/* SPDX-License-Identifier: BSD-3-Clause * Copyright(C) 2019 Marvell International Ltd. */ #include "otx2_ethdev.h" #include "otx2_flow.h" int otx2_flow_free_all_resources(struct otx2_eth_dev *hw) { struct otx2_npc_flow_info *npc = &hw->npc_flow; struct otx2_mbox *mbox = hw->mbox; struct otx2_mcam_ents_info *info; struct rte_bitmap *bmap; struct rte_flow *flow; int entry_count = 0; int rc, idx; for (idx = 0; idx < npc->flow_max_priority; idx++) { info = &npc->flow_entry_info[idx]; entry_count += info->live_ent; } if (entry_count == 0) return 0; /* Free all MCAM entries allocated */ rc = otx2_flow_mcam_free_all_entries(mbox); /* Free any MCAM counters and delete flow list */ for (idx = 0; idx < npc->flow_max_priority; idx++) { while ((flow = TAILQ_FIRST(&npc->flow_list[idx])) != NULL) { if (flow->ctr_id != NPC_COUNTER_NONE) rc |= otx2_flow_mcam_free_counter(mbox, flow->ctr_id); TAILQ_REMOVE(&npc->flow_list[idx], flow, next); rte_free(flow); bmap = npc->live_entries[flow->priority]; rte_bitmap_clear(bmap, flow->mcam_id); } info = &npc->flow_entry_info[idx]; info->free_ent = 0; info->live_ent = 0; } return rc; } static int flow_program_npc(struct otx2_parse_state *pst, struct otx2_mbox *mbox, struct otx2_npc_flow_info *flow_info) { /* This is non-LDATA part in search key */ uint64_t key_data[2] = {0ULL, 0ULL}; uint64_t key_mask[2] = {0ULL, 0ULL}; int intf = pst->flow->nix_intf; int key_len, bit = 0, index; int off, idx, data_off = 0; uint8_t lid, mask, data; uint16_t layer_info; uint64_t lt, flags; /* Skip till Layer A data start */ while (bit < NPC_PARSE_KEX_S_LA_OFFSET) { if (flow_info->keyx_supp_nmask[intf] & (1 << bit)) data_off++; bit++; } /* Each bit represents 1 nibble */ data_off *= 4; index = 0; for (lid = 0; lid < NPC_MAX_LID; lid++) { /* Offset in key */ off = NPC_PARSE_KEX_S_LID_OFFSET(lid); lt = pst->lt[lid] & 0xf; flags = pst->flags[lid] & 0xff; /* NPC_LAYER_KEX_S */ layer_info = ((flow_info->keyx_supp_nmask[intf] >> off) & 0x7); if (layer_info) { for (idx = 0; idx <= 2 ; idx++) { if (layer_info & (1 << idx)) { if (idx == 2) data = lt; else if (idx == 1) data = ((flags >> 4) & 0xf); else data = (flags & 0xf); if (data_off >= 64) { data_off = 0; index++; } key_data[index] |= ((uint64_t)data << data_off); mask = 0xf; if (lt == 0) mask = 0; key_mask[index] |= ((uint64_t)mask << data_off); data_off += 4; } } } } otx2_npc_dbg("Npc prog key data0: 0x%" PRIx64 ", data1: 0x%" PRIx64, key_data[0], key_data[1]); /* Copy this into mcam string */ key_len = (pst->npc->keyx_len[intf] + 7) / 8; otx2_npc_dbg("Key_len = %d", key_len); memcpy(pst->flow->mcam_data, key_data, key_len); memcpy(pst->flow->mcam_mask, key_mask, key_len); otx2_npc_dbg("Final flow data"); for (idx = 0; idx < OTX2_MAX_MCAM_WIDTH_DWORDS; idx++) { otx2_npc_dbg("data[%d]: 0x%" PRIx64 ", mask[%d]: 0x%" PRIx64, idx, pst->flow->mcam_data[idx], idx, pst->flow->mcam_mask[idx]); } /* * Now we have mcam data and mask formatted as * [Key_len/4 nibbles][0 or 1 nibble hole][data] * hole is present if key_len is odd number of nibbles. * mcam data must be split into 64 bits + 48 bits segments * for each back W0, W1. */ return otx2_flow_mcam_alloc_and_write(pst->flow, mbox, pst, flow_info); } static int flow_parse_attr(struct rte_eth_dev *eth_dev, const struct rte_flow_attr *attr, struct rte_flow_error *error, struct rte_flow *flow) { struct otx2_eth_dev *dev = eth_dev->data->dev_private; const char *errmsg = NULL; if (attr == NULL) errmsg = "Attribute can't be empty"; else if (attr->group) errmsg = "Groups are not supported"; else if (attr->priority >= dev->npc_flow.flow_max_priority) errmsg = "Priority should be with in specified range"; else if ((!attr->egress && !attr->ingress) || (attr->egress && attr->ingress)) errmsg = "Exactly one of ingress or egress must be set"; if (errmsg != NULL) { rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ATTR, attr, errmsg); return -ENOTSUP; } if (attr->ingress) flow->nix_intf = OTX2_INTF_RX; else flow->nix_intf = OTX2_INTF_TX; flow->priority = attr->priority; return 0; } static inline int flow_get_free_rss_grp(struct rte_bitmap *bmap, uint32_t size, uint32_t *pos) { for (*pos = 0; *pos < size; ++*pos) { if (!rte_bitmap_get(bmap, *pos)) break; } return *pos < size ? 0 : -1; } static int flow_configure_rss_action(struct otx2_eth_dev *dev, const struct rte_flow_action_rss *rss, uint8_t *alg_idx, uint32_t *rss_grp, int mcam_index) { struct otx2_npc_flow_info *flow_info = &dev->npc_flow; uint16_t reta[NIX_RSS_RETA_SIZE_MAX]; uint32_t flowkey_cfg, grp_aval, i; uint16_t *ind_tbl = NULL; uint8_t flowkey_algx; int rc; rc = flow_get_free_rss_grp(flow_info->rss_grp_entries, flow_info->rss_grps, &grp_aval); /* RSS group :0 is not usable for flow rss action */ if (rc < 0 || grp_aval == 0) return -ENOSPC; *rss_grp = grp_aval; otx2_nix_rss_set_key(dev, (uint8_t *)(uintptr_t)rss->key, rss->key_len); /* If queue count passed in the rss action is less than * HW configured reta size, replicate rss action reta * across HW reta table. */ if (dev->rss_info.rss_size > rss->queue_num) { ind_tbl = reta; for (i = 0; i < (dev->rss_info.rss_size / rss->queue_num); i++) memcpy(reta + i * rss->queue_num, rss->queue, sizeof(uint16_t) * rss->queue_num); i = dev->rss_info.rss_size % rss->queue_num; if (i) memcpy(&reta[dev->rss_info.rss_size] - i, rss->queue, i * sizeof(uint16_t)); } else { ind_tbl = (uint16_t *)(uintptr_t)rss->queue; } rc = otx2_nix_rss_tbl_init(dev, *rss_grp, ind_tbl); if (rc) { otx2_err("Failed to init rss table rc = %d", rc); return rc; } flowkey_cfg = otx2_rss_ethdev_to_nix(dev, rss->types, rss->level); rc = otx2_rss_set_hf(dev, flowkey_cfg, &flowkey_algx, *rss_grp, mcam_index); if (rc) { otx2_err("Failed to set rss hash function rc = %d", rc); return rc; } *alg_idx = flowkey_algx; rte_bitmap_set(flow_info->rss_grp_entries, *rss_grp); return 0; } static int flow_program_rss_action(struct rte_eth_dev *eth_dev, const struct rte_flow_action actions[], struct rte_flow *flow) { struct otx2_eth_dev *dev = eth_dev->data->dev_private; const struct rte_flow_action_rss *rss; uint32_t rss_grp; uint8_t alg_idx; int rc; for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) { if (actions->type == RTE_FLOW_ACTION_TYPE_RSS) { rss = (const struct rte_flow_action_rss *)actions->conf; rc = flow_configure_rss_action(dev, rss, &alg_idx, &rss_grp, flow->mcam_id); if (rc) return rc; flow->npc_action &= (~(0xfULL)); flow->npc_action |= NIX_RX_ACTIONOP_RSS; flow->npc_action |= ((uint64_t)(alg_idx & NIX_RSS_ACT_ALG_MASK) << NIX_RSS_ACT_ALG_OFFSET) | ((uint64_t)(rss_grp & NIX_RSS_ACT_GRP_MASK) << NIX_RSS_ACT_GRP_OFFSET); } } return 0; } static int flow_free_rss_action(struct rte_eth_dev *eth_dev, struct rte_flow *flow) { struct otx2_eth_dev *dev = eth_dev->data->dev_private; struct otx2_npc_flow_info *npc = &dev->npc_flow; uint32_t rss_grp; if (flow->npc_action & NIX_RX_ACTIONOP_RSS) { rss_grp = (flow->npc_action >> NIX_RSS_ACT_GRP_OFFSET) & NIX_RSS_ACT_GRP_MASK; if (rss_grp == 0 || rss_grp >= npc->rss_grps) return -EINVAL; rte_bitmap_clear(npc->rss_grp_entries, rss_grp); } return 0; } static int flow_parse_meta_items(__rte_unused struct otx2_parse_state *pst) { otx2_npc_dbg("Meta Item"); return 0; } /* * Parse function of each layer: * - Consume one or more patterns that are relevant. * - Update parse_state * - Set parse_state.pattern = last item consumed * - Set appropriate error code/message when returning error. */ typedef int (*flow_parse_stage_func_t)(struct otx2_parse_state *pst); static int flow_parse_pattern(struct rte_eth_dev *dev, const struct rte_flow_item pattern[], struct rte_flow_error *error, struct rte_flow *flow, struct otx2_parse_state *pst) { flow_parse_stage_func_t parse_stage_funcs[] = { flow_parse_meta_items, otx2_flow_parse_higig2_hdr, otx2_flow_parse_la, otx2_flow_parse_lb, otx2_flow_parse_lc, otx2_flow_parse_ld, otx2_flow_parse_le, otx2_flow_parse_lf, otx2_flow_parse_lg, otx2_flow_parse_lh, }; struct otx2_eth_dev *hw = dev->data->dev_private; uint8_t layer = 0; int key_offset; int rc; if (pattern == NULL) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM_NUM, NULL, "pattern is NULL"); return -EINVAL; } memset(pst, 0, sizeof(*pst)); pst->npc = &hw->npc_flow; pst->error = error; pst->flow = flow; /* Use integral byte offset */ key_offset = pst->npc->keyx_len[flow->nix_intf]; key_offset = (key_offset + 7) / 8; /* Location where LDATA would begin */ pst->mcam_data = (uint8_t *)flow->mcam_data; pst->mcam_mask = (uint8_t *)flow->mcam_mask; while (pattern->type != RTE_FLOW_ITEM_TYPE_END && layer < RTE_DIM(parse_stage_funcs)) { otx2_npc_dbg("Pattern type = %d", pattern->type); /* Skip place-holders */ pattern = otx2_flow_skip_void_and_any_items(pattern); pst->pattern = pattern; otx2_npc_dbg("Is tunnel = %d, layer = %d", pst->tunnel, layer); rc = parse_stage_funcs[layer](pst); if (rc != 0) return -rte_errno; layer++; /* * Parse stage function sets pst->pattern to * 1 past the last item it consumed. */ pattern = pst->pattern; if (pst->terminate) break; } /* Skip trailing place-holders */ pattern = otx2_flow_skip_void_and_any_items(pattern); /* Are there more items than what we can handle? */ if (pattern->type != RTE_FLOW_ITEM_TYPE_END) { rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, pattern, "unsupported item in the sequence"); return -ENOTSUP; } return 0; } static int flow_parse_rule(struct rte_eth_dev *dev, const struct rte_flow_attr *attr, const struct rte_flow_item pattern[], const struct rte_flow_action actions[], struct rte_flow_error *error, struct rte_flow *flow, struct otx2_parse_state *pst) { int err; /* Check attributes */ err = flow_parse_attr(dev, attr, error, flow); if (err) return err; /* Check actions */ err = otx2_flow_parse_actions(dev, attr, actions, error, flow); if (err) return err; /* Check pattern */ err = flow_parse_pattern(dev, pattern, error, flow, pst); if (err) return err; /* Check for overlaps? */ return 0; } static int otx2_flow_validate(struct rte_eth_dev *dev, const struct rte_flow_attr *attr, const struct rte_flow_item pattern[], const struct rte_flow_action actions[], struct rte_flow_error *error) { struct otx2_parse_state parse_state; struct rte_flow flow; memset(&flow, 0, sizeof(flow)); return flow_parse_rule(dev, attr, pattern, actions, error, &flow, &parse_state); } static struct rte_flow * otx2_flow_create(struct rte_eth_dev *dev, const struct rte_flow_attr *attr, const struct rte_flow_item pattern[], const struct rte_flow_action actions[], struct rte_flow_error *error) { struct otx2_eth_dev *hw = dev->data->dev_private; struct otx2_parse_state parse_state; struct otx2_mbox *mbox = hw->mbox; struct rte_flow *flow, *flow_iter; struct otx2_flow_list *list; int rc; flow = rte_zmalloc("otx2_rte_flow", sizeof(*flow), 0); if (flow == NULL) { rte_flow_error_set(error, ENOMEM, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, "Memory allocation failed"); return NULL; } memset(flow, 0, sizeof(*flow)); rc = flow_parse_rule(dev, attr, pattern, actions, error, flow, &parse_state); if (rc != 0) goto err_exit; rc = flow_program_npc(&parse_state, mbox, &hw->npc_flow); if (rc != 0) { rte_flow_error_set(error, EIO, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, "Failed to insert filter"); goto err_exit; } rc = flow_program_rss_action(dev, actions, flow); if (rc != 0) { rte_flow_error_set(error, EIO, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, "Failed to program rss action"); goto err_exit; } list = &hw->npc_flow.flow_list[flow->priority]; /* List in ascending order of mcam entries */ TAILQ_FOREACH(flow_iter, list, next) { if (flow_iter->mcam_id > flow->mcam_id) { TAILQ_INSERT_BEFORE(flow_iter, flow, next); return flow; } } TAILQ_INSERT_TAIL(list, flow, next); return flow; err_exit: rte_free(flow); return NULL; } static int otx2_flow_destroy(struct rte_eth_dev *dev, struct rte_flow *flow, struct rte_flow_error *error) { struct otx2_eth_dev *hw = dev->data->dev_private; struct otx2_npc_flow_info *npc = &hw->npc_flow; struct otx2_mbox *mbox = hw->mbox; struct rte_bitmap *bmap; uint16_t match_id; int rc; match_id = (flow->npc_action >> NIX_RX_ACT_MATCH_OFFSET) & NIX_RX_ACT_MATCH_MASK; if (match_id && match_id < OTX2_FLOW_ACTION_FLAG_DEFAULT) { if (rte_atomic32_read(&npc->mark_actions) == 0) return -EINVAL; /* Clear mark offload flag if there are no more mark actions */ if (rte_atomic32_sub_return(&npc->mark_actions, 1) == 0) { hw->rx_offload_flags &= ~NIX_RX_OFFLOAD_MARK_UPDATE_F; otx2_eth_set_rx_function(dev); } } rc = flow_free_rss_action(dev, flow); if (rc != 0) { rte_flow_error_set(error, EIO, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, "Failed to free rss action"); } rc = otx2_flow_mcam_free_entry(mbox, flow->mcam_id); if (rc != 0) { rte_flow_error_set(error, EIO, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, "Failed to destroy filter"); } TAILQ_REMOVE(&npc->flow_list[flow->priority], flow, next); bmap = npc->live_entries[flow->priority]; rte_bitmap_clear(bmap, flow->mcam_id); rte_free(flow); return 0; } static int otx2_flow_flush(struct rte_eth_dev *dev, struct rte_flow_error *error) { struct otx2_eth_dev *hw = dev->data->dev_private; int rc; rc = otx2_flow_free_all_resources(hw); if (rc) { otx2_err("Error when deleting NPC MCAM entries " ", counters"); rte_flow_error_set(error, EIO, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, "Failed to flush filter"); return -rte_errno; } return 0; } static int otx2_flow_isolate(struct rte_eth_dev *dev __rte_unused, int enable __rte_unused, struct rte_flow_error *error) { /* * If we support, we need to un-install the default mcam * entry for this port. */ rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, "Flow isolation not supported"); return -rte_errno; } static int otx2_flow_query(struct rte_eth_dev *dev, struct rte_flow *flow, const struct rte_flow_action *action, void *data, struct rte_flow_error *error) { struct otx2_eth_dev *hw = dev->data->dev_private; struct rte_flow_query_count *query = data; struct otx2_mbox *mbox = hw->mbox; const char *errmsg = NULL; int errcode = ENOTSUP; int rc; if (action->type != RTE_FLOW_ACTION_TYPE_COUNT) { errmsg = "Only COUNT is supported in query"; goto err_exit; } if (flow->ctr_id == NPC_COUNTER_NONE) { errmsg = "Counter is not available"; goto err_exit; } rc = otx2_flow_mcam_read_counter(mbox, flow->ctr_id, &query->hits); if (rc != 0) { errcode = EIO; errmsg = "Error reading flow counter"; goto err_exit; } query->hits_set = 1; query->bytes_set = 0; if (query->reset) rc = otx2_flow_mcam_clear_counter(mbox, flow->ctr_id); if (rc != 0) { errcode = EIO; errmsg = "Error clearing flow counter"; goto err_exit; } return 0; err_exit: rte_flow_error_set(error, errcode, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, errmsg); return -rte_errno; } const struct rte_flow_ops otx2_flow_ops = { .validate = otx2_flow_validate, .create = otx2_flow_create, .destroy = otx2_flow_destroy, .flush = otx2_flow_flush, .query = otx2_flow_query, .isolate = otx2_flow_isolate, }; static int flow_supp_key_len(uint32_t supp_mask) { int nib_count = 0; while (supp_mask) { nib_count++; supp_mask &= (supp_mask - 1); } return nib_count * 4; } /* Refer HRM register: * NPC_AF_INTF(0..1)_LID(0..7)_LT(0..15)_LD(0..1)_CFG * and * NPC_AF_INTF(0..1)_LDATA(0..1)_FLAGS(0..15)_CFG **/ #define BYTESM1_SHIFT 16 #define HDR_OFF_SHIFT 8 static void flow_update_kex_info(struct npc_xtract_info *xtract_info, uint64_t val) { xtract_info->len = ((val >> BYTESM1_SHIFT) & 0xf) + 1; xtract_info->hdr_off = (val >> HDR_OFF_SHIFT) & 0xff; xtract_info->key_off = val & 0x3f; xtract_info->enable = ((val >> 7) & 0x1); xtract_info->flags_enable = ((val >> 6) & 0x1); } static void flow_process_mkex_cfg(struct otx2_npc_flow_info *npc, struct npc_get_kex_cfg_rsp *kex_rsp) { volatile uint64_t (*q)[NPC_MAX_INTF][NPC_MAX_LID][NPC_MAX_LT] [NPC_MAX_LD]; struct npc_xtract_info *x_info = NULL; int lid, lt, ld, fl, ix; otx2_dxcfg_t *p; uint64_t keyw; uint64_t val; npc->keyx_supp_nmask[NPC_MCAM_RX] = kex_rsp->rx_keyx_cfg & 0x7fffffffULL; npc->keyx_supp_nmask[NPC_MCAM_TX] = kex_rsp->tx_keyx_cfg & 0x7fffffffULL; npc->keyx_len[NPC_MCAM_RX] = flow_supp_key_len(npc->keyx_supp_nmask[NPC_MCAM_RX]); npc->keyx_len[NPC_MCAM_TX] = flow_supp_key_len(npc->keyx_supp_nmask[NPC_MCAM_TX]); keyw = (kex_rsp->rx_keyx_cfg >> 32) & 0x7ULL; npc->keyw[NPC_MCAM_RX] = keyw; keyw = (kex_rsp->tx_keyx_cfg >> 32) & 0x7ULL; npc->keyw[NPC_MCAM_TX] = keyw; /* Update KEX_LD_FLAG */ for (ix = 0; ix < NPC_MAX_INTF; ix++) { for (ld = 0; ld < NPC_MAX_LD; ld++) { for (fl = 0; fl < NPC_MAX_LFL; fl++) { x_info = &npc->prx_fxcfg[ix][ld][fl].xtract[0]; val = kex_rsp->intf_ld_flags[ix][ld][fl]; flow_update_kex_info(x_info, val); } } } /* Update LID, LT and LDATA cfg */ p = &npc->prx_dxcfg; q = (volatile uint64_t (*)[][NPC_MAX_LID][NPC_MAX_LT][NPC_MAX_LD]) (&kex_rsp->intf_lid_lt_ld); for (ix = 0; ix < NPC_MAX_INTF; ix++) { for (lid = 0; lid < NPC_MAX_LID; lid++) { for (lt = 0; lt < NPC_MAX_LT; lt++) { for (ld = 0; ld < NPC_MAX_LD; ld++) { x_info = &(*p)[ix][lid][lt].xtract[ld]; val = (*q)[ix][lid][lt][ld]; flow_update_kex_info(x_info, val); } } } } /* Update LDATA Flags cfg */ npc->prx_lfcfg[0].i = kex_rsp->kex_ld_flags[0]; npc->prx_lfcfg[1].i = kex_rsp->kex_ld_flags[1]; } static struct otx2_idev_kex_cfg * flow_intra_dev_kex_cfg(void) { static const char name[] = "octeontx2_intra_device_kex_conf"; struct otx2_idev_kex_cfg *idev; const struct rte_memzone *mz; mz = rte_memzone_lookup(name); if (mz) return mz->addr; /* Request for the first time */ mz = rte_memzone_reserve_aligned(name, sizeof(struct otx2_idev_kex_cfg), SOCKET_ID_ANY, 0, OTX2_ALIGN); if (mz) { idev = mz->addr; rte_atomic16_set(&idev->kex_refcnt, 0); return idev; } return NULL; } static int flow_fetch_kex_cfg(struct otx2_eth_dev *dev) { struct otx2_npc_flow_info *npc = &dev->npc_flow; struct npc_get_kex_cfg_rsp *kex_rsp; struct otx2_mbox *mbox = dev->mbox; char mkex_pfl_name[MKEX_NAME_LEN]; struct otx2_idev_kex_cfg *idev; int rc = 0; idev = flow_intra_dev_kex_cfg(); if (!idev) return -ENOMEM; /* Is kex_cfg read by any another driver? */ if (rte_atomic16_add_return(&idev->kex_refcnt, 1) == 1) { /* Call mailbox to get key & data size */ (void)otx2_mbox_alloc_msg_npc_get_kex_cfg(mbox); otx2_mbox_msg_send(mbox, 0); rc = otx2_mbox_get_rsp(mbox, 0, (void *)&kex_rsp); if (rc) { otx2_err("Failed to fetch NPC keyx config"); goto done; } memcpy(&idev->kex_cfg, kex_rsp, sizeof(struct npc_get_kex_cfg_rsp)); } otx2_mbox_memcpy(mkex_pfl_name, idev->kex_cfg.mkex_pfl_name, MKEX_NAME_LEN); strlcpy((char *)dev->mkex_pfl_name, mkex_pfl_name, sizeof(dev->mkex_pfl_name)); flow_process_mkex_cfg(npc, &idev->kex_cfg); done: return rc; } int otx2_flow_init(struct otx2_eth_dev *hw) { uint8_t *mem = NULL, *nix_mem = NULL, *npc_mem = NULL; struct otx2_npc_flow_info *npc = &hw->npc_flow; uint32_t bmap_sz; int rc = 0, idx; rc = flow_fetch_kex_cfg(hw); if (rc) { otx2_err("Failed to fetch NPC keyx config from idev"); return rc; } rte_atomic32_init(&npc->mark_actions); npc->mcam_entries = NPC_MCAM_TOT_ENTRIES >> npc->keyw[NPC_MCAM_RX]; /* Free, free_rev, live and live_rev entries */ bmap_sz = rte_bitmap_get_memory_footprint(npc->mcam_entries); mem = rte_zmalloc(NULL, 4 * bmap_sz * npc->flow_max_priority, RTE_CACHE_LINE_SIZE); if (mem == NULL) { otx2_err("Bmap alloc failed"); rc = -ENOMEM; return rc; } npc->flow_entry_info = rte_zmalloc(NULL, npc->flow_max_priority * sizeof(struct otx2_mcam_ents_info), 0); if (npc->flow_entry_info == NULL) { otx2_err("flow_entry_info alloc failed"); rc = -ENOMEM; goto err; } npc->free_entries = rte_zmalloc(NULL, npc->flow_max_priority * sizeof(struct rte_bitmap *), 0); if (npc->free_entries == NULL) { otx2_err("free_entries alloc failed"); rc = -ENOMEM; goto err; } npc->free_entries_rev = rte_zmalloc(NULL, npc->flow_max_priority * sizeof(struct rte_bitmap *), 0); if (npc->free_entries_rev == NULL) { otx2_err("free_entries_rev alloc failed"); rc = -ENOMEM; goto err; } npc->live_entries = rte_zmalloc(NULL, npc->flow_max_priority * sizeof(struct rte_bitmap *), 0); if (npc->live_entries == NULL) { otx2_err("live_entries alloc failed"); rc = -ENOMEM; goto err; } npc->live_entries_rev = rte_zmalloc(NULL, npc->flow_max_priority * sizeof(struct rte_bitmap *), 0); if (npc->live_entries_rev == NULL) { otx2_err("live_entries_rev alloc failed"); rc = -ENOMEM; goto err; } npc->flow_list = rte_zmalloc(NULL, npc->flow_max_priority * sizeof(struct otx2_flow_list), 0); if (npc->flow_list == NULL) { otx2_err("flow_list alloc failed"); rc = -ENOMEM; goto err; } npc_mem = mem; for (idx = 0; idx < npc->flow_max_priority; idx++) { TAILQ_INIT(&npc->flow_list[idx]); npc->free_entries[idx] = rte_bitmap_init(npc->mcam_entries, mem, bmap_sz); mem += bmap_sz; npc->free_entries_rev[idx] = rte_bitmap_init(npc->mcam_entries, mem, bmap_sz); mem += bmap_sz; npc->live_entries[idx] = rte_bitmap_init(npc->mcam_entries, mem, bmap_sz); mem += bmap_sz; npc->live_entries_rev[idx] = rte_bitmap_init(npc->mcam_entries, mem, bmap_sz); mem += bmap_sz; npc->flow_entry_info[idx].free_ent = 0; npc->flow_entry_info[idx].live_ent = 0; npc->flow_entry_info[idx].max_id = 0; npc->flow_entry_info[idx].min_id = ~(0); } npc->rss_grps = NIX_RSS_GRPS; bmap_sz = rte_bitmap_get_memory_footprint(npc->rss_grps); nix_mem = rte_zmalloc(NULL, bmap_sz, RTE_CACHE_LINE_SIZE); if (nix_mem == NULL) { otx2_err("Bmap alloc failed"); rc = -ENOMEM; goto err; } npc->rss_grp_entries = rte_bitmap_init(npc->rss_grps, nix_mem, bmap_sz); /* Group 0 will be used for RSS, * 1 -7 will be used for rte_flow RSS action */ rte_bitmap_set(npc->rss_grp_entries, 0); return 0; err: if (npc->flow_list) rte_free(npc->flow_list); if (npc->live_entries_rev) rte_free(npc->live_entries_rev); if (npc->live_entries) rte_free(npc->live_entries); if (npc->free_entries_rev) rte_free(npc->free_entries_rev); if (npc->free_entries) rte_free(npc->free_entries); if (npc->flow_entry_info) rte_free(npc->flow_entry_info); if (npc_mem) rte_free(npc_mem); return rc; } int otx2_flow_fini(struct otx2_eth_dev *hw) { struct otx2_npc_flow_info *npc = &hw->npc_flow; int rc; rc = otx2_flow_free_all_resources(hw); if (rc) { otx2_err("Error when deleting NPC MCAM entries, counters"); return rc; } if (npc->flow_list) rte_free(npc->flow_list); if (npc->live_entries_rev) rte_free(npc->live_entries_rev); if (npc->live_entries) rte_free(npc->live_entries); if (npc->free_entries_rev) rte_free(npc->free_entries_rev); if (npc->free_entries) rte_free(npc->free_entries); if (npc->flow_entry_info) rte_free(npc->flow_entry_info); return 0; }