/* SPDX-License-Identifier: BSD-3-Clause * Copyright 2018 6WIND S.A. * Copyright 2018 Mellanox Technologies, Ltd */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mlx5.h" #include "mlx5_utils.h" /* Size of the buffer to receive kernel messages */ #define MLX5_NL_BUF_SIZE (32 * 1024) /* Send buffer size for the Netlink socket */ #define MLX5_SEND_BUF_SIZE 32768 /* Receive buffer size for the Netlink socket */ #define MLX5_RECV_BUF_SIZE 32768 /** Parameters of VLAN devices created by driver. */ #define MLX5_VMWA_VLAN_DEVICE_PFX "evmlx" /* * Define NDA_RTA as defined in iproute2 sources. * * see in iproute2 sources file include/libnetlink.h */ #ifndef MLX5_NDA_RTA #define MLX5_NDA_RTA(r) \ ((struct rtattr *)(((char *)(r)) + NLMSG_ALIGN(sizeof(struct ndmsg)))) #endif /* * Define NLMSG_TAIL as defined in iproute2 sources. * * see in iproute2 sources file include/libnetlink.h */ #ifndef NLMSG_TAIL #define NLMSG_TAIL(nmsg) \ ((struct rtattr *)(((char *)(nmsg)) + NLMSG_ALIGN((nmsg)->nlmsg_len))) #endif /* * The following definitions are normally found in rdma/rdma_netlink.h, * however they are so recent that most systems do not expose them yet. */ #ifndef HAVE_RDMA_NL_NLDEV #define RDMA_NL_NLDEV 5 #endif #ifndef HAVE_RDMA_NLDEV_CMD_GET #define RDMA_NLDEV_CMD_GET 1 #endif #ifndef HAVE_RDMA_NLDEV_CMD_PORT_GET #define RDMA_NLDEV_CMD_PORT_GET 5 #endif #ifndef HAVE_RDMA_NLDEV_ATTR_DEV_INDEX #define RDMA_NLDEV_ATTR_DEV_INDEX 1 #endif #ifndef HAVE_RDMA_NLDEV_ATTR_DEV_NAME #define RDMA_NLDEV_ATTR_DEV_NAME 2 #endif #ifndef HAVE_RDMA_NLDEV_ATTR_PORT_INDEX #define RDMA_NLDEV_ATTR_PORT_INDEX 3 #endif #ifndef HAVE_RDMA_NLDEV_ATTR_NDEV_INDEX #define RDMA_NLDEV_ATTR_NDEV_INDEX 50 #endif /* These are normally found in linux/if_link.h. */ #ifndef HAVE_IFLA_NUM_VF #define IFLA_NUM_VF 21 #endif #ifndef HAVE_IFLA_EXT_MASK #define IFLA_EXT_MASK 29 #endif #ifndef HAVE_IFLA_PHYS_SWITCH_ID #define IFLA_PHYS_SWITCH_ID 36 #endif #ifndef HAVE_IFLA_PHYS_PORT_NAME #define IFLA_PHYS_PORT_NAME 38 #endif /* Add/remove MAC address through Netlink */ struct mlx5_nl_mac_addr { struct rte_ether_addr (*mac)[]; /**< MAC address handled by the device. */ int mac_n; /**< Number of addresses in the array. */ }; #define MLX5_NL_CMD_GET_IB_NAME (1 << 0) #define MLX5_NL_CMD_GET_IB_INDEX (1 << 1) #define MLX5_NL_CMD_GET_NET_INDEX (1 << 2) #define MLX5_NL_CMD_GET_PORT_INDEX (1 << 3) /** Data structure used by mlx5_nl_cmdget_cb(). */ struct mlx5_nl_ifindex_data { const char *name; /**< IB device name (in). */ uint32_t flags; /**< found attribute flags (out). */ uint32_t ibindex; /**< IB device index (out). */ uint32_t ifindex; /**< Network interface index (out). */ uint32_t portnum; /**< IB device max port number (out). */ }; /** * Opens a Netlink socket. * * @param protocol * Netlink protocol (e.g. NETLINK_ROUTE, NETLINK_RDMA). * * @return * A file descriptor on success, a negative errno value otherwise and * rte_errno is set. */ int mlx5_nl_init(int protocol) { int fd; int sndbuf_size = MLX5_SEND_BUF_SIZE; int rcvbuf_size = MLX5_RECV_BUF_SIZE; struct sockaddr_nl local = { .nl_family = AF_NETLINK, }; int ret; fd = socket(AF_NETLINK, SOCK_RAW | SOCK_CLOEXEC, protocol); if (fd == -1) { rte_errno = errno; return -rte_errno; } ret = setsockopt(fd, SOL_SOCKET, SO_SNDBUF, &sndbuf_size, sizeof(int)); if (ret == -1) { rte_errno = errno; goto error; } ret = setsockopt(fd, SOL_SOCKET, SO_RCVBUF, &rcvbuf_size, sizeof(int)); if (ret == -1) { rte_errno = errno; goto error; } ret = bind(fd, (struct sockaddr *)&local, sizeof(local)); if (ret == -1) { rte_errno = errno; goto error; } return fd; error: close(fd); return -rte_errno; } /** * Send a request message to the kernel on the Netlink socket. * * @param[in] nlsk_fd * Netlink socket file descriptor. * @param[in] nh * The Netlink message send to the kernel. * @param[in] ssn * Sequence number. * @param[in] req * Pointer to the request structure. * @param[in] len * Length of the request in bytes. * * @return * The number of sent bytes on success, a negative errno value otherwise and * rte_errno is set. */ static int mlx5_nl_request(int nlsk_fd, struct nlmsghdr *nh, uint32_t sn, void *req, int len) { struct sockaddr_nl sa = { .nl_family = AF_NETLINK, }; struct iovec iov[2] = { { .iov_base = nh, .iov_len = sizeof(*nh), }, { .iov_base = req, .iov_len = len, }, }; struct msghdr msg = { .msg_name = &sa, .msg_namelen = sizeof(sa), .msg_iov = iov, .msg_iovlen = 2, }; int send_bytes; nh->nlmsg_pid = 0; /* communication with the kernel uses pid 0 */ nh->nlmsg_seq = sn; send_bytes = sendmsg(nlsk_fd, &msg, 0); if (send_bytes < 0) { rte_errno = errno; return -rte_errno; } return send_bytes; } /** * Send a message to the kernel on the Netlink socket. * * @param[in] nlsk_fd * The Netlink socket file descriptor used for communication. * @param[in] nh * The Netlink message send to the kernel. * @param[in] sn * Sequence number. * * @return * The number of sent bytes on success, a negative errno value otherwise and * rte_errno is set. */ static int mlx5_nl_send(int nlsk_fd, struct nlmsghdr *nh, uint32_t sn) { struct sockaddr_nl sa = { .nl_family = AF_NETLINK, }; struct iovec iov = { .iov_base = nh, .iov_len = nh->nlmsg_len, }; struct msghdr msg = { .msg_name = &sa, .msg_namelen = sizeof(sa), .msg_iov = &iov, .msg_iovlen = 1, }; int send_bytes; nh->nlmsg_pid = 0; /* communication with the kernel uses pid 0 */ nh->nlmsg_seq = sn; send_bytes = sendmsg(nlsk_fd, &msg, 0); if (send_bytes < 0) { rte_errno = errno; return -rte_errno; } return send_bytes; } /** * Receive a message from the kernel on the Netlink socket, following * mlx5_nl_send(). * * @param[in] nlsk_fd * The Netlink socket file descriptor used for communication. * @param[in] sn * Sequence number. * @param[in] cb * The callback function to call for each Netlink message received. * @param[in, out] arg * Custom arguments for the callback. * * @return * 0 on success, a negative errno value otherwise and rte_errno is set. */ static int mlx5_nl_recv(int nlsk_fd, uint32_t sn, int (*cb)(struct nlmsghdr *, void *arg), void *arg) { struct sockaddr_nl sa; void *buf = malloc(MLX5_RECV_BUF_SIZE); struct iovec iov = { .iov_base = buf, .iov_len = MLX5_RECV_BUF_SIZE, }; struct msghdr msg = { .msg_name = &sa, .msg_namelen = sizeof(sa), .msg_iov = &iov, /* One message at a time */ .msg_iovlen = 1, }; int multipart = 0; int ret = 0; if (!buf) { rte_errno = ENOMEM; return -rte_errno; } do { struct nlmsghdr *nh; int recv_bytes = 0; do { recv_bytes = recvmsg(nlsk_fd, &msg, 0); if (recv_bytes == -1) { rte_errno = errno; ret = -rte_errno; goto exit; } nh = (struct nlmsghdr *)buf; } while (nh->nlmsg_seq != sn); for (; NLMSG_OK(nh, (unsigned int)recv_bytes); nh = NLMSG_NEXT(nh, recv_bytes)) { if (nh->nlmsg_type == NLMSG_ERROR) { struct nlmsgerr *err_data = NLMSG_DATA(nh); if (err_data->error < 0) { rte_errno = -err_data->error; ret = -rte_errno; goto exit; } /* Ack message. */ ret = 0; goto exit; } /* Multi-part msgs and their trailing DONE message. */ if (nh->nlmsg_flags & NLM_F_MULTI) { if (nh->nlmsg_type == NLMSG_DONE) { ret = 0; goto exit; } multipart = 1; } if (cb) { ret = cb(nh, arg); if (ret < 0) goto exit; } } } while (multipart); exit: free(buf); return ret; } /** * Parse Netlink message to retrieve the bridge MAC address. * * @param nh * Pointer to Netlink Message Header. * @param arg * PMD data register with this callback. * * @return * 0 on success, a negative errno value otherwise and rte_errno is set. */ static int mlx5_nl_mac_addr_cb(struct nlmsghdr *nh, void *arg) { struct mlx5_nl_mac_addr *data = arg; struct ndmsg *r = NLMSG_DATA(nh); struct rtattr *attribute; int len; len = nh->nlmsg_len - NLMSG_LENGTH(sizeof(*r)); for (attribute = MLX5_NDA_RTA(r); RTA_OK(attribute, len); attribute = RTA_NEXT(attribute, len)) { if (attribute->rta_type == NDA_LLADDR) { if (data->mac_n == MLX5_MAX_MAC_ADDRESSES) { DRV_LOG(WARNING, "not enough room to finalize the" " request"); rte_errno = ENOMEM; return -rte_errno; } #ifndef NDEBUG char m[18]; rte_ether_format_addr(m, 18, RTA_DATA(attribute)); DRV_LOG(DEBUG, "bridge MAC address %s", m); #endif memcpy(&(*data->mac)[data->mac_n++], RTA_DATA(attribute), RTE_ETHER_ADDR_LEN); } } return 0; } /** * Get bridge MAC addresses. * * @param dev * Pointer to Ethernet device. * @param mac[out] * Pointer to the array table of MAC addresses to fill. * Its size should be of MLX5_MAX_MAC_ADDRESSES. * @param mac_n[out] * Number of entries filled in MAC array. * * @return * 0 on success, a negative errno value otherwise and rte_errno is set. */ static int mlx5_nl_mac_addr_list(struct rte_eth_dev *dev, struct rte_ether_addr (*mac)[], int *mac_n) { struct mlx5_priv *priv = dev->data->dev_private; unsigned int iface_idx = mlx5_ifindex(dev); struct { struct nlmsghdr hdr; struct ifinfomsg ifm; } req = { .hdr = { .nlmsg_len = NLMSG_LENGTH(sizeof(struct ifinfomsg)), .nlmsg_type = RTM_GETNEIGH, .nlmsg_flags = NLM_F_DUMP | NLM_F_REQUEST, }, .ifm = { .ifi_family = PF_BRIDGE, .ifi_index = iface_idx, }, }; struct mlx5_nl_mac_addr data = { .mac = mac, .mac_n = 0, }; int fd; int ret; uint32_t sn = priv->nl_sn++; if (priv->nl_socket_route == -1) return 0; fd = priv->nl_socket_route; ret = mlx5_nl_request(fd, &req.hdr, sn, &req.ifm, sizeof(struct ifinfomsg)); if (ret < 0) goto error; ret = mlx5_nl_recv(fd, sn, mlx5_nl_mac_addr_cb, &data); if (ret < 0) goto error; *mac_n = data.mac_n; return 0; error: DRV_LOG(DEBUG, "port %u cannot retrieve MAC address list %s", dev->data->port_id, strerror(rte_errno)); return -rte_errno; } /** * Modify the MAC address neighbour table with Netlink. * * @param dev * Pointer to Ethernet device. * @param mac * MAC address to consider. * @param add * 1 to add the MAC address, 0 to remove the MAC address. * * @return * 0 on success, a negative errno value otherwise and rte_errno is set. */ static int mlx5_nl_mac_addr_modify(struct rte_eth_dev *dev, struct rte_ether_addr *mac, int add) { struct mlx5_priv *priv = dev->data->dev_private; unsigned int iface_idx = mlx5_ifindex(dev); struct { struct nlmsghdr hdr; struct ndmsg ndm; struct rtattr rta; uint8_t buffer[RTE_ETHER_ADDR_LEN]; } req = { .hdr = { .nlmsg_len = NLMSG_LENGTH(sizeof(struct ndmsg)), .nlmsg_flags = NLM_F_REQUEST | NLM_F_CREATE | NLM_F_EXCL | NLM_F_ACK, .nlmsg_type = add ? RTM_NEWNEIGH : RTM_DELNEIGH, }, .ndm = { .ndm_family = PF_BRIDGE, .ndm_state = NUD_NOARP | NUD_PERMANENT, .ndm_ifindex = iface_idx, .ndm_flags = NTF_SELF, }, .rta = { .rta_type = NDA_LLADDR, .rta_len = RTA_LENGTH(RTE_ETHER_ADDR_LEN), }, }; int fd; int ret; uint32_t sn = priv->nl_sn++; if (priv->nl_socket_route == -1) return 0; fd = priv->nl_socket_route; memcpy(RTA_DATA(&req.rta), mac, RTE_ETHER_ADDR_LEN); req.hdr.nlmsg_len = NLMSG_ALIGN(req.hdr.nlmsg_len) + RTA_ALIGN(req.rta.rta_len); ret = mlx5_nl_send(fd, &req.hdr, sn); if (ret < 0) goto error; ret = mlx5_nl_recv(fd, sn, NULL, NULL); if (ret < 0) goto error; return 0; error: DRV_LOG(DEBUG, "port %u cannot %s MAC address %02X:%02X:%02X:%02X:%02X:%02X" " %s", dev->data->port_id, add ? "add" : "remove", mac->addr_bytes[0], mac->addr_bytes[1], mac->addr_bytes[2], mac->addr_bytes[3], mac->addr_bytes[4], mac->addr_bytes[5], strerror(rte_errno)); return -rte_errno; } /** * Modify the VF MAC address neighbour table with Netlink. * * @param dev * Pointer to Ethernet device. * @param mac * MAC address to consider. * @param vf_index * VF index. * * @return * 0 on success, a negative errno value otherwise and rte_errno is set. */ int mlx5_nl_vf_mac_addr_modify(struct rte_eth_dev *dev, struct rte_ether_addr *mac, int vf_index) { int fd, ret; struct mlx5_priv *priv = dev->data->dev_private; unsigned int iface_idx = mlx5_ifindex(dev); struct { struct nlmsghdr hdr; struct ifinfomsg ifm; struct rtattr vf_list_rta; struct rtattr vf_info_rta; struct rtattr vf_mac_rta; struct ifla_vf_mac ivm; } req = { .hdr = { .nlmsg_len = NLMSG_LENGTH(sizeof(struct ifinfomsg)), .nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK, .nlmsg_type = RTM_BASE, }, .ifm = { .ifi_index = iface_idx, }, .vf_list_rta = { .rta_type = IFLA_VFINFO_LIST, .rta_len = RTA_ALIGN(RTA_LENGTH(0)), }, .vf_info_rta = { .rta_type = IFLA_VF_INFO, .rta_len = RTA_ALIGN(RTA_LENGTH(0)), }, .vf_mac_rta = { .rta_type = IFLA_VF_MAC, }, }; uint32_t sn = priv->nl_sn++; struct ifla_vf_mac ivm = { .vf = vf_index, }; memcpy(&ivm.mac, mac, RTE_ETHER_ADDR_LEN); memcpy(RTA_DATA(&req.vf_mac_rta), &ivm, sizeof(ivm)); req.vf_mac_rta.rta_len = RTA_LENGTH(sizeof(ivm)); req.hdr.nlmsg_len = NLMSG_ALIGN(req.hdr.nlmsg_len) + RTA_ALIGN(req.vf_list_rta.rta_len) + RTA_ALIGN(req.vf_info_rta.rta_len) + RTA_ALIGN(req.vf_mac_rta.rta_len); req.vf_list_rta.rta_len = RTE_PTR_DIFF(NLMSG_TAIL(&req.hdr), &req.vf_list_rta); req.vf_info_rta.rta_len = RTE_PTR_DIFF(NLMSG_TAIL(&req.hdr), &req.vf_info_rta); fd = priv->nl_socket_route; if (fd < 0) return -1; ret = mlx5_nl_send(fd, &req.hdr, sn); if (ret < 0) goto error; ret = mlx5_nl_recv(fd, sn, NULL, NULL); if (ret < 0) goto error; return 0; error: DRV_LOG(ERR, "representor %u cannot set VF MAC address " "%02X:%02X:%02X:%02X:%02X:%02X : %s", vf_index, mac->addr_bytes[0], mac->addr_bytes[1], mac->addr_bytes[2], mac->addr_bytes[3], mac->addr_bytes[4], mac->addr_bytes[5], strerror(rte_errno)); return -rte_errno; } /** * Add a MAC address. * * @param dev * Pointer to Ethernet device. * @param mac * MAC address to register. * @param index * MAC address index. * * @return * 0 on success, a negative errno value otherwise and rte_errno is set. */ int mlx5_nl_mac_addr_add(struct rte_eth_dev *dev, struct rte_ether_addr *mac, uint32_t index) { struct mlx5_priv *priv = dev->data->dev_private; int ret; ret = mlx5_nl_mac_addr_modify(dev, mac, 1); if (!ret) BITFIELD_SET(priv->mac_own, index); if (ret == -EEXIST) return 0; return ret; } /** * Remove a MAC address. * * @param dev * Pointer to Ethernet device. * @param mac * MAC address to remove. * @param index * MAC address index. * * @return * 0 on success, a negative errno value otherwise and rte_errno is set. */ int mlx5_nl_mac_addr_remove(struct rte_eth_dev *dev, struct rte_ether_addr *mac, uint32_t index) { struct mlx5_priv *priv = dev->data->dev_private; BITFIELD_RESET(priv->mac_own, index); return mlx5_nl_mac_addr_modify(dev, mac, 0); } /** * Synchronize Netlink bridge table to the internal table. * * @param dev * Pointer to Ethernet device. */ void mlx5_nl_mac_addr_sync(struct rte_eth_dev *dev) { struct rte_ether_addr macs[MLX5_MAX_MAC_ADDRESSES]; int macs_n = 0; int i; int ret; ret = mlx5_nl_mac_addr_list(dev, &macs, &macs_n); if (ret) return; for (i = 0; i != macs_n; ++i) { int j; /* Verify the address is not in the array yet. */ for (j = 0; j != MLX5_MAX_MAC_ADDRESSES; ++j) if (rte_is_same_ether_addr(&macs[i], &dev->data->mac_addrs[j])) break; if (j != MLX5_MAX_MAC_ADDRESSES) continue; /* Find the first entry available. */ for (j = 0; j != MLX5_MAX_MAC_ADDRESSES; ++j) { if (rte_is_zero_ether_addr(&dev->data->mac_addrs[j])) { dev->data->mac_addrs[j] = macs[i]; break; } } } } /** * Flush all added MAC addresses. * * @param dev * Pointer to Ethernet device. */ void mlx5_nl_mac_addr_flush(struct rte_eth_dev *dev) { struct mlx5_priv *priv = dev->data->dev_private; int i; for (i = MLX5_MAX_MAC_ADDRESSES - 1; i >= 0; --i) { struct rte_ether_addr *m = &dev->data->mac_addrs[i]; if (BITFIELD_ISSET(priv->mac_own, i)) mlx5_nl_mac_addr_remove(dev, m, i); } } /** * Enable promiscuous / all multicast mode through Netlink. * * @param dev * Pointer to Ethernet device structure. * @param flags * IFF_PROMISC for promiscuous, IFF_ALLMULTI for allmulti. * @param enable * Nonzero to enable, disable otherwise. * * @return * 0 on success, a negative errno value otherwise and rte_errno is set. */ static int mlx5_nl_device_flags(struct rte_eth_dev *dev, uint32_t flags, int enable) { struct mlx5_priv *priv = dev->data->dev_private; unsigned int iface_idx = mlx5_ifindex(dev); struct { struct nlmsghdr hdr; struct ifinfomsg ifi; } req = { .hdr = { .nlmsg_len = NLMSG_LENGTH(sizeof(struct ifinfomsg)), .nlmsg_type = RTM_NEWLINK, .nlmsg_flags = NLM_F_REQUEST, }, .ifi = { .ifi_flags = enable ? flags : 0, .ifi_change = flags, .ifi_index = iface_idx, }, }; int fd; int ret; assert(!(flags & ~(IFF_PROMISC | IFF_ALLMULTI))); if (priv->nl_socket_route < 0) return 0; fd = priv->nl_socket_route; ret = mlx5_nl_send(fd, &req.hdr, priv->nl_sn++); if (ret < 0) return ret; return 0; } /** * Enable promiscuous mode through Netlink. * * @param dev * Pointer to Ethernet device structure. * @param enable * Nonzero to enable, disable otherwise. * * @return * 0 on success, a negative errno value otherwise and rte_errno is set. */ int mlx5_nl_promisc(struct rte_eth_dev *dev, int enable) { int ret = mlx5_nl_device_flags(dev, IFF_PROMISC, enable); if (ret) DRV_LOG(DEBUG, "port %u cannot %s promisc mode: Netlink error %s", dev->data->port_id, enable ? "enable" : "disable", strerror(rte_errno)); return ret; } /** * Enable all multicast mode through Netlink. * * @param dev * Pointer to Ethernet device structure. * @param enable * Nonzero to enable, disable otherwise. * * @return * 0 on success, a negative errno value otherwise and rte_errno is set. */ int mlx5_nl_allmulti(struct rte_eth_dev *dev, int enable) { int ret = mlx5_nl_device_flags(dev, IFF_ALLMULTI, enable); if (ret) DRV_LOG(DEBUG, "port %u cannot %s allmulti mode: Netlink error %s", dev->data->port_id, enable ? "enable" : "disable", strerror(rte_errno)); return ret; } /** * Process network interface information from Netlink message. * * @param nh * Pointer to Netlink message header. * @param arg * Opaque data pointer for this callback. * * @return * 0 on success, a negative errno value otherwise and rte_errno is set. */ static int mlx5_nl_cmdget_cb(struct nlmsghdr *nh, void *arg) { struct mlx5_nl_ifindex_data *data = arg; struct mlx5_nl_ifindex_data local = { .flags = 0, }; size_t off = NLMSG_HDRLEN; if (nh->nlmsg_type != RDMA_NL_GET_TYPE(RDMA_NL_NLDEV, RDMA_NLDEV_CMD_GET) && nh->nlmsg_type != RDMA_NL_GET_TYPE(RDMA_NL_NLDEV, RDMA_NLDEV_CMD_PORT_GET)) goto error; while (off < nh->nlmsg_len) { struct nlattr *na = (void *)((uintptr_t)nh + off); void *payload = (void *)((uintptr_t)na + NLA_HDRLEN); if (na->nla_len > nh->nlmsg_len - off) goto error; switch (na->nla_type) { case RDMA_NLDEV_ATTR_DEV_INDEX: local.ibindex = *(uint32_t *)payload; local.flags |= MLX5_NL_CMD_GET_IB_INDEX; break; case RDMA_NLDEV_ATTR_DEV_NAME: if (!strcmp(payload, data->name)) local.flags |= MLX5_NL_CMD_GET_IB_NAME; break; case RDMA_NLDEV_ATTR_NDEV_INDEX: local.ifindex = *(uint32_t *)payload; local.flags |= MLX5_NL_CMD_GET_NET_INDEX; break; case RDMA_NLDEV_ATTR_PORT_INDEX: local.portnum = *(uint32_t *)payload; local.flags |= MLX5_NL_CMD_GET_PORT_INDEX; break; default: break; } off += NLA_ALIGN(na->nla_len); } /* * It is possible to have multiple messages for all * Infiniband devices in the system with appropriate name. * So we should gather parameters locally and copy to * query context only in case of coinciding device name. */ if (local.flags & MLX5_NL_CMD_GET_IB_NAME) { data->flags = local.flags; data->ibindex = local.ibindex; data->ifindex = local.ifindex; data->portnum = local.portnum; } return 0; error: rte_errno = EINVAL; return -rte_errno; } /** * Get index of network interface associated with some IB device. * * This is the only somewhat safe method to avoid resorting to heuristics * when faced with port representors. Unfortunately it requires at least * Linux 4.17. * * @param nl * Netlink socket of the RDMA kind (NETLINK_RDMA). * @param[in] name * IB device name. * @param[in] pindex * IB device port index, starting from 1 * @return * A valid (nonzero) interface index on success, 0 otherwise and rte_errno * is set. */ unsigned int mlx5_nl_ifindex(int nl, const char *name, uint32_t pindex) { uint32_t seq = random(); struct mlx5_nl_ifindex_data data = { .name = name, .flags = 0, .ibindex = 0, /* Determined during first pass. */ .ifindex = 0, /* Determined during second pass. */ }; union { struct nlmsghdr nh; uint8_t buf[NLMSG_HDRLEN + NLA_HDRLEN + NLA_ALIGN(sizeof(data.ibindex)) + NLA_HDRLEN + NLA_ALIGN(sizeof(pindex))]; } req = { .nh = { .nlmsg_len = NLMSG_LENGTH(0), .nlmsg_type = RDMA_NL_GET_TYPE(RDMA_NL_NLDEV, RDMA_NLDEV_CMD_GET), .nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK | NLM_F_DUMP, }, }; struct nlattr *na; int ret; ret = mlx5_nl_send(nl, &req.nh, seq); if (ret < 0) return 0; ret = mlx5_nl_recv(nl, seq, mlx5_nl_cmdget_cb, &data); if (ret < 0) return 0; if (!(data.flags & MLX5_NL_CMD_GET_IB_NAME) || !(data.flags & MLX5_NL_CMD_GET_IB_INDEX)) goto error; data.flags = 0; ++seq; req.nh.nlmsg_type = RDMA_NL_GET_TYPE(RDMA_NL_NLDEV, RDMA_NLDEV_CMD_PORT_GET); req.nh.nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK; req.nh.nlmsg_len = NLMSG_LENGTH(sizeof(req.buf) - NLMSG_HDRLEN); na = (void *)((uintptr_t)req.buf + NLMSG_HDRLEN); na->nla_len = NLA_HDRLEN + sizeof(data.ibindex); na->nla_type = RDMA_NLDEV_ATTR_DEV_INDEX; memcpy((void *)((uintptr_t)na + NLA_HDRLEN), &data.ibindex, sizeof(data.ibindex)); na = (void *)((uintptr_t)na + NLA_ALIGN(na->nla_len)); na->nla_len = NLA_HDRLEN + sizeof(pindex); na->nla_type = RDMA_NLDEV_ATTR_PORT_INDEX; memcpy((void *)((uintptr_t)na + NLA_HDRLEN), &pindex, sizeof(pindex)); ret = mlx5_nl_send(nl, &req.nh, seq); if (ret < 0) return 0; ret = mlx5_nl_recv(nl, seq, mlx5_nl_cmdget_cb, &data); if (ret < 0) return 0; if (!(data.flags & MLX5_NL_CMD_GET_IB_NAME) || !(data.flags & MLX5_NL_CMD_GET_IB_INDEX) || !(data.flags & MLX5_NL_CMD_GET_NET_INDEX) || !data.ifindex) goto error; return data.ifindex; error: rte_errno = ENODEV; return 0; } /** * Get the number of physical ports of given IB device. * * @param nl * Netlink socket of the RDMA kind (NETLINK_RDMA). * @param[in] name * IB device name. * * @return * A valid (nonzero) number of ports on success, 0 otherwise * and rte_errno is set. */ unsigned int mlx5_nl_portnum(int nl, const char *name) { uint32_t seq = random(); struct mlx5_nl_ifindex_data data = { .flags = 0, .name = name, .ifindex = 0, .portnum = 0, }; struct nlmsghdr req = { .nlmsg_len = NLMSG_LENGTH(0), .nlmsg_type = RDMA_NL_GET_TYPE(RDMA_NL_NLDEV, RDMA_NLDEV_CMD_GET), .nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK | NLM_F_DUMP, }; int ret; ret = mlx5_nl_send(nl, &req, seq); if (ret < 0) return 0; ret = mlx5_nl_recv(nl, seq, mlx5_nl_cmdget_cb, &data); if (ret < 0) return 0; if (!(data.flags & MLX5_NL_CMD_GET_IB_NAME) || !(data.flags & MLX5_NL_CMD_GET_IB_INDEX) || !(data.flags & MLX5_NL_CMD_GET_PORT_INDEX)) { rte_errno = ENODEV; return 0; } if (!data.portnum) rte_errno = EINVAL; return data.portnum; } /** * Process switch information from Netlink message. * * @param nh * Pointer to Netlink message header. * @param arg * Opaque data pointer for this callback. * * @return * 0 on success, a negative errno value otherwise and rte_errno is set. */ static int mlx5_nl_switch_info_cb(struct nlmsghdr *nh, void *arg) { struct mlx5_switch_info info = { .master = 0, .representor = 0, .name_type = MLX5_PHYS_PORT_NAME_TYPE_NOTSET, .port_name = 0, .switch_id = 0, }; size_t off = NLMSG_LENGTH(sizeof(struct ifinfomsg)); bool switch_id_set = false; bool num_vf_set = false; if (nh->nlmsg_type != RTM_NEWLINK) goto error; while (off < nh->nlmsg_len) { struct rtattr *ra = (void *)((uintptr_t)nh + off); void *payload = RTA_DATA(ra); unsigned int i; if (ra->rta_len > nh->nlmsg_len - off) goto error; switch (ra->rta_type) { case IFLA_NUM_VF: num_vf_set = true; break; case IFLA_PHYS_PORT_NAME: mlx5_translate_port_name((char *)payload, &info); break; case IFLA_PHYS_SWITCH_ID: info.switch_id = 0; for (i = 0; i < RTA_PAYLOAD(ra); ++i) { info.switch_id <<= 8; info.switch_id |= ((uint8_t *)payload)[i]; } switch_id_set = true; break; } off += RTA_ALIGN(ra->rta_len); } if (switch_id_set) { /* We have some E-Switch configuration. */ mlx5_nl_check_switch_info(num_vf_set, &info); } assert(!(info.master && info.representor)); memcpy(arg, &info, sizeof(info)); return 0; error: rte_errno = EINVAL; return -rte_errno; } /** * Get switch information associated with network interface. * * @param nl * Netlink socket of the ROUTE kind (NETLINK_ROUTE). * @param ifindex * Network interface index. * @param[out] info * Switch information object, populated in case of success. * * @return * 0 on success, a negative errno value otherwise and rte_errno is set. */ int mlx5_nl_switch_info(int nl, unsigned int ifindex, struct mlx5_switch_info *info) { uint32_t seq = random(); struct { struct nlmsghdr nh; struct ifinfomsg info; struct rtattr rta; uint32_t extmask; } req = { .nh = { .nlmsg_len = NLMSG_LENGTH (sizeof(req.info) + RTA_LENGTH(sizeof(uint32_t))), .nlmsg_type = RTM_GETLINK, .nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK, }, .info = { .ifi_family = AF_UNSPEC, .ifi_index = ifindex, }, .rta = { .rta_type = IFLA_EXT_MASK, .rta_len = RTA_LENGTH(sizeof(int32_t)), }, .extmask = RTE_LE32(1), }; int ret; ret = mlx5_nl_send(nl, &req.nh, seq); if (ret >= 0) ret = mlx5_nl_recv(nl, seq, mlx5_nl_switch_info_cb, info); if (info->master && info->representor) { DRV_LOG(ERR, "ifindex %u device is recognized as master" " and as representor", ifindex); rte_errno = ENODEV; ret = -rte_errno; } return ret; } /* * Delete VLAN network device by ifindex. * * @param[in] tcf * Context object initialized by mlx5_vlan_vmwa_init(). * @param[in] ifindex * Interface index of network device to delete. */ static void mlx5_vlan_vmwa_delete(struct mlx5_vlan_vmwa_context *vmwa, uint32_t ifindex) { int ret; struct { struct nlmsghdr nh; struct ifinfomsg info; } req = { .nh = { .nlmsg_len = NLMSG_LENGTH(sizeof(struct ifinfomsg)), .nlmsg_type = RTM_DELLINK, .nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK, }, .info = { .ifi_family = AF_UNSPEC, .ifi_index = ifindex, }, }; if (ifindex) { ++vmwa->nl_sn; if (!vmwa->nl_sn) ++vmwa->nl_sn; ret = mlx5_nl_send(vmwa->nl_socket, &req.nh, vmwa->nl_sn); if (ret >= 0) ret = mlx5_nl_recv(vmwa->nl_socket, vmwa->nl_sn, NULL, NULL); if (ret < 0) DRV_LOG(WARNING, "netlink: error deleting" " VLAN WA ifindex %u, %d", ifindex, ret); } } /* Set of subroutines to build Netlink message. */ static struct nlattr * nl_msg_tail(struct nlmsghdr *nlh) { return (struct nlattr *) (((uint8_t *)nlh) + NLMSG_ALIGN(nlh->nlmsg_len)); } static void nl_attr_put(struct nlmsghdr *nlh, int type, const void *data, int alen) { struct nlattr *nla = nl_msg_tail(nlh); nla->nla_type = type; nla->nla_len = NLMSG_ALIGN(sizeof(struct nlattr) + alen); nlh->nlmsg_len = NLMSG_ALIGN(nlh->nlmsg_len) + nla->nla_len; if (alen) memcpy((uint8_t *)nla + sizeof(struct nlattr), data, alen); } static struct nlattr * nl_attr_nest_start(struct nlmsghdr *nlh, int type) { struct nlattr *nest = (struct nlattr *)nl_msg_tail(nlh); nl_attr_put(nlh, type, NULL, 0); return nest; } static void nl_attr_nest_end(struct nlmsghdr *nlh, struct nlattr *nest) { nest->nla_len = (uint8_t *)nl_msg_tail(nlh) - (uint8_t *)nest; } /* * Create network VLAN device with specified VLAN tag. * * @param[in] tcf * Context object initialized by mlx5_vlan_vmwa_init(). * @param[in] ifindex * Base network interface index. * @param[in] tag * VLAN tag for VLAN network device to create. */ static uint32_t mlx5_vlan_vmwa_create(struct mlx5_vlan_vmwa_context *vmwa, uint32_t ifindex, uint16_t tag) { struct nlmsghdr *nlh; struct ifinfomsg *ifm; char name[sizeof(MLX5_VMWA_VLAN_DEVICE_PFX) + 32]; alignas(RTE_CACHE_LINE_SIZE) uint8_t buf[NLMSG_ALIGN(sizeof(struct nlmsghdr)) + NLMSG_ALIGN(sizeof(struct ifinfomsg)) + NLMSG_ALIGN(sizeof(struct nlattr)) * 8 + NLMSG_ALIGN(sizeof(uint32_t)) + NLMSG_ALIGN(sizeof(name)) + NLMSG_ALIGN(sizeof("vlan")) + NLMSG_ALIGN(sizeof(uint32_t)) + NLMSG_ALIGN(sizeof(uint16_t)) + 16]; struct nlattr *na_info; struct nlattr *na_vlan; int ret; memset(buf, 0, sizeof(buf)); ++vmwa->nl_sn; if (!vmwa->nl_sn) ++vmwa->nl_sn; nlh = (struct nlmsghdr *)buf; nlh->nlmsg_len = sizeof(struct nlmsghdr); nlh->nlmsg_type = RTM_NEWLINK; nlh->nlmsg_flags = NLM_F_REQUEST | NLM_F_CREATE | NLM_F_EXCL | NLM_F_ACK; ifm = (struct ifinfomsg *)nl_msg_tail(nlh); nlh->nlmsg_len += sizeof(struct ifinfomsg); ifm->ifi_family = AF_UNSPEC; ifm->ifi_type = 0; ifm->ifi_index = 0; ifm->ifi_flags = IFF_UP; ifm->ifi_change = 0xffffffff; nl_attr_put(nlh, IFLA_LINK, &ifindex, sizeof(ifindex)); ret = snprintf(name, sizeof(name), "%s.%u.%u", MLX5_VMWA_VLAN_DEVICE_PFX, ifindex, tag); nl_attr_put(nlh, IFLA_IFNAME, name, ret + 1); na_info = nl_attr_nest_start(nlh, IFLA_LINKINFO); nl_attr_put(nlh, IFLA_INFO_KIND, "vlan", sizeof("vlan")); na_vlan = nl_attr_nest_start(nlh, IFLA_INFO_DATA); nl_attr_put(nlh, IFLA_VLAN_ID, &tag, sizeof(tag)); nl_attr_nest_end(nlh, na_vlan); nl_attr_nest_end(nlh, na_info); assert(sizeof(buf) >= nlh->nlmsg_len); ret = mlx5_nl_send(vmwa->nl_socket, nlh, vmwa->nl_sn); if (ret >= 0) ret = mlx5_nl_recv(vmwa->nl_socket, vmwa->nl_sn, NULL, NULL); if (ret < 0) { DRV_LOG(WARNING, "netlink: VLAN %s create failure (%d)", name, ret); } // Try to get ifindex of created or pre-existing device. ret = if_nametoindex(name); if (!ret) { DRV_LOG(WARNING, "VLAN %s failed to get index (%d)", name, errno); return 0; } return ret; } /* * Release VLAN network device, created for VM workaround. * * @param[in] dev * Ethernet device object, Netlink context provider. * @param[in] vlan * Object representing the network device to release. */ void mlx5_vlan_vmwa_release(struct rte_eth_dev *dev, struct mlx5_vf_vlan *vlan) { struct mlx5_priv *priv = dev->data->dev_private; struct mlx5_vlan_vmwa_context *vmwa = priv->vmwa_context; struct mlx5_vlan_dev *vlan_dev = &vmwa->vlan_dev[0]; assert(vlan->created); assert(priv->vmwa_context); if (!vlan->created || !vmwa) return; vlan->created = 0; assert(vlan_dev[vlan->tag].refcnt); if (--vlan_dev[vlan->tag].refcnt == 0 && vlan_dev[vlan->tag].ifindex) { mlx5_vlan_vmwa_delete(vmwa, vlan_dev[vlan->tag].ifindex); vlan_dev[vlan->tag].ifindex = 0; } } /** * Acquire VLAN interface with specified tag for VM workaround. * * @param[in] dev * Ethernet device object, Netlink context provider. * @param[in] vlan * Object representing the network device to acquire. */ void mlx5_vlan_vmwa_acquire(struct rte_eth_dev *dev, struct mlx5_vf_vlan *vlan) { struct mlx5_priv *priv = dev->data->dev_private; struct mlx5_vlan_vmwa_context *vmwa = priv->vmwa_context; struct mlx5_vlan_dev *vlan_dev = &vmwa->vlan_dev[0]; assert(!vlan->created); assert(priv->vmwa_context); if (vlan->created || !vmwa) return; if (vlan_dev[vlan->tag].refcnt == 0) { assert(!vlan_dev[vlan->tag].ifindex); vlan_dev[vlan->tag].ifindex = mlx5_vlan_vmwa_create(vmwa, vmwa->vf_ifindex, vlan->tag); } if (vlan_dev[vlan->tag].ifindex) { vlan_dev[vlan->tag].refcnt++; vlan->created = 1; } } /* * Create per ethernet device VLAN VM workaround context */ struct mlx5_vlan_vmwa_context * mlx5_vlan_vmwa_init(struct rte_eth_dev *dev, uint32_t ifindex) { struct mlx5_priv *priv = dev->data->dev_private; struct mlx5_dev_config *config = &priv->config; struct mlx5_vlan_vmwa_context *vmwa; enum rte_hypervisor hv_type; /* Do not engage workaround over PF. */ if (!config->vf) return NULL; /* Check whether there is desired virtual environment */ hv_type = rte_hypervisor_get(); switch (hv_type) { case RTE_HYPERVISOR_UNKNOWN: case RTE_HYPERVISOR_VMWARE: /* * The "white list" of configurations * to engage the workaround. */ break; default: /* * The configuration is not found in the "white list". * We should not engage the VLAN workaround. */ return NULL; } vmwa = rte_zmalloc(__func__, sizeof(*vmwa), sizeof(uint32_t)); if (!vmwa) { DRV_LOG(WARNING, "Can not allocate memory" " for VLAN workaround context"); return NULL; } vmwa->nl_socket = mlx5_nl_init(NETLINK_ROUTE); if (vmwa->nl_socket < 0) { DRV_LOG(WARNING, "Can not create Netlink socket" " for VLAN workaround context"); rte_free(vmwa); return NULL; } vmwa->nl_sn = random(); vmwa->vf_ifindex = ifindex; vmwa->dev = dev; /* Cleanup for existing VLAN devices. */ return vmwa; } /* * Destroy per ethernet device VLAN VM workaround context */ void mlx5_vlan_vmwa_exit(struct mlx5_vlan_vmwa_context *vmwa) { unsigned int i; /* Delete all remaining VLAN devices. */ for (i = 0; i < RTE_DIM(vmwa->vlan_dev); i++) { if (vmwa->vlan_dev[i].ifindex) mlx5_vlan_vmwa_delete(vmwa, vmwa->vlan_dev[i].ifindex); } if (vmwa->nl_socket >= 0) close(vmwa->nl_socket); rte_free(vmwa); }