32_t red) #endif { uint32_t tc_index = rte_sched_port_pipe_tc(port, qindex); uint32_t pkt_len = pkt->pkt_len; subport->stats.n_pkts_tc_dropped[tc_index] += 1; subport->stats.n_bytes_tc_dropped[tc_index] += pkt_len; #ifdef RTE_SCHED_RED subport->stats.n_pkts_red_dropped[tc_index] += red; #endif } static inline void rte_sched_port_update_queue_stats(struct rte_sched_subport *subport, uint32_t qindex, struct rte_mbuf *pkt) { struct rte_sched_queue_extra *qe = subport->queue_extra + qindex; uint32_t pkt_len = pkt->pkt_len; qe->stats.n_pkts += 1; qe->stats.n_bytes += pkt_len; } #ifdef RTE_SCHED_RED static inline void rte_sched_port_update_queue_stats_on_drop(struct rte_sched_subport *subport, uint32_t qindex, struct rte_mbuf *pkt, uint32_t red) #else static inline void rte_sched_port_update_queue_stats_on_drop(struct rte_sched_subport *subport, uint32_t qindex, struct rte_mbuf *pkt, __rte_unused uint32_t red) #endif { struct rte_sched_queue_extra *qe = subport->queue_extra + qindex; uint32_t pkt_len = pkt->pkt_len; qe->stats.n_pkts_dropped += 1; qe->stats.n_bytes_dropped += pkt_len; #ifdef RTE_SCHED_RED qe->stats.n_pkts_red_dropped += red; #endif } #endif /* RTE_SCHED_COLLECT_STATS */ #ifdef RTE_SCHED_RED static inline int rte_sched_port_red_drop(struct rte_sched_port *port, struct rte_sched_subport *subport, struct rte_mbuf *pkt, uint32_t qindex, uint16_t qlen) { struct rte_sched_queue_extra *qe; struct rte_red_config *red_cfg; struct rte_red *red; uint32_t tc_index; enum rte_color color; tc_index = rte_sched_port_pipe_tc(port, qindex); color = rte_sched_port_pkt_read_color(pkt); red_cfg = &subport->red_config[tc_index][color]; if ((red_cfg->min_th | red_cfg->max_th) == 0) return 0; qe = subport->queue_extra + qindex; red = &qe->red; return rte_red_enqueue(red_cfg, red, qlen, port->time); } static inline void rte_sched_port_set_queue_empty_timestamp(struct rte_sched_port *port, struct rte_sched_subport *subport, uint32_t qindex) { struct rte_sched_queue_extra *qe = subport->queue_extra + qindex; struct rte_red *red = &qe->red; rte_red_mark_queue_empty(red, port->time); } #else static inline int rte_sched_port_red_drop(struct rte_sched_port *port __rte_unused, struct rte_sched_subport *subport __rte_unused, struct rte_mbuf *pkt __rte_unused, uint32_t qindex __rte_unused, uint16_t qlen __rte_unused) { return 0; } #define rte_sched_port_set_queue_empty_timestamp(port, subport, qindex) #endif /* RTE_SCHED_RED */ #ifdef RTE_SCHED_DEBUG static inline void debug_check_queue_slab(struct rte_sched_subport *subport, uint32_t bmp_pos, uint64_t bmp_slab) { uint64_t mask; uint32_t i, panic; if (bmp_slab == 0) rte_panic("Empty slab at position %u\n", bmp_pos); panic = 0; for (i = 0, mask = 1; i < 64; i++, mask <<= 1) { if (mask & bmp_slab) { if (rte_sched_port_queue_is_empty(subport, bmp_pos + i)) { printf("Queue %u (slab offset %u) is empty\n", bmp_pos + i, i); panic = 1; } } } if (panic) rte_panic("Empty queues in slab 0x%" PRIx64 "starting at position %u\n", bmp_slab, bmp_pos); } #endif /* RTE_SCHED_DEBUG */ static inline struct rte_sched_subport * rte_sched_port_subport(struct rte_sched_port *port, struct rte_mbuf *pkt) { uint32_t queue_id = rte_mbuf_sched_queue_get(pkt); uint32_t subport_id = queue_id >> (port->n_pipes_per_subport_log2 + 4); return port->subports[subport_id]; } static inline uint32_t rte_sched_port_enqueue_qptrs_prefetch0(struct rte_sched_subport *subport, struct rte_mbuf *pkt, uint32_t subport_qmask) { struct rte_sched_queue *q; #ifdef RTE_SCHED_COLLECT_STATS struct rte_sched_queue_extra *qe; #endif uint32_t qindex = rte_mbuf_sched_queue_get(pkt); uint32_t subport_queue_id = subport_qmask & qindex; q = subport->queue + subport_queue_id; rte_prefetch0(q); #ifdef RTE_SCHED_COLLECT_STATS qe = subport->queue_extra + subport_queue_id; rte_prefetch0(qe); #endif return subport_queue_id; } static inline void rte_sched_port_enqueue_qwa_prefetch0(struct rte_sched_port *port, struct rte_sched_subport *subport, uint32_t qindex, struct rte_mbuf **qbase) { struct rte_sched_queue *q; struct rte_mbuf **q_qw; uint16_t qsize; q = subport->queue + qindex; qsize = rte_sched_subport_pipe_qsize(port, subport, qindex); q_qw = qbase + (q->qw & (qsize - 1)); rte_prefetch0(q_qw); rte_bitmap_prefetch0(subport->bmp, qindex); } static inline int rte_sched_port_enqueue_qwa(struct rte_sched_port *port, struct rte_sched_subport *subport, uint32_t qindex, struct rte_mbuf **qbase, struct rte_mbuf *pkt) { struct rte_sched_queue *q; uint16_t qsize; uint16_t qlen; q = subport->queue + qindex; qsize = rte_sched_subport_pipe_qsize(port, subport, qindex); qlen = q->qw - q->qr; /* Drop the packet (and update drop stats) when queue is full */ if (unlikely(rte_sched_port_red_drop(port, subport, pkt, qindex, qlen) || (qlen >= qsize))) { rte_pktmbuf_free(pkt); #ifdef RTE_SCHED_COLLECT_STATS rte_sched_port_update_subport_stats_on_drop(port, subport, qindex, pkt, qlen < qsize); rte_sched_port_update_queue_stats_on_drop(subport, qindex, pkt, qlen < qsize); #endif return 0; } /* Enqueue packet */ qbase[q->qw & (qsize - 1)] = pkt; q->qw++; /* Activate queue in the subport bitmap */ rte_bitmap_set(subport->bmp, qindex); /* Statistics */ #ifdef RTE_SCHED_COLLECT_STATS rte_sched_port_update_subport_stats(port, subport, qindex, pkt); rte_sched_port_update_queue_stats(subport, qindex, pkt); #endif return 1; } /* * The enqueue function implements a 4-level pipeline with each stage * processing two different packets. The purpose of using a pipeline * is to hide the latency of prefetching the data structures. The * naming convention is presented in the diagram below: * * p00 _______ p10 _______ p20 _______ p30 _______ * ----->| |----->| |----->| |----->| |-----> * | 0 | | 1 | | 2 | | 3 | * ----->|_______|----->|_______|----->|_______|----->|_______|-----> * p01 p11 p21 p31 * */ int rte_sched_port_enqueue(struct rte_sched_port *port, struct rte_mbuf **pkts, uint32_t n_pkts) { struct rte_mbuf *pkt00, *pkt01, *pkt10, *pkt11, *pkt20, *pkt21, *pkt30, *pkt31, *pkt_last; struct rte_mbuf **q00_base, **q01_base, **q10_base, **q11_base, **q20_base, **q21_base, **q30_base, **q31_base, **q_last_base; struct rte_sched_subport *subport00, *subport01, *subport10, *subport11, *subport20, *subport21, *subport30, *subport31, *subport_last; uint32_t q00, q01, q10, q11, q20, q21, q30, q31, q_last; uint32_t r00, r01, r10, r11, r20, r21, r30, r31, r_last; uint32_t subport_qmask; uint32_t result, i; result = 0; subport_qmask = (1 << (port->n_pipes_per_subport_log2 + 4)) - 1; /* * Less then 6 input packets available, which is not enough to * feed the pipeline */ if (unlikely(n_pkts < 6)) { struct rte_sched_subport *subports[5]; struct rte_mbuf **q_base[5]; uint32_t q[5]; /* Prefetch the mbuf structure of each packet */ for (i = 0; i < n_pkts; i++) rte_prefetch0(pkts[i]); /* Prefetch the subport structure for each packet */ for (i = 0; i < n_pkts; i++) subports[i] = rte_sched_port_subport(port, pkts[i]); /* Prefetch the queue structure for each queue */ for (i = 0; i < n_pkts; i++) q[i] = rte_sched_port_enqueue_qptrs_prefetch0(subports[i], pkts[i], subport_qmask); /* Prefetch the write pointer location of each queue */ for (i = 0; i < n_pkts; i++) { q_base[i] = rte_sched_subport_pipe_qbase(subports[i], q[i]); rte_sched_port_enqueue_qwa_prefetch0(port, subports[i], q[i], q_base[i]); } /* Write each packet to its queue */ for (i = 0; i < n_pkts; i++) result += rte_sched_port_enqueue_qwa(port, subports[i], q[i], q_base[i], pkts[i]); return result; } /* Feed the first 3 stages of the pipeline (6 packets needed) */ pkt20 = pkts[0]; pkt21 = pkts[1]; rte_prefetch0(pkt20); rte_prefetch0(pkt21); pkt10 = pkts[2]; pkt11 = pkts[3]; rte_prefetch0(pkt10); rte_prefetch0(pkt11); subport20 = rte_sched_port_subport(port, pkt20); subport21 = rte_sched_port_subport(port, pkt21); q20 = rte_sched_port_enqueue_qptrs_prefetch0(subport20, pkt20, subport_qmask); q21 = rte_sched_port_enqueue_qptrs_prefetch0(subport21, pkt21, subport_qmask); pkt00 = pkts[4]; pkt01 = pkts[5]; rte_prefetch0(pkt00); rte_prefetch0(pkt01); subport10 = rte_sched_port_subport(port, pkt10); subport11 = rte_sched_port_subport(port, pkt11); q10 = rte_sched_port_enqueue_qptrs_prefetch0(subport10, pkt10, subport_qmask); q11 = rte_sched_port_enqueue_qptrs_prefetch0(subport11, pkt11, subport_qmask); q20_base = rte_sched_subport_pipe_qbase(subport20, q20); q21_base = rte_sched_subport_pipe_qbase(subport21, q21); rte_sched_port_enqueue_qwa_prefetch0(port, subport20, q20, q20_base); rte_sched_port_enqueue_qwa_prefetch0(port, subport21, q21, q21_base); /* Run the pipeline */ for (i = 6; i < (n_pkts & (~1)); i += 2) { /* Propagate stage inputs */ pkt30 = pkt20; pkt31 = pkt21; pkt20 = pkt10; pkt21 = pkt11; pkt10 = pkt00; pkt11 = pkt01; q30 = q20; q31 = q21; q20 = q10; q21 = q11; subport30 = subport20; subport31 = subport21; subport20 = subport10; subport21 = subport11; q30_base = q20_base; q31_base = q21_base; /* Stage 0: Get packets in */ pkt00 = pkts[i]; pkt01 = pkts[i + 1]; rte_prefetch0(pkt00); rte_prefetch0(pkt01); /* Stage 1: Prefetch subport and queue structure storing queue pointers */ subport10 = rte_sched_port_subport(port, pkt10); subport11 = rte_sched_port_subport(port, pkt11); q10 = rte_sched_port_enqueue_qptrs_prefetch0(subport10, pkt10, subport_qmask); q11 = rte_sched_port_enqueue_qptrs_prefetch0(subport11, pkt11, subport_qmask); /* Stage 2: Prefetch queue write location */ q20_base = rte_sched_subport_pipe_qbase(subport20, q20); q21_base = rte_sched_subport_pipe_qbase(subport21, q21); rte_sched_port_enqueue_qwa_prefetch0(port, subport20, q20, q20_base); rte_sched_port_enqueue_qwa_prefetch0(port, subport21, q21, q21_base); /* Stage 3: Write packet to queue and activate queue */ r30 = rte_sched_port_enqueue_qwa(port, subport30, q30, q30_base, pkt30); r31 = rte_sched_port_enqueue_qwa(port, subport31, q31, q31_base, pkt31); result += r30 + r31; } /* * Drain the pipeline (exactly 6 packets). * Handle the last packet in the case * of an odd number of input packets. */ pkt_last = pkts[n_pkts - 1]; rte_prefetch0(pkt_last); subport00 = rte_sched_port_subport(port, pkt00); subport01 = rte_sched_port_subport(port, pkt01); q00 = rte_sched_port_enqueue_qptrs_prefetch0(subport00, pkt00, subport_qmask); q01 = rte_sched_port_enqueue_qptrs_prefetch0(subport01, pkt01, subport_qmask); q10_base = rte_sched_subport_pipe_qbase(subport10, q10); q11_base = rte_sched_subport_pipe_qbase(subport11, q11); rte_sched_port_enqueue_qwa_prefetch0(port, subport10, q10, q10_base); rte_sched_port_enqueue_qwa_prefetch0(port, subport11, q11, q11_base); r20 = rte_sched_port_enqueue_qwa(port, subport20, q20, q20_base, pkt20); r21 = rte_sched_port_enqueue_qwa(port, subport21, q21, q21_base, pkt21); result += r20 + r21; subport_last = rte_sched_port_subport(port, pkt_last); q_last = rte_sched_port_enqueue_qptrs_prefetch0(subport_last, pkt_last, subport_qmask); q00_base = rte_sched_subport_pipe_qbase(subport00, q00); q01_base = rte_sched_subport_pipe_qbase(subport01, q01); rte_sched_port_enqueue_qwa_prefetch0(port, subport00, q00, q00_base); rte_sched_port_enqueue_qwa_prefetch0(port, subport01, q01, q01_base); r10 = rte_sched_port_enqueue_qwa(port, subport10, q10, q10_base, pkt10); r11 = rte_sched_port_enqueue_qwa(port, subport11, q11, q11_base, pkt11); result += r10 + r11; q_last_base = rte_sched_subport_pipe_qbase(subport_last, q_last); rte_sched_port_enqueue_qwa_prefetch0(port, subport_last, q_last, q_last_base); r00 = rte_sched_port_enqueue_qwa(port, subport00, q00, q00_base, pkt00); r01 = rte_sched_port_enqueue_qwa(port, subport01, q01, q01_base, pkt01); result += r00 + r01; if (n_pkts & 1) { r_last = rte_sched_port_enqueue_qwa(port, subport_last, q_last, q_last_base, pkt_last); result += r_last; } return result; } #ifndef RTE_SCHED_SUBPORT_TC_OV static inline void grinder_credits_update(struct rte_sched_port *port, struct rte_sched_subport *subport, uint32_t pos) { struct rte_sched_grinder *grinder = subport->grinder + pos; struct rte_sched_pipe *pipe = grinder->pipe; struct rte_sched_pipe_profile *params = grinder->pipe_params; uint64_t n_periods; uint32_t i; /* Subport TB */ n_periods = (port->time - subport->tb_time) / subport->tb_period; subport->tb_credits += n_periods * subport->tb_credits_per_period; subport->tb_credits = RTE_MIN(subport->tb_credits, subport->tb_size); subport->tb_time += n_periods * subport->tb_period; /* Pipe TB */ n_periods = (port->time - pipe->tb_time) / params->tb_period; pipe->tb_credits += n_periods * params->tb_credits_per_period; pipe->tb_credits = RTE_MIN(pipe->tb_credits, params->tb_size); pipe->tb_time += n_periods * params->tb_period; /* Subport TCs */ if (unlikely(port->time >= subport->tc_time)) { for (i = 0; i < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; i++) subport->tc_credits[i] = subport->tc_credits_per_period[i]; subport->tc_time = port->time + subport->tc_period; } /* Pipe TCs */ if (unlikely(port->time >= pipe->tc_time)) { for (i = 0; i < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; i++) pipe->tc_credits[i] = params->tc_credits_per_period[i]; pipe->tc_time = port->time + params->tc_period; } } #else static inline uint64_t grinder_tc_ov_credits_update(struct rte_sched_port *port, struct rte_sched_subport *subport) { uint64_t tc_ov_consumption[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE]; uint64_t tc_consumption = 0, tc_ov_consumption_max; uint64_t tc_ov_wm = subport->tc_ov_wm; uint32_t i; if (subport->tc_ov == 0) return subport->tc_ov_wm_max; for (i = 0; i < RTE_SCHED_TRAFFIC_CLASS_BE; i++) { tc_ov_consumption[i] = subport->tc_credits_per_period[i] - subport->tc_credits[i]; tc_consumption += tc_ov_consumption[i]; } tc_ov_consumption[RTE_SCHED_TRAFFIC_CLASS_BE] = subport->tc_credits_per_period[RTE_SCHED_TRAFFIC_CLASS_BE] - subport->tc_credits[RTE_SCHED_TRAFFIC_CLASS_BE]; tc_ov_consumption_max = subport->tc_credits_per_period[RTE_SCHED_TRAFFIC_CLASS_BE] - tc_consumption; if (tc_ov_consumption[RTE_SCHED_TRAFFIC_CLASS_BE] > (tc_ov_consumption_max - port->mtu)) { tc_ov_wm -= tc_ov_wm >> 7; if (tc_ov_wm < subport->tc_ov_wm_min) tc_ov_wm = subport->tc_ov_wm_min; return tc_ov_wm; } tc_ov_wm += (tc_ov_wm >> 7) + 1; if (tc_ov_wm > subport->tc_ov_wm_max) tc_ov_wm = subport->tc_ov_wm_max; return tc_ov_wm; } static inline void grinder_credits_update(struct rte_sched_port *port, struct rte_sched_subport *subport, uint32_t pos) { struct rte_sched_grinder *grinder = subport->grinder + pos; struct rte_sched_pipe *pipe = grinder->pipe; struct rte_sched_pipe_profile *params = grinder->pipe_params; uint64_t n_periods; uint32_t i; /* Subport TB */ n_periods = (port->time - subport->tb_time) / subport->tb_period; subport->tb_credits += n_periods * subport->tb_credits_per_period; subport->tb_credits = RTE_MIN(subport->tb_credits, subport->tb_size); subport->tb_time += n_periods * subport->tb_period; /* Pipe TB */ n_periods = (port->time - pipe->tb_time) / params->tb_period; pipe->tb_credits += n_periods * params->tb_credits_per_period; pipe->tb_credits = RTE_MIN(pipe->tb_credits, params->tb_size); pipe->tb_time += n_periods * params->tb_period; /* Subport TCs */ if (unlikely(port->time >= subport->tc_time)) { subport->tc_ov_wm = grinder_tc_ov_credits_update(port, subport); for (i = 0; i < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; i++) subport->tc_credits[i] = subport->tc_credits_per_period[i]; subport->tc_time = port->time + subport->tc_period; subport->tc_ov_period_id++; } /* Pipe TCs */ if (unlikely(port->time >= pipe->tc_time)) { for (i = 0; i < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; i++) pipe->tc_credits[i] = params->tc_credits_per_period[i]; pipe->tc_time = port->time + params->tc_period; } /* Pipe TCs - Oversubscription */ if (unlikely(pipe->tc_ov_period_id != subport->tc_ov_period_id)) { pipe->tc_ov_credits = subport->tc_ov_wm * params->tc_ov_weight; pipe->tc_ov_period_id = subport->tc_ov_period_id; } } #endif /* RTE_SCHED_TS_CREDITS_UPDATE, RTE_SCHED_SUBPORT_TC_OV */ #ifndef RTE_SCHED_SUBPORT_TC_OV static inline int grinder_credits_check(struct rte_sched_port *port, struct rte_sched_subport *subport, uint32_t pos) { struct rte_sched_grinder *grinder = subport->grinder + pos; struct rte_sched_pipe *pipe = grinder->pipe; struct rte_mbuf *pkt = grinder->pkt; uint32_t tc_index = grinder->tc_index; uint64_t pkt_len = pkt->pkt_len + port->frame_overhead; uint64_t subport_tb_credits = subport->tb_credits; uint64_t subport_tc_credits = subport->tc_credits[tc_index]; uint64_t pipe_tb_credits = pipe->tb_credits; uint64_t pipe_tc_credits = pipe->tc_credits[tc_index]; int enough_credits; /* Check queue credits */ enough_credits = (pkt_len <= subport_tb_credits) && (pkt_len <= subport_tc_credits) && (pkt_len <= pipe_tb_credits) && (pkt_len <= pipe_tc_credits); if (!enough_credits) return 0; /* Update port credits */ subport->tb_credits -= pkt_len; subport->tc_credits[tc_index] -= pkt_len; pipe->tb_credits -= pkt_len; pipe->tc_credits[tc_index] -= pkt_len; return 1; } #else static inline int grinder_credits_check(struct rte_sched_port *port, struct rte_sched_subport *subport, uint32_t pos) { struct rte_sched_grinder *grinder = subport->grinder + pos; struct rte_sched_pipe *pipe = grinder->pipe; struct rte_mbuf *pkt = grinder->pkt; uint32_t tc_index = grinder->tc_index; uint64_t pkt_len = pkt->pkt_len + port->frame_overhead; uint64_t subport_tb_credits = subport->tb_credits; uint64_t subport_tc_credits = subport->tc_credits[tc_index]; uint64_t pipe_tb_credits = pipe->tb_credits; uint64_t pipe_tc_credits = pipe->tc_credits[tc_index]; uint64_t pipe_tc_ov_mask1[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE]; uint64_t pipe_tc_ov_mask2[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE] = {0}; uint64_t pipe_tc_ov_credits; uint32_t i; int enough_credits; for (i = 0; i < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; i++) pipe_tc_ov_mask1[i] = ~0LLU; pipe_tc_ov_mask1[RTE_SCHED_TRAFFIC_CLASS_BE] = pipe->tc_ov_credits; pipe_tc_ov_mask2[RTE_SCHED_TRAFFIC_CLASS_BE] = ~0LLU; pipe_tc_ov_credits = pipe_tc_ov_mask1[tc_index]; /* Check pipe and subport credits */ enough_credits = (pkt_len <= subport_tb_credits) && (pkt_len <= subport_tc_credits) && (pkt_len <= pipe_tb_credits) && (pkt_len <= pipe_tc_credits) && (pkt_len <= pipe_tc_ov_credits); if (!enough_credits) return 0; /* Update pipe and subport credits */ subport->tb_credits -= pkt_len; subport->tc_credits[tc_index] -= pkt_len; pipe->tb_credits -= pkt_len; pipe->tc_credits[tc_index] -= pkt_len; pipe->tc_ov_credits -= pipe_tc_ov_mask2[tc_index] & pkt_len; return 1; } #endif /* RTE_SCHED_SUBPORT_TC_OV */ static inline int grinder_schedule(struct rte_sched_port *port, struct rte_sched_subport *subport, uint32_t pos) { struct rte_sched_grinder *grinder = subport->grinder + pos; struct rte_sched_queue *queue = grinder->queue[grinder->qpos]; struct rte_mbuf *pkt = grinder->pkt; uint32_t pkt_len = pkt->pkt_len + port->frame_overhead; uint32_t be_tc_active; if (!grinder_credits_check(port, subport, pos)) return 0; /* Advance port time */ port->time += pkt_len; /* Send packet */ port->pkts_out[port->n_pkts_out++] = pkt; queue->qr++; be_tc_active = (grinder->tc_index == RTE_SCHED_TRAFFIC_CLASS_BE) ? ~0x0 : 0x0; grinder->wrr_tokens[grinder->qpos] += (pkt_len * grinder->wrr_cost[grinder->qpos]) & be_tc_active; if (queue->qr == queue->qw) { uint32_t qindex = grinder->qindex[grinder->qpos]; rte_bitmap_clear(subport->bmp, qindex); grinder->qmask &= ~(1 << grinder->qpos); if (be_tc_active) grinder->wrr_mask[grinder->qpos] = 0; rte_sched_port_set_queue_empty_timestamp(port, subport, qindex); } /* Reset pipe loop detection */ subport->pipe_loop = RTE_SCHED_PIPE_INVALID; grinder->productive = 1; return 1; } #ifdef SCHED_VECTOR_SSE4 static inline int grinder_pipe_exists(struct rte_sched_subport *subport, uint32_t base_pipe) { __m128i index = _mm_set1_epi32(base_pipe); __m128i pipes = _mm_load_si128((__m128i *)subport->grinder_base_bmp_pos); __m128i res = _mm_cmpeq_epi32(pipes, index); pipes = _mm_load_si128((__m128i *)(subport->grinder_base_bmp_pos + 4)); pipes = _mm_cmpeq_epi32(pipes, index); res = _mm_or_si128(res, pipes); if (_mm_testz_si128(res, res)) return 0; return 1; } #elif defined(SCHED_VECTOR_NEON) static inline int grinder_pipe_exists(struct rte_sched_subport *subport, uint32_t base_pipe) { uint32x4_t index, pipes; uint32_t *pos = (uint32_t *)subport->grinder_base_bmp_pos; index = vmovq_n_u32(base_pipe); pipes = vld1q_u32(pos); if (!vminvq_u32(veorq_u32(pipes, index))) return 1; pipes = vld1q_u32(pos + 4); if (!vminvq_u32(veorq_u32(pipes, index))) return 1; return 0; } #else static inline int grinder_pipe_exists(struct rte_sched_subport *subport, uint32_t base_pipe) { uint32_t i; for (i = 0; i < RTE_SCHED_PORT_N_GRINDERS; i++) { if (subport->grinder_base_bmp_pos[i] == base_pipe) return 1; } return 0; } #endif /* RTE_SCHED_OPTIMIZATIONS */ static inline void grinder_pcache_populate(struct rte_sched_subport *subport, uint32_t pos, uint32_t bmp_pos, uint64_t bmp_slab) { struct rte_sched_grinder *grinder = subport->grinder + pos; uint16_t w[4]; grinder->pcache_w = 0; grinder->pcache_r = 0; w[0] = (uint16_t) bmp_slab; w[1] = (uint16_t) (bmp_slab >> 16); w[2] = (uint16_t) (bmp_slab >> 32); w[3] = (uint16_t) (bmp_slab >> 48); grinder->pcache_qmask[grinder->pcache_w] = w[0]; grinder->pcache_qindex[grinder->pcache_w] = bmp_pos; grinder->pcache_w += (w[0] != 0); grinder->pcache_qmask[grinder->pcache_w] = w[1]; grinder->pcache_qindex[grinder->pcache_w] = bmp_pos + 16; grinder->pcache_w += (w[1] != 0); grinder->pcache_qmask[grinder->pcache_w] = w[2]; grinder->pcache_qindex[grinder->pcache_w] = bmp_pos + 32; grinder->pcache_w += (w[2] != 0); grinder->pcache_qmask[grinder->pcache_w] = w[3]; grinder->pcache_qindex[grinder->pcache_w] = bmp_pos + 48; grinder->pcache_w += (w[3] != 0); } static inline void grinder_tccache_populate(struct rte_sched_subport *subport, uint32_t pos, uint32_t qindex, uint16_t qmask) { struct rte_sched_grinder *grinder = subport->grinder + pos; uint8_t b, i; grinder->tccache_w = 0; grinder->tccache_r = 0; for (i = 0; i < RTE_SCHED_TRAFFIC_CLASS_BE; i++) { b = (uint8_t) ((qmask >> i) & 0x1); grinder->tccache_qmask[grinder->tccache_w] = b; grinder->tccache_qindex[grinder->tccache_w] = qindex + i; grinder->tccache_w += (b != 0); } b = (uint8_t) (qmask >> (RTE_SCHED_TRAFFIC_CLASS_BE)); grinder->tccache_qmask[grinder->tccache_w] = b; grinder->tccache_qindex[grinder->tccache_w] = qindex + RTE_SCHED_TRAFFIC_CLASS_BE; grinder->tccache_w += (b != 0); } static inline int grinder_next_tc(struct rte_sched_port *port, struct rte_sched_subport *subport, uint32_t pos) { struct rte_sched_grinder *grinder = subport->grinder + pos; struct rte_mbuf **qbase; uint32_t qindex; uint16_t qsize; if (grinder->tccache_r == grinder->tccache_w) return 0; qindex = grinder->tccache_qindex[grinder->tccache_r]; qbase = rte_sched_subport_pipe_qbase(subport, qindex); qsize = rte_sched_subport_pipe_qsize(port, subport, qindex); grinder->tc_index = rte_sched_port_pipe_tc(port, qindex); grinder->qmask = grinder->tccache_qmask[grinder->tccache_r]; grinder->qsize = qsize; if (grinder->tc_index < RTE_SCHED_TRAFFIC_CLASS_BE) { grinder->queue[0] = subport->queue + qindex; grinder->qbase[0] = qbase; grinder->qindex[0] = qindex; grinder->tccache_r++; return 1; } grinder->queue[0] = subport->queue + qindex; grinder->queue[1] = subport->queue + qindex + 1; grinder->queue[2] = subport->queue + qindex + 2; grinder->queue[3] = subport->queue + qindex + 3; grinder->qbase[0] = qbase; grinder->qbase[1] = qbase + qsize; grinder->qbase[2] = qbase + 2 * qsize; grinder->qbase[3] = qbase + 3 * qsize; grinder->qindex[0] = qindex; grinder->qindex[1] = qindex + 1; grinder->qindex[2] = qindex + 2; grinder->qindex[3] = qindex + 3; grinder->tccache_r++; return 1; } static inline int grinder_next_pipe(struct rte_sched_port *port, struct rte_sched_subport *subport, uint32_t pos) { struct rte_sched_grinder *grinder = subport->grinder + pos; uint32_t pipe_qindex; uint16_t pipe_qmask; if (grinder->pcache_r < grinder->pcache_w) { pipe_qmask = grinder->pcache_qmask[grinder->pcache_r]; pipe_qindex = grinder->pcache_qindex[grinder->pcache_r]; grinder->pcache_r++; } else { uint64_t bmp_slab = 0; uint32_t bmp_pos = 0; /* Get another non-empty pipe group */ if (unlikely(rte_bitmap_scan(subport->bmp, &bmp_pos, &bmp_slab) <= 0)) return 0; #ifdef RTE_SCHED_DEBUG debug_check_queue_slab(subport, bmp_pos, bmp_slab); #endif /* Return if pipe group already in one of the other grinders */ subport->grinder_base_bmp_pos[pos] = RTE_SCHED_BMP_POS_INVALID; if (unlikely(grinder_pipe_exists(subport, bmp_pos))) return 0; subport->grinder_base_bmp_pos[pos] = bmp_pos; /* Install new pipe group into grinder's pipe cache */ grinder_pcache_populate(subport, pos, bmp_pos, bmp_slab); pipe_qmask = grinder->pcache_qmask[0]; pipe_qindex = grinder->pcache_qindex[0]; grinder->pcache_r = 1; } /* Install new pipe in the grinder */ grinder->pindex = pipe_qindex >> 4; grinder->subport = subport; grinder->pipe = subport->pipe + grinder->pindex; grinder->pipe_params = NULL; /* to be set after the pipe structure is prefetched */ grinder->productive = 0; grinder_tccache_populate(subport, pos, pipe_qindex, pipe_qmask); grinder_next_tc(port, subport, pos); /* Check for pipe exhaustion */ if (grinder->pindex == subport->pipe_loop) { subport->pipe_exhaustion = 1; subport->pipe_loop = RTE_SCHED_PIPE_INVALID; } return 1; } static inline void grinder_wrr_load(struct rte_sched_subport *subport, uint32_t pos) { struct rte_sched_grinder *grinder = subport->grinder + pos; struct rte_sched_pipe *pipe = grinder->pipe; struct rte_sched_pipe_profile *pipe_params = grinder->pipe_params; uint32_t qmask = grinder->qmask; grinder->wrr_tokens[0] = ((uint16_t) pipe->wrr_tokens[0]) << RTE_SCHED_WRR_SHIFT; grinder->wrr_tokens[1] = ((uint16_t) pipe->wrr_tokens[1]) << RTE_SCHED_WRR_SHIFT; grinder->wrr_tokens[2] = ((uint16_t) pipe->wrr_tokens[2]) << RTE_SCHED_WRR_SHIFT; grinder->wrr_tokens[3] = ((uint16_t) pipe->wrr_tokens[3]) << RTE_SCHED_WRR_SHIFT; grinder->wrr_mask[0] = (qmask & 0x1) * 0xFFFF; grinder->wrr_mask[1] = ((qmask >> 1) & 0x1) * 0xFFFF; grinder->wrr_mask[2] = ((qmask >> 2) & 0x1) * 0xFFFF; grinder->wrr_mask[3] = ((qmask >> 3) & 0x1) * 0xFFFF; grinder->wrr_cost[0] = pipe_params->wrr_cost[0]; grinder->wrr_cost[1] = pipe_params->wrr_cost[1]; grinder->wrr_cost[2] = pipe_params->wrr_cost[2]; grinder->wrr_cost[3] = pipe_params->wrr_cost[3]; } static inline void grinder_wrr_store(struct rte_sched_subport *subport, uint32_t pos) { struct rte_sched_grinder *grinder = subport->grinder + pos; struct rte_sched_pipe *pipe = grinder->pipe; pipe->wrr_tokens[0] = (grinder->wrr_tokens[0] & grinder->wrr_mask[0]) >> RTE_SCHED_WRR_SHIFT; pipe->wrr_tokens[1] = (grinder->wrr_tokens[1] & grinder->wrr_mask[1]) >> RTE_SCHED_WRR_SHIFT; pipe->wrr_tokens[2] = (grinder->wrr_tokens[2] & grinder->wrr_mask[2]) >> RTE_SCHED_WRR_SHIFT; pipe->wrr_tokens[3] = (grinder->wrr_tokens[3] & grinder->wrr_mask[3]) >> RTE_SCHED_WRR_SHIFT; } static inline void grinder_wrr(struct rte_sched_subport *subport, uint32_t pos) { struct rte_sched_grinder *grinder = subport->grinder + pos; uint16_t wrr_tokens_min; grinder->wrr_tokens[0] |= ~grinder->wrr_mask[0]; grinder->wrr_tokens[1] |= ~grinder->wrr_mask[1]; grinder->wrr_tokens[2] |= ~grinder->wrr_mask[2]; grinder->wrr_tokens[3] |= ~grinder->wrr_mask[3]; grinder->qpos = rte_min_pos_4_u16(grinder->wrr_tokens); wrr_tokens_min = grinder->wrr_tokens[grinder->qpos]; grinder->wrr_tokens[0] -= wrr_tokens_min; grinder->wrr_tokens[1] -= wrr_tokens_min; grinder->wrr_tokens[2] -= wrr_tokens_min; grinder->wrr_tokens[3] -= wrr_tokens_min; } #define grinder_evict(subport, pos) static inline void grinder_prefetch_pipe(struct rte_sched_subport *subport, uint32_t pos) { struct rte_sched_grinder *grinder = subport->grinder + pos; rte_prefetch0(grinder->pipe); rte_prefetch0(grinder->queue[0]); } static inline void grinder_prefetch_tc_queue_arrays(struct rte_sched_subport *subport, uint32_t pos) { struct rte_sched_grinder *grinder = subport->grinder + pos; uint16_t qsize, qr[RTE_SCHED_MAX_QUEUES_PER_TC]; qsize = grinder->qsize; grinder->qpos = 0; if (grinder->tc_index < RTE_SCHED_TRAFFIC_CLASS_BE) { qr[0] = grinder->queue[0]->qr & (qsize - 1); rte_prefetch0(grinder->qbase[0] + qr[0]); return; } qr[0] = grinder->queue[0]->qr & (qsize - 1); qr[1] = grinder->queue[1]->qr & (qsize - 1); qr[2] = grinder->queue[2]->qr & (qsize - 1); qr[3] = grinder->queue[3]->qr & (qsize - 1); rte_prefetch0(grinder->qbase[0] + qr[0]); rte_prefetch0(grinder->qbase[1] + qr[1]); grinder_wrr_load(subport, pos); grinder_wrr(subport, pos); rte_prefetch0(grinder->qbase[2] + qr[2]); rte_prefetch0(grinder->qbase[3] + qr[3]); } static inline void grinder_prefetch_mbuf(struct rte_sched_subport *subport, uint32_t pos) { struct rte_sched_grinder *grinder = subport->grinder + pos; uint32_t qpos = grinder->qpos; struct rte_mbuf **qbase = grinder->qbase[qpos]; uint16_t qsize = grinder->qsize; uint16_t qr = grinder->queue[qpos]->qr & (qsize - 1); grinder->pkt = qbase[qr]; rte_prefetch0(grinder->pkt); if (unlikely((qr & 0x7) == 7)) { uint16_t qr_next = (grinder->queue[qpos]->qr + 1) & (qsize - 1); rte_prefetch0(qbase + qr_next); } } static inline uint32_t grinder_handle(struct rte_sched_port *port, struct rte_sched_subport *subport, uint32_t pos) { struct rte_sched_grinder *grinder = subport->grinder + pos; switch (grinder->state) { case e_GRINDER_PREFETCH_PIPE: { if (grinder_next_pipe(port, subport, pos)) { grinder_prefetch_pipe(subport, pos); subport->busy_grinders++; grinder->state = e_GRINDER_PREFETCH_TC_QUEUE_ARRAYS; return 0; } return 0; } case e_GRINDER_PREFETCH_TC_QUEUE_ARRAYS: { struct rte_sched_pipe *pipe = grinder->pipe; grinder->pipe_params = subport->pipe_profiles + pipe->profile; grinder_prefetch_tc_queue_arrays(subport, pos); grinder_credits_update(port, subport, pos); grinder->state = e_GRINDER_PREFETCH_MBUF; return 0; } case e_GRINDER_PREFETCH_MBUF: { grinder_prefetch_mbuf(subport, pos); grinder->state = e_GRINDER_READ_MBUF; return 0; } case e_GRINDER_READ_MBUF: { uint32_t wrr_active, result = 0; result = grinder_schedule(port, subport, pos); wrr_active = (grinder->tc_index == RTE_SCHED_TRAFFIC_CLASS_BE); /* Look for next packet within the same TC */ if (result && grinder->qmask) { if (wrr_active) grinder_wrr(subport, pos); grinder_prefetch_mbuf(subport, pos); return 1; } if (wrr_active) grinder_wrr_store(subport, pos); /* Look for another active TC within same pipe */ if (grinder_next_tc(port, subport, pos)) { grinder_prefetch_tc_queue_arrays(subport, pos); grinder->state = e_GRINDER_PREFETCH_MBUF; return result; } if (grinder->productive == 0 && subport->pipe_loop == RTE_SCHED_PIPE_INVALID) subport->pipe_loop = grinder->pindex; grinder_evict(subport, pos); /* Look for another active pipe */ if (grinder_next_pipe(port, subport, pos)) { grinder_prefetch_pipe(subport, pos); grinder->state = e_GRINDER_PREFETCH_TC_QUEUE_ARRAYS; return result; } /* No active pipe found */ subport->busy_grinders--; grinder->state = e_GRINDER_PREFETCH_PIPE; return result; } default: rte_panic("Algorithmic error (invalid state)\n"); return 0; } } static inline void rte_sched_port_time_resync(struct rte_sched_port *port) { uint64_t cycles = rte_get_tsc_cycles(); uint64_t cycles_diff; uint64_t bytes_diff; uint32_t i; if (cycles < port->time_cpu_cycles) port->time_cpu_cycles = 0; cycles_diff = cycles - port->time_cpu_cycles; /* Compute elapsed time in bytes */ bytes_diff = rte_reciprocal_divide(cycles_diff << RTE_SCHED_TIME_SHIFT, port->inv_cycles_per_byte); /* Advance port time */ port->time_cpu_cycles += (bytes_diff * port->cycles_per_byte) >> RTE_SCHED_TIME_SHIFT; port->time_cpu_bytes += bytes_diff; if (port->time < port->time_cpu_bytes) port->time = port->time_cpu_bytes; /* Reset pipe loop detection */ for (i = 0; i < port->n_subports_per_port; i++) port->subports[i]->pipe_loop = RTE_SCHED_PIPE_INVALID; } static inline int rte_sched_port_exceptions(struct rte_sched_subport *subport, int second_pass) { int exceptions; /* Check if any exception flag is set */ exceptions = (second_pass && subport->busy_grinders == 0) || (subport->pipe_exhaustion == 1); /* Clear exception flags */ subport->pipe_exhaustion = 0; return exceptions; } int rte_sched_port_dequeue(struct rte_sched_port *port, struct rte_mbuf **pkts, uint32_t n_pkts) { struct rte_sched_subport *subport; uint32_t subport_id = port->subport_id; uint32_t i, n_subports = 0, count; port->pkts_out = pkts; port->n_pkts_out = 0; rte_sched_port_time_resync(port); /* Take each queue in the grinder one step further */ for (i = 0, count = 0; ; i++) { subport = port->subports[subport_id]; count += grinder_handle(port, subport, i & (RTE_SCHED_PORT_N_GRINDERS - 1)); if (count == n_pkts) { subport_id++; if (subport_id == port->n_subports_per_port) subport_id = 0; port->subport_id = subport_id; break; } if (rte_sched_port_exceptions(subport, i >= RTE_SCHED_PORT_N_GRINDERS)) { i = 0; subport_id++; n_subports++; } if (subport_id == port->n_subports_per_port) subport_id = 0; if (n_subports == port->n_subports_per_port) { port->subport_id = subport_id; break; } } return count; }